/** @file Copyright (c) 2014 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #ifndef _UFS_BLOCK_IO_PEI_H_ #define _UFS_BLOCK_IO_PEI_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "UfsHci.h" #include "UfsHcMem.h" #define UFS_PEIM_HC_SIG SIGNATURE_32 ('U', 'F', 'S', 'H') #define UFS_PEIM_MAX_LUNS 8 typedef struct { UINT8 Lun[UFS_PEIM_MAX_LUNS]; UINT16 BitMask : 12; // Bit 0~7 is for common luns. Bit 8~11 is reserved for those well known luns UINT16 Rsvd : 4; } UFS_PEIM_EXPOSED_LUNS; typedef struct { /// /// The timeout, in 100 ns units, to use for the execution of this SCSI /// Request Packet. A Timeout value of 0 means that this function /// will wait indefinitely for the SCSI Request Packet to execute. If /// Timeout is greater than zero, then this function will return /// EFI_TIMEOUT if the time required to execute the SCSI /// Request Packet is greater than Timeout. /// UINT64 Timeout; /// /// A pointer to the data buffer to transfer between the SCSI /// controller and the SCSI device for read and bidirectional commands. /// VOID *InDataBuffer; /// /// A pointer to the data buffer to transfer between the SCSI /// controller and the SCSI device for write or bidirectional commands. /// VOID *OutDataBuffer; /// /// A pointer to the sense data that was generated by the execution of /// the SCSI Request Packet. /// VOID *SenseData; /// /// A pointer to buffer that contains the Command Data Block to /// send to the SCSI device specified by Target and Lun. /// VOID *Cdb; /// /// On Input, the size, in bytes, of InDataBuffer. On output, the /// number of bytes transferred between the SCSI controller and the SCSI device. /// UINT32 InTransferLength; /// /// On Input, the size, in bytes of OutDataBuffer. On Output, the /// Number of bytes transferred between SCSI Controller and the SCSI device. /// UINT32 OutTransferLength; /// /// The length, in bytes, of the buffer Cdb. The standard values are 6, /// 10, 12, and 16, but other values are possible if a variable length CDB is used. /// UINT8 CdbLength; /// /// The direction of the data transfer. 0 for reads, 1 for writes. A /// value of 2 is Reserved for Bi-Directional SCSI commands. /// UINT8 DataDirection; /// /// On input, the length in bytes of the SenseData buffer. On /// output, the number of bytes written to the SenseData buffer. /// UINT8 SenseDataLength; } UFS_SCSI_REQUEST_PACKET; typedef struct _UFS_PEIM_HC_PRIVATE_DATA { UINT32 Signature; EFI_HANDLE Controller; UFS_PEIM_MEM_POOL *Pool; EFI_PEI_RECOVERY_BLOCK_IO_PPI BlkIoPpi; EFI_PEI_RECOVERY_BLOCK_IO2_PPI BlkIo2Ppi; EFI_PEI_PPI_DESCRIPTOR BlkIoPpiList; EFI_PEI_PPI_DESCRIPTOR BlkIo2PpiList; EFI_PEI_BLOCK_IO2_MEDIA Media[UFS_PEIM_MAX_LUNS]; // // EndOfPei callback is used to stop the UFS DMA operation // after exit PEI phase. // EFI_PEI_NOTIFY_DESCRIPTOR EndOfPeiNotifyList; UINTN UfsHcBase; UINT32 Capabilities; UINT8 TaskTag; VOID *UtpTrlBase; UINT8 Nutrs; VOID *TrlMapping; VOID *UtpTmrlBase; UINT8 Nutmrs; VOID *TmrlMapping; UFS_PEIM_EXPOSED_LUNS Luns; } UFS_PEIM_HC_PRIVATE_DATA; #define UFS_TIMEOUT MultU64x32((UINT64)(3), 10000000) #define ROUNDUP8(x) (((x) % 8 == 0) ? (x) : ((x) / 8 + 1) * 8) #define GET_UFS_PEIM_HC_PRIVATE_DATA_FROM_THIS(a) CR (a, UFS_PEIM_HC_PRIVATE_DATA, BlkIoPpi, UFS_PEIM_HC_SIG) #define GET_UFS_PEIM_HC_PRIVATE_DATA_FROM_THIS2(a) CR (a, UFS_PEIM_HC_PRIVATE_DATA, BlkIo2Ppi, UFS_PEIM_HC_SIG) #define GET_UFS_PEIM_HC_PRIVATE_DATA_FROM_THIS_NOTIFY(a) CR (a, UFS_PEIM_HC_PRIVATE_DATA, EndOfPeiNotifyList, UFS_PEIM_HC_SIG) #define UFS_SCSI_OP_LENGTH_SIX 0x6 #define UFS_SCSI_OP_LENGTH_TEN 0xa #define UFS_SCSI_OP_LENGTH_SIXTEEN 0x10 typedef struct _UFS_DEVICE_MANAGEMENT_REQUEST_PACKET { UINT64 Timeout; VOID *InDataBuffer; VOID *OutDataBuffer; UINT8 Opcode; UINT8 DescId; UINT8 Index; UINT8 Selector; UINT32 InTransferLength; UINT32 OutTransferLength; UINT8 DataDirection; UINT8 Ocs; } UFS_DEVICE_MANAGEMENT_REQUEST_PACKET; /** Sends a UFS-supported SCSI Request Packet to a UFS device that is attached to the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Lun The LUN of the UFS device to send the SCSI Request Packet. @param[in, out] Packet A pointer to the SCSI Request Packet to send to a specified Lun of the UFS device. @retval EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional commands, InTransferLength bytes were transferred from InDataBuffer. For write