/* Copyright 2014 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Tests for firmware image library. */ #include #include #include #include "2common.h" #include "2rsa.h" #include "2sysincludes.h" #include "common/tests.h" #include "file_keys.h" #include "host_common.h" #include "host_key21.h" static const uint8_t test_data[] = "This is some test data to sign."; static const uint32_t test_size = sizeof(test_data); static const uint8_t test_data_sha1[VB2_SHA1_DIGEST_SIZE] = { 0x6f, 0xde, 0xe7, 0x73, 0x93, 0xbe, 0x23, 0x34, 0xb3, 0x54, 0xc2, 0xe9, 0x18, 0xb8, 0x1b, 0xf8, 0x99, 0x36, 0x63, 0x09, }; static const uint8_t test_data_sha256[VB2_SHA256_DIGEST_SIZE] = { 0xc0, 0x2c, 0xdb, 0x18, 0xe4, 0xd9, 0xfc, 0x65, 0xcb, 0xea, 0x11, 0x8e, 0x9e, 0x1c, 0x51, 0x2d, 0xeb, 0x69, 0x5f, 0x56, 0x1f, 0xd8, 0x77, 0x7b, 0x7d, 0x9d, 0x4f, 0x21, 0x81, 0xac, 0x9e, 0xd5, }; static const uint8_t test_data_sha512[VB2_SHA512_DIGEST_SIZE] = { 0x0e, 0x0c, 0x9c, 0xf7, 0x08, 0x28, 0xee, 0xd7, 0x0d, 0x62, 0xf5, 0x46, 0xa1, 0x2d, 0xf3, 0x79, 0x41, 0x0c, 0x80, 0xbf, 0xaf, 0x1f, 0xfa, 0x41, 0xdb, 0x8e, 0x30, 0x02, 0x16, 0xf1, 0x4b, 0x2c, 0x67, 0x1f, 0x5b, 0xfb, 0x06, 0x49, 0xc9, 0xf4, 0x6b, 0x62, 0xb9, 0x27, 0x94, 0xc3, 0xf4, 0xb8, 0xc7, 0x23, 0x40, 0xc5, 0xfb, 0x74, 0xab, 0xa4, 0x63, 0xfd, 0x3f, 0xf3, 0x2b, 0xa3, 0xc5, 0x3b, }; static const uint8_t *hwcrypto_next_hash; static enum hwcrypto_state { HWCRYPTO_OK, HWCRYPTO_NOTSUPPORTED, HWCRYPTO_ERROR, HWCRYPTO_ABORT, } hwcrypto_state_rsa, hwcrypto_state_digest; static vb2_error_t hwcrypto_mock(enum hwcrypto_state *state) { switch (*state) { case HWCRYPTO_OK: return VB2_SUCCESS; case HWCRYPTO_NOTSUPPORTED: return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED; case HWCRYPTO_ERROR: return VB2_ERROR_MOCK; case HWCRYPTO_ABORT: vb2ex_abort(); /* shouldn't reach here but added for compiler */ return VB2_ERROR_MOCK; } return VB2_ERROR_MOCK; } vb2_error_t vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm algo, uint32_t data_size) { switch (algo) { case VB2_HASH_SHA1: hwcrypto_next_hash = test_data_sha1; break; case VB2_HASH_SHA256: hwcrypto_next_hash = test_data_sha256; break; case VB2_HASH_SHA512: hwcrypto_next_hash = test_data_sha512; break; default: TEST_TRUE(false, " no mock hash for algorithm"); break; } return hwcrypto_mock(&hwcrypto_state_digest); } vb2_error_t vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size) { return hwcrypto_mock(&hwcrypto_state_digest); } vb2_error_t vb2ex_hwcrypto_digest_finalize(uint8_t *digest, uint32_t digest_size) { memcpy(digest, hwcrypto_next_hash, digest_size); return hwcrypto_mock(&hwcrypto_state_digest); } vb2_error_t vb2ex_hwcrypto_rsa_verify_digest(const struct vb2_public_key *key, const uint8_t *sig, const uint8_t *digest) { return hwcrypto_mock(&hwcrypto_state_rsa); } static void test_unpack_key(const struct vb2_packed_key *key1) { struct vb2_public_key pubk; /* * Key data follows the header for a newly allocated key, so we can * calculate the buffer size by looking at how far the key data goes. */ uint32_t size = key1->key_offset + key1->key_size; uint8_t *buf = malloc(size); struct vb2_packed_key *key = (struct vb2_packed_key *)buf; memcpy(key, key1, size); TEST_SUCC(vb2_unpack_key_buffer(&pubk, buf, size), "vb2_unpack_key_buffer() ok"); TEST_EQ(pubk.sig_alg, vb2_crypto_to_signature(key->algorithm), "vb2_unpack_key_buffer() sig_alg"); TEST_EQ(pubk.hash_alg, vb2_crypto_to_hash(key->algorithm), "vb2_unpack_key_buffer() hash_alg"); memcpy(key, key1, size); key->algorithm = VB2_ALG_COUNT; TEST_EQ(vb2_unpack_key_buffer(&pubk, buf, size), VB2_ERROR_UNPACK_KEY_SIG_ALGORITHM, "vb2_unpack_key_buffer() invalid algorithm"); memcpy(key, key1, size); key->key_size--; TEST_EQ(vb2_unpack_key_buffer(&pubk, buf, size), VB2_ERROR_UNPACK_KEY_SIZE, "vb2_unpack_key_buffer() invalid size"); memcpy(key, key1, size); key->key_offset++; TEST_EQ(vb2_unpack_key_buffer(&pubk, buf, size + 1), VB2_ERROR_UNPACK_KEY_ALIGN, "vb2_unpack_key_buffer() unaligned data"); memcpy(key, key1, size); *(uint32_t *)(buf + key->key_offset) /= 2; TEST_EQ(vb2_unpack_key_buffer(&pubk, buf, size), VB2_ERROR_UNPACK_KEY_ARRAY_SIZE, "vb2_unpack_key_buffer() invalid key array size"); memcpy(key, key1, size); TEST_EQ(vb2_unpack_key_buffer(&pubk, buf, size - 1), VB2_ERROR_INSIDE_DATA_OUTSIDE, "vb2_unpack_key_buffer() buffer too small"); free(key); TEST_EQ(vb2_unpack_key(&pubk, NULL), VB2_ERROR_UNPACK_KEY_BUFFER, "vb2_unpack_key_() buffer NULL"); } static void test_verify_data(const struct vb2_packed_key *key1, const struct vb2_signature *sig) { uint8_t workbuf[VB2_VERIFY_DATA_WORKBUF_BYTES] __attribute__((aligned(VB2_WORKBUF_ALIGN))); struct vb2_workbuf wb; struct vb2_public_key pubk, pubk_orig; uint32_t sig_total_size = sig->sig_offset + sig->sig_size; struct vb2_signature *sig2; hwcrypto_state_rsa = HWCRYPTO_ABORT; hwcrypto_state_digest = HWCRYPTO_ABORT; vb2_workbuf_init(&wb, workbuf, sizeof(workbuf)); /* Allocate signature copy for tests */ sig2 = (struct vb2_signature *)malloc(sig_total_size); TEST_SUCC(vb2_unpack_key(&pubk, key1), "vb2_verify_data() unpack key"); pubk_orig = pubk; memcpy(sig2, sig, sig_total_size); pubk.sig_alg = VB2_SIG_INVALID; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() bad sig alg"); pubk.sig_alg = pubk_orig.sig_alg; memcpy(sig2, sig, sig_total_size); pubk.hash_alg = VB2_HASH_INVALID; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() bad hash alg"); pubk.hash_alg = pubk_orig.hash_alg; vb2_workbuf_init(&wb, workbuf, 4); memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() workbuf too small"); vb2_workbuf_init(&wb, workbuf, sizeof(workbuf)); memcpy(sig2, sig, sig_total_size); TEST_EQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() ok"); memcpy(sig2, sig, sig_total_size); sig2->sig_size -= 16; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() wrong sig size"); memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size - 1, sig2, &pubk, &wb), 0, "vb2_verify_data() input buffer too small"); memcpy(sig2, sig, sig_total_size); vb2_signature_data_mutable(sig2)[0] ^= 0x5A; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() wrong sig"); pubk.allow_hwcrypto = 1; hwcrypto_state_digest = HWCRYPTO_OK; hwcrypto_state_rsa = HWCRYPTO_OK; memcpy(sig2, sig, sig_total_size); vb2_signature_data_mutable(sig2)[0] ^= 0x5A; TEST_EQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto ok"); hwcrypto_state_rsa = HWCRYPTO_ERROR; memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto