// Copyright (c) 2022, Google LLC // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google LLC nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifdef HAVE_CONFIG_H #include // Must come first #endif #include #include #include "breakpad_googletest_includes.h" #include "google_breakpad/common/breakpad_types.h" #include "google_breakpad/common/minidump_cpu_amd64.h" #include "google_breakpad/common/minidump_cpu_x86.h" #include "google_breakpad/processor/dump_context.h" #include "google_breakpad/processor/memory_region.h" #include "processor/disassembler_objdump.h" namespace google_breakpad { class DisassemblerObjdumpForTest : public DisassemblerObjdump { public: using DisassemblerObjdump::CalculateAddress; using DisassemblerObjdump::DisassembleInstruction; using DisassemblerObjdump::TokenizeInstruction; }; class TestMemoryRegion : public MemoryRegion { public: TestMemoryRegion(uint64_t base, std::vector bytes); ~TestMemoryRegion() override = default; uint64_t GetBase() const override; uint32_t GetSize() const override; bool GetMemoryAtAddress(uint64_t address, uint8_t* value) const override; bool GetMemoryAtAddress(uint64_t address, uint16_t* value) const override; bool GetMemoryAtAddress(uint64_t address, uint32_t* value) const override; bool GetMemoryAtAddress(uint64_t address, uint64_t* value) const override; void Print() const override; private: uint64_t base_; std::vector bytes_; }; TestMemoryRegion::TestMemoryRegion(uint64_t address, std::vector bytes) : base_(address), bytes_(bytes) {} uint64_t TestMemoryRegion::GetBase() const { return base_; } uint32_t TestMemoryRegion::GetSize() const { return static_cast(bytes_.size()); } bool TestMemoryRegion::GetMemoryAtAddress(uint64_t address, uint8_t* value) const { if (address < GetBase() || address + sizeof(uint8_t) > GetBase() + GetSize()) { return false; } memcpy(value, &bytes_[address - GetBase()], sizeof(uint8_t)); return true; } // We don't use the following functions, so no need to implement. bool TestMemoryRegion::GetMemoryAtAddress(uint64_t address, uint16_t* value) const { return false; } bool TestMemoryRegion::GetMemoryAtAddress(uint64_t address, uint32_t* value) const { return false; } bool TestMemoryRegion::GetMemoryAtAddress(uint64_t address, uint64_t* value) const { return false; } void TestMemoryRegion::Print() const {} const uint32_t kX86TestDs = 0x01000000; const uint32_t kX86TestEs = 0x02000000; const uint32_t kX86TestFs = 0x03000000; const uint32_t kX86TestGs = 0x04000000; const uint32_t kX86TestEax = 0x00010101; const uint32_t kX86TestEbx = 0x00020202; const uint32_t kX86TestEcx = 0x00030303; const uint32_t kX86TestEdx = 0x00040404; const uint32_t kX86TestEsi = 0x00050505; const uint32_t kX86TestEdi = 0x00060606; const uint32_t kX86TestEsp = 0x00070707; const uint32_t kX86TestEbp = 0x00080808; const uint32_t kX86TestEip = 0x23230000; const uint64_t kAMD64TestRax = 0x0000010101010101ul; const uint64_t kAMD64TestRbx = 0x0000020202020202ul; const uint64_t kAMD64TestRcx = 0x0000030303030303ul; const uint64_t kAMD64TestRdx = 0x0000040404040404ul; const uint64_t kAMD64TestRsi = 0x0000050505050505ul; const uint64_t kAMD64TestRdi = 0x0000060606060606ul; const uint64_t kAMD64TestRsp = 0x0000070707070707ul; const uint64_t kAMD64TestRbp = 0x0000080808080808ul; const uint64_t kAMD64TestR8 = 0x0000090909090909ul; const uint64_t kAMD64TestR9 = 0x00000a0a0a0a0a0aul; const uint64_t kAMD64TestR10 = 0x00000b0b0b0b0b0bul; const uint64_t kAMD64TestR11 = 0x00000c0c0c0c0c0cul; const uint64_t kAMD64TestR12 = 0x00000d0d0d0d0d0dul; const uint64_t kAMD64TestR13 = 0x00000e0e0e0e0e0eul; const uint64_t kAMD64TestR14 = 0x00000f0f0f0f0f0ful; const uint64_t kAMD64TestR15 = 0x0000001010101010ul; const uint64_t kAMD64TestRip = 0x0000000023230000ul; class TestDumpContext : public DumpContext { public: TestDumpContext(bool x86_64 = false); ~TestDumpContext() override; }; TestDumpContext::TestDumpContext(bool x86_64) { if (!x86_64) { MDRawContextX86* raw_context = new MDRawContextX86(); memset(raw_context, 0, sizeof(*raw_context)); raw_context->context_flags = MD_CONTEXT_X86_FULL; raw_context->ds = kX86TestDs; raw_context->es = kX86TestEs; raw_context->fs = kX86TestFs; raw_context->gs = kX86TestGs; raw_context->eax = kX86TestEax; raw_context->ebx = kX86TestEbx; raw_context->ecx = kX86TestEcx; raw_context->edx = kX86TestEdx; raw_context->esi = kX86TestEsi; raw_context->edi = kX86TestEdi; raw_context->esp = kX86TestEsp; raw_context->ebp = kX86TestEbp; raw_context->eip = kX86TestEip; SetContextFlags(raw_context->context_flags); SetContextX86(raw_context); this->valid_ = true; } else { MDRawContextAMD64* raw_context = new MDRawContextAMD64(); memset(raw_context, 0, sizeof(*raw_context)); raw_context->context_flags = MD_CONTEXT_AMD64_FULL; raw_context->rax = kAMD64TestRax; raw_context->rbx = kAMD64TestRbx; raw_context->rcx = kAMD64TestRcx; raw_context->rdx = kAMD64TestRdx; raw_context->rsi = kAMD64TestRsi; raw_context->rdi = kAMD64TestRdi; raw_context->rsp = kAMD64TestRsp; raw_context->rbp = kAMD64TestRbp; raw_context->r8 = kAMD64TestR8; raw_context->r9 = kAMD64TestR9; raw_context->r10 = kAMD64TestR10; raw_context->r11 = kAMD64TestR11; raw_context->r12 = kAMD64TestR12; raw_context->r13 = kAMD64TestR13; raw_context->r14 = kAMD64TestR14; raw_context->r15 = kAMD64TestR15; raw_context->rip = kAMD64TestRip; SetContextFlags(raw_context->context_flags); SetContextAMD64(raw_context); this->valid_ = true; } } TestDumpContext::~TestDumpContext() { FreeContext(); } TEST(DisassemblerObjdumpTest, DisassembleInstructionX86) { string instruction; ASSERT_FALSE(DisassemblerObjdumpForTest::DisassembleInstruction( MD_CONTEXT_X86, nullptr, 0, instruction)); std::vector pop_eax = {0x58}; ASSERT_TRUE(DisassemblerObjdumpForTest::DisassembleInstruction( MD_CONTEXT_X86, pop_eax.data(), pop_eax.size(), instruction)); ASSERT_EQ(instruction, "pop eax"); } TEST(DisassemblerObjdumpTest, DisassembleInstructionAMD64) { string instruction; ASSERT_FALSE(DisassemblerObjdumpForTest::DisassembleInstruction( MD_CONTEXT_AMD64, nullptr, 0, instruction)); std::vector pop_rax = {0x58}; ASSERT_TRUE(DisassemblerObjdumpForTest::DisassembleInstruction( MD_CONTEXT_AMD64, pop_rax.data(), pop_rax.size(), instruction)); ASSERT_EQ(instruction, "pop rax"); } TEST(DisassemblerObjdumpTest, TokenizeInstruction) { string operation, dest, src; ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "pop eax", operation, dest, src)); ASSERT_EQ(operation, "pop"); ASSERT_EQ(dest, "eax"); ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov eax, ebx", operation, dest, src)); ASSERT_EQ(operation, "mov"); ASSERT_EQ(dest, "eax"); ASSERT_EQ(src, "ebx"); ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "pop rax", operation, dest, src)); ASSERT_EQ(operation, "pop"); ASSERT_EQ(dest, "rax"); ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov rax, rbx", operation, dest, src)); ASSERT_EQ(operation, "mov"); ASSERT_EQ(dest, "rax"); ASSERT_EQ(src, "rbx"); // Test the three parsing failure paths ASSERT_FALSE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov rax,", operation, dest, src)); ASSERT_FALSE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov rax rbx", operation, dest, src)); ASSERT_FALSE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov rax, rbx, rcx", operation, dest, src)); // This is of course a nonsense instruction, but test that we do remove // multiple instruction prefixes and can handle multiple memory operands. ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "rep lock mov DWORD PTR rax, QWORD PTR rbx", operation, dest, src)); ASSERT_EQ(operation, "mov"); ASSERT_EQ(dest, "rax"); ASSERT_EQ(src, "rbx"); // Test that we ignore junk following a valid instruction ASSERT_TRUE(DisassemblerObjdumpForTest::TokenizeInstruction( "mov rax, rbx ; junk here", operation, dest, src)); ASSERT_EQ(operation, "mov"); ASSERT_EQ(dest, "rax"); ASSERT_EQ(src, "rbx"); } namespace x86 { const TestMemoryRegion load_reg(kX86TestEip, {0x8b, 0x06}); // mov eax, [esi]; const TestMemoryRegion load_reg_index(kX86TestEip, {0x8b, 0x04, 0xbe}); // mov eax, [esi+edi*4]; const TestMemoryRegion load_reg_offset(kX86TestEip, {0x8b, 0x46, 0x10}); // mov eax, [esi+0x10]; const TestMemoryRegion load_reg_index_offset( kX86TestEip, {0x8b, 0x44, 0xbe, 0xf0}); // mov eax, [esi+edi*4-0x10]; const TestMemoryRegion rep_stosb(kX86TestEip, {0xf3, 0xaa}); // rep stosb; const TestMemoryRegion