and bi-directional commands, OutTransferLength bytes were transferred by OutDataBuffer. @retval EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request Packet. @retval EFI_OUT_OF_RESOURCES The resource for transfer is not available. @retval EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to execute. **/ EFI_STATUS UfsExecScsiCmds ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 Lun, IN OUT UFS_SCSI_REQUEST_PACKET *Packet ); /** Initialize the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The Ufs Host Controller is initialized successfully. @retval Others A device error occurred while initializing the controller. **/ EFI_STATUS UfsControllerInit ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ); /** Stop the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The Ufs Host Controller is stopped successfully. @retval Others A device error occurred while stopping the controller. **/ EFI_STATUS UfsControllerStop ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ); /** Set specified flag to 1 on a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] FlagId The ID of flag to be set. @retval EFI_SUCCESS The flag was set successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to set the flag. @retval EFI_TIMEOUT A timeout occurred while waiting for the completion of setting the flag. **/ EFI_STATUS UfsSetFlag ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 FlagId ); /** Read or write specified device descriptor of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Read The boolean variable to show r/w direction. @param[in] DescId The ID of device descriptor. @param[in] Index The Index of device descriptor. @param[in] Selector The Selector of device descriptor. @param[in, out] Descriptor The buffer of device descriptor to be read or written. @param[in] DescSize The size of device descriptor buffer. @retval EFI_SUCCESS The device descriptor was read/written successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to r/w the device descriptor. @retval EFI_TIMEOUT A timeout occurred while waiting for the completion of r/w the device descriptor. **/ EFI_STATUS UfsRwDeviceDesc ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN BOOLEAN Read, IN UINT8 DescId, IN UINT8 Index, IN UINT8 Selector, IN OUT VOID *Descriptor, IN UINT32 DescSize ); /** Sends NOP IN cmd to a UFS device for initialization process request. For more details, please refer to UFS 2.0 spec Figure 13.3. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The NOP IN command was sent by the host. The NOP OUT response was received successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to execute NOP IN command. @retval EFI_OUT_OF_RESOURCES The resource for transfer is not available. @retval EFI_TIMEOUT A timeout occurred while waiting for the NOP IN command to execute. **/ EFI_STATUS UfsExecNopCmds ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ); /** Gets the count of block I/O devices that one specific block driver detects. This function is used for getting the count of block I/O devices that one specific block driver detects. To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects during the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy devices it finds during its enumeration process. If no device is detected, then the function will return zero. @param[in] PeiServices General-purpose services that are available to every PEIM. @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance. @param[out] NumberBlockDevices The number of block I/O devices discovered. @retval EFI_SUCCESS The operation performed successfully. **/ EFI_STATUS EFIAPI UfsBlockIoPeimGetDeviceNo ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO_PPI *This, OUT UINTN *NumberBlockDevices ); /** Gets a block device's media information. This function will provide the caller with the specified block device's media information. If the media changes, calling this function will update the media information accordingly. @param[in] PeiServices General-purpose services that are available to every PEIM @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance. @param[in] DeviceIndex Specifies the block device to which the function wants to talk. Because the driver that implements Block I/O PPIs will manage multiple block devices, the PPIs that want to talk to a single device must specify the device index that