error"); hwcrypto_state_rsa = HWCRYPTO_NOTSUPPORTED; memcpy(sig2, sig, sig_total_size); TEST_EQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto fallback ok"); memcpy(sig2, sig, sig_total_size); sig2->sig_size -= 16; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto fallback error"); hwcrypto_state_digest = HWCRYPTO_ERROR; hwcrypto_state_rsa = HWCRYPTO_OK; memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto error"); hwcrypto_state_rsa = HWCRYPTO_ERROR; memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto error"); hwcrypto_state_rsa = HWCRYPTO_NOTSUPPORTED; memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto fallback error"); hwcrypto_state_digest = HWCRYPTO_NOTSUPPORTED; hwcrypto_state_rsa = HWCRYPTO_OK; memcpy(sig2, sig, sig_total_size); vb2_signature_data_mutable(sig2)[0] ^= 0x5A; TEST_EQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto ok"); hwcrypto_state_rsa = HWCRYPTO_ERROR; memcpy(sig2, sig, sig_total_size); TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto error"); hwcrypto_state_rsa = HWCRYPTO_NOTSUPPORTED; memcpy(sig2, sig, sig_total_size); TEST_EQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto fallback ok"); memcpy(sig2, sig, sig_total_size); sig2->sig_size -= 16; TEST_NEQ(vb2_verify_data(test_data, test_size, sig2, &pubk, &wb), 0, "vb2_verify_data() hwcrypto fallback error"); pubk.allow_hwcrypto = 0; free(sig2); } static int test_algorithm(int key_algorithm, const char *keys_dir) { char filename[1024]; struct vb2_private_key *private_key = NULL; struct vb2_signature *sig = NULL; struct vb2_packed_key *key1 = NULL; int retval = 1; printf("***Testing algorithm: %s\n", vb2_get_crypto_algorithm_name(key_algorithm)); snprintf(filename, sizeof(filename), "%s/key_%s.pem", keys_dir, vb2_get_crypto_algorithm_file(key_algorithm)); private_key = vb2_read_private_key_pem(filename, key_algorithm); if (!private_key) { fprintf(stderr, "Error reading private_key: %s\n", filename); goto cleanup_algorithm; } snprintf(filename, sizeof(filename), "%s/key_%s.keyb", keys_dir, vb2_get_crypto_algorithm_file(key_algorithm)); key1 = vb2_read_packed_keyb(filename, key_algorithm, 1); if (!key1) { fprintf(stderr, "Error reading public_key: %s\n", filename); goto cleanup_algorithm; } /* Calculate good signatures */ sig = vb2_calculate_signature(test_data, sizeof(test_data), private_key); TEST_PTR_NEQ(sig, 0, "Calculate signature"); if (!sig) goto cleanup_algorithm; test_unpack_key(key1); test_verify_data(key1, sig); retval = 0; cleanup_algorithm: if (key1) free(key1); if (private_key) free(private_key); if (sig) free(sig); return retval; } /* Test only the algorithms we use */ const int key_algs[] = { VB2_ALG_RSA2048_SHA256, VB2_ALG_RSA4096_SHA256, VB2_ALG_RSA8192_SHA512, }; int main(int argc, char *argv[]) { if (argc == 2) { int i; for (i = 0; i < ARRAY_SIZE(key_algs); i++) { if (test_algorithm(key_algs[i], argv[1])) return 1; } } else if (argc == 3 && !strcasecmp(argv[2], "--all")) { /* Test all the algorithms */ int alg; for (alg = 0; alg < VB2_ALG_COUNT; alg++) { if (test_algorithm(alg, argv[1])) return 1; } } else { fprintf(stderr, "Usage: %s [--all]", argv[0]); return -1; } return gTestSuccess ? 0 : 255; }