lock_cmpxchg(kX86TestEip, {0xf0, 0x0f, 0xb1, 0x46, 0x10}); // lock cmpxchg [esi + 0x10], eax; const TestMemoryRegion call_reg_offset(kX86TestEip, {0xff, 0x96, 0x99, 0x99, 0x99, 0x09}); // call [esi+0x9999999]; } // namespace x86 TEST(DisassemblerObjdumpTest, X86LoadReg) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::load_reg, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kX86TestEsi); } TEST(DisassemblerObjdumpTest, X86LoadRegIndex) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::load_reg_index, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kX86TestEsi + (kX86TestEdi * 4)); } TEST(DisassemblerObjdumpTest, X86LoadRegOffset) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::load_reg_offset, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kX86TestEsi + 0x10); } TEST(DisassemblerObjdumpTest, X86LoadRegIndexOffset) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::load_reg_index_offset, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kX86TestEsi + (kX86TestEdi * 4) - 0x10); } TEST(DisassemblerObjdumpTest, X86RepStosb) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::rep_stosb, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kX86TestEs + kX86TestEdi); } TEST(DisassemblerObjdumpTest, X86LockCmpxchg) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::lock_cmpxchg, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kX86TestEsi + 0x10); } TEST(DisassemblerObjdumpTest, X86CallRegOffset) { TestDumpContext context; DisassemblerObjdump dis(context.GetContextCPU(), &x86::call_reg_offset, kX86TestEip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kX86TestEsi + 0x9999999); } namespace amd64 { const TestMemoryRegion load_reg(kAMD64TestRip, {0x48, 0x8b, 0x06}); // mov rax, [rsi]; const TestMemoryRegion load_reg_index(kAMD64TestRip, {0x48, 0x8b, 0x04, 0xbe}); // mov rax, [rsi+rdi*4]; const TestMemoryRegion load_rip_relative(kAMD64TestRip, {0x48, 0x8b, 0x05, 0x10, 0x00, 0x00, 0x00}); // mov rax, [rip+0x10]; const TestMemoryRegion load_reg_index_offset( kAMD64TestRip, {0x48, 0x8b, 0x44, 0xbe, 0xf0}); // mov rax, [rsi+rdi*4-0x10]; const TestMemoryRegion rep_stosb(kAMD64TestRip, {0xf3, 0xaa}); // rep stosb; const TestMemoryRegion lock_cmpxchg(kAMD64TestRip, {0xf0, 0x48, 0x0f, 0xb1, 0x46, 0x10}); // lock cmpxchg [rsi + 0x10], rax; const TestMemoryRegion call_reg_offset(kAMD64TestRip, {0xff, 0x96, 0x99, 0x99, 0x99, 0x09}); // call [rsi+0x9999999]; } // namespace amd64 TEST(DisassemblerObjdumpTest, AMD64LoadReg) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::load_reg, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kAMD64TestRsi); } TEST(DisassemblerObjdumpTest, AMD64LoadRegIndex) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::load_reg_index, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kAMD64TestRsi + (kAMD64TestRdi * 4)); } TEST(DisassemblerObjdumpTest, AMD64LoadRipRelative) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::load_rip_relative, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kAMD64TestRip + 0x10); } TEST(DisassemblerObjdumpTest, AMD64LoadRegIndexOffset) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::load_reg_index_offset, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_FALSE(dis.CalculateDestAddress(context, dest_address)); ASSERT_TRUE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(src_address, kAMD64TestRsi + (kAMD64TestRdi * 4) - 0x10); } TEST(DisassemblerObjdumpTest, AMD64RepStosb) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::rep_stosb, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kAMD64TestRdi); } TEST(DisassemblerObjdumpTest, AMD64LockCmpxchg) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::lock_cmpxchg, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kAMD64TestRsi + 0x10); } TEST(DisassemblerObjdumpTest, AMD64CallRegOffset) { TestDumpContext context(true); DisassemblerObjdump dis(context.GetContextCPU(), &amd64::call_reg_offset, kAMD64TestRip); uint64_t src_address = 0, dest_address = 0; ASSERT_TRUE(dis.CalculateDestAddress(context, dest_address)); ASSERT_FALSE(dis.CalculateSrcAddress(context, src_address)); ASSERT_EQ(dest_address, kAMD64TestRsi + 0x9999999); } } // namespace google_breakpad