/** @file Ia32-specific functionality for DxeLoad. Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.
Copyright (c) 2017, AMD Incorporated. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include "VirtualMemory.h" #include "UefiPayloadEntry.h" #define STACK_SIZE 0x20000 #define IDT_ENTRY_COUNT 32 typedef struct _X64_IDT_TABLE { // // Reserved 4 bytes preceding PeiService and IdtTable, // since IDT base address should be 8-byte alignment. // UINT32 Reserved; CONST EFI_PEI_SERVICES **PeiService; X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT]; } X64_IDT_TABLE; // // Global Descriptor Table (GDT) // GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = { /* selector { Global Segment Descriptor } */ /* 0x00 */ { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, // null descriptor /* 0x08 */ { { 0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 } }, // linear data segment descriptor /* 0x10 */ { { 0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 } }, // linear code segment descriptor /* 0x18 */ { { 0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 } }, // system data segment descriptor /* 0x20 */ { { 0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 } }, // system code segment descriptor /* 0x28 */ { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, // spare segment descriptor /* 0x30 */ { { 0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 } }, // system data segment descriptor /* 0x38 */ { { 0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0 } }, // system code segment descriptor /* 0x40 */ { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, // spare segment descriptor }; // // IA32 Gdt register // GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = { sizeof (gGdtEntries) - 1, (UINTN)gGdtEntries }; GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = { sizeof (X64_IDT_GATE_DESCRIPTOR) * IDT_ENTRY_COUNT - 1, 0 }; /** Allocates and fills in the Page Directory and Page Table Entries to establish a 4G page table. @param[in] StackBase Stack base address. @param[in] StackSize Stack size. @return The address of page table. **/ UINTN Create4GPageTablesIa32Pae ( IN EFI_PHYSICAL_ADDRESS StackBase, IN UINTN StackSize ) { UINT8 PhysicalAddressBits; EFI_PHYSICAL_ADDRESS PhysicalAddress; UINTN IndexOfPdpEntries; UINTN IndexOfPageDirectoryEntries; UINT32 NumberOfPdpEntriesNeeded; PAGE_MAP_AND_DIRECTORY_POINTER *PageMap; PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry; PAGE_TABLE_ENTRY *PageDirectoryEntry; UINTN TotalPagesNum; UINTN PageAddress; UINT64 AddressEncMask; // // Make sure AddressEncMask is contained to smallest supported address field // AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64; PhysicalAddressBits = 32; // // Calculate the table entries needed. // NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30)); TotalPagesNum = NumberOfPdpEntriesNeeded + 1; PageAddress = (UINTN)AllocatePageTableMemory (TotalPagesNum); ASSERT (PageAddress != 0); PageMap = (VOID *)PageAddress; PageAddress += SIZE_4KB; PageDirectoryPointerEntry = PageMap; PhysicalAddress = 0; for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { // // Each Directory Pointer entries points to a page of Page Directory entires. // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop. // PageDirectoryEntry = (VOID *)PageAddress; PageAddress += SIZE_4KB; // // Fill in a Page Directory Pointer Entries // PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask; PageDirectoryPointerEntry->Bits.Present = 1; for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress += SIZE_2MB) { if ( (IsNullDetectionEnabled () && (PhysicalAddress == 0)) || ( (PhysicalAddress < StackBase + StackSize) && ((PhysicalAddress + SIZE_2MB) > StackBase))) { // // Need to split this 2M page that covers stack range. // Split2MPageTo4K (PhysicalAddress, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, 0, 0); } else { // // Fill in the Page Directory entries // PageDirectoryEntry->Uint64 = (UINT64)PhysicalAddress | AddressEncMask; PageDirectoryEntry->Bits.ReadWrite = 1; PageDirectoryEntry->Bits.Present = 1; PageDirectoryEntry->Bits.MustBe1 = 1; } } } for ( ; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { ZeroMem ( PageDirectoryPointerEntry, sizeof (PAGE_MAP_AND_DIRECTORY_POINTER) ); } // // Protect the page table by marking the memory used for page table to be // read-only. // EnablePageTableProtection ((UINTN)PageMap, FALSE); return (UINTN)PageMap; } /** The function will check if IA32 PAE is supported. @retval TRUE IA32 PAE is supported. @retval FALSE IA32 PAE is not supported. **/ BOOLEAN IsIa32PaeSupport ( VOID ) { UINT32 RegEax; UINT32 RegEdx; BOOLEAN Ia32PaeSupport; Ia32PaeSupport = FALSE; AsmCpuid (0x0, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x1) { AsmCpuid (0x1, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT6) != 0) { Ia32PaeSupport = TRUE; } } return Ia32PaeSupport; } /** The function will check if page table should be setup or not. @retval TRUE Page table should be created. @retval FALSE Page table should not be created. **/ BOOLEAN ToBuildPageTable ( VOID ) { if (!IsIa32PaeSupport ()) { return FALSE; } if (IsNullDetectionEnabled ()) { return TRUE; } if (PcdGet8 (PcdHeapGuardPropertyMask) != 0) { return TRUE; } if (PcdGetBool (PcdCpuStackGuard)) { return TRUE; } if (IsEnableNonExecNeeded ()) { return TRUE; } return FALSE; } /** Transfers control to DxeCore. This function performs a CPU architecture specific operations to execute the entry point of DxeCore with the parameters of HobList. @param DxeCoreEntryPoint The entry point of DxeCore. @param HobList The start of HobList passed to DxeCore. **/ VOID HandOffToDxeCore ( IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint, IN EFI_PEI_HOB_POINTERS HobList ) { EFI_PHYSICAL_ADDRESS BaseOfStack; EFI_PHYSICAL_ADDRESS TopOfStack; UINTN PageTables; X64_IDT_GATE_DESCRIPTOR *IdtTable; UINTN SizeOfTemplate; VOID *TemplateBase; EFI_PHYSICAL_ADDRESS VectorAddress; UINT32 Index; X64_IDT_TABLE *IdtTableForX64; // // Clear page 0 and mark it as allocated if NULL pointer detection is enabled. // if (IsNullDetectionEnabled ()) { ClearFirst4KPage (HobList.Raw); BuildMemoryAllocationHob (0, EFI_PAGES_TO_SIZE (1), EfiBootServicesData); } BaseOfStack = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES (STACK_SIZE)); ASSERT (BaseOfStack != 0); if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { // // Compute the top of the stack we were allocated, which is used to load X64 dxe core. // Pre-allocate a 32 bytes which confroms to x64 calling convention. // // The first four parameters to a function are passed in rcx, rdx, r8 and r9. // Any further parameters are pushed on the stack. Furthermore, space (4 * 8bytes) for the // register parameters is reserved on the stack, in case the called function // wants to spill them; this is important if the function is variadic. // TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - 32; // // x64 Calling Conventions requires that the stack must be aligned to 16 bytes // TopOfStack = (EFI_PHYSICAL_ADDRESS)(UINTN)ALIGN_POINTER (TopOfStack, 16); // // Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA // memory, it may be corrupted when copying FV to high-end memory // AsmWriteGdtr (&gGdt); // // Create page table and save PageMapLevel4 to CR3 // PageTables = CreateIdentityMappingPageTables (BaseOfStack, STACK_SIZE, 0, 0); // // Paging might be already enabled. To avoid conflict configuration, // disable paging first anyway. // AsmWriteCr0 (AsmReadCr0 () & (~BIT31)); AsmWriteCr3 (PageTables); // // Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore. // UpdateStackHob (BaseOfStack, STACK_SIZE); SizeOfTemplate = AsmGetVectorTemplatInfo (&TemplateBase); VectorAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES (sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT)); ASSERT (VectorAddress != 0); // // Store EFI_PEI_SERVICES** in the 4 bytes immediately preceding IDT to avoid that // it may not be gotten correctly after IDT register is re-written. // IdtTableForX64 = (X64_IDT_TABLE *)(UINTN)VectorAddress; IdtTableForX64->PeiService = NULL; VectorAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)(IdtTableForX64 + 1); IdtTable = IdtTableForX64->IdtTable; for (Index = 0; Index < IDT_ENTRY_COUNT; Index++) { IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e; IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0; IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL; IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16)VectorAddress; IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16)(RShiftU64 (VectorAddress, 16)); IdtTable[Index].Offset32To63 = (UINT32)(RShiftU64 (VectorAddress, 32)); IdtTable[Index].Reserved = 0; CopyMem ((VOID *)(UINTN)VectorAddress, TemplateBase, SizeOfTemplate); AsmVectorFixup ((VOID *)(UINTN)VectorAddress, (UINT8)Index); VectorAddress += SizeOfTemplate; } gLidtDescriptor.Base = (UINTN)IdtTable; AsmWriteIdtr (&gLidtDescriptor); DEBUG (( DEBUG_INFO, "%a() Stack Base: 0x%lx, Stack Size: 0x%x\n", __func__, BaseOfStack, STACK_SIZE )); // // Go to Long Mode and transfer control to DxeCore. // Interrupts will not get turned on until the CPU AP is loaded. // Call x64 drivers passing in single argument, a pointer to the HOBs. // AsmEnablePaging64 ( SYS_CODE64_SEL, DxeCoreEntryPoint, (EFI_PHYSICAL_ADDRESS)(UINTN)(HobList.Raw), 0, TopOfStack ); } else { // 32bit UEFI payload could be supported if required later. DEBUG ((DEBUG_ERROR, "NOT support 32bit UEFI payload\n")); ASSERT (FALSE); CpuDeadLoop (); } }