was assigned during the enumeration process. This index is a number from one to NumberBlockDevices. @param[out] MediaInfo The media information of the specified block media. The caller is responsible for the ownership of this data structure. @par Note: The MediaInfo structure describes an enumeration of possible block device types. This enumeration exists because no device paths are actually passed across interfaces that describe the type or class of hardware that is publishing the block I/O interface. This enumeration will allow for policy decisions in the Recovery PEIM, such as "Try to recover from legacy floppy first, LS-120 second, CD-ROM third." If there are multiple partitions abstracted by a given device type, they should be reported in ascending order; this order also applies to nested partitions, such as legacy MBR, where the outermost partitions would have precedence in the reporting order. The same logic applies to systems such as IDE that have precedence relationships like "Master/Slave" or "Primary/Secondary". The master device should be reported first, the slave second. @retval EFI_SUCCESS Media information about the specified block device was obtained successfully. @retval EFI_DEVICE_ERROR Cannot get the media information due to a hardware error. **/ EFI_STATUS EFIAPI UfsBlockIoPeimGetMediaInfo ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO_PPI *This, IN UINTN DeviceIndex, OUT EFI_PEI_BLOCK_IO_MEDIA *MediaInfo ); /** Reads the requested number of blocks from the specified block device. The function reads the requested number of blocks from the device. All the blocks are read, or an error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA. @param[in] PeiServices General-purpose services that are available to every PEIM. @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance. @param[in] DeviceIndex Specifies the block device to which the function wants to talk. Because the driver that implements Block I/O PPIs will manage multiple block devices, PPIs that want to talk to a single device must specify the device index that was assigned during the enumeration process. This index is a number from one to NumberBlockDevices. @param[in] StartLBA The starting logical block address (LBA) to read from on the device @param[in] BufferSize The size of the Buffer in bytes. This number must be a multiple of the intrinsic block size of the device. @param[out] Buffer A pointer to the destination buffer for the data. The caller is responsible for the ownership of the buffer. @retval EFI_SUCCESS The data was read correctly from the device. @retval EFI_DEVICE_ERROR The device reported an error while attempting to perform the read operation. @retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not properly aligned. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of the device. **/ EFI_STATUS EFIAPI UfsBlockIoPeimReadBlocks ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO_PPI *This, IN UINTN DeviceIndex, IN EFI_PEI_LBA StartLBA, IN UINTN BufferSize, OUT VOID *Buffer ); /** Gets the count of block I/O devices that one specific block driver detects. This function is used for getting the count of block I/O devices that one specific block driver detects. To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects during the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy devices it finds during its enumeration process. If no device is detected, then the function will return zero. @param[in] PeiServices General-purpose services that are available to every PEIM. @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO2_PPI instance. @param[out] NumberBlockDevices The number of block I/O devices discovered. @retval EFI_SUCCESS The operation performed successfully. **/ EFI_STATUS EFIAPI UfsBlockIoPeimGetDeviceNo2 ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This, OUT UINTN *NumberBlockDevices ); /** Gets a block device's media information. This function will provide the caller with the specified block device's media information. If the media changes, calling this function will update the media information accordingly. @param[in] PeiServices General-purpose services that are available to every PEIM @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO2_PPI instance. @param[in] DeviceIndex Specifies the block device to which the function wants to talk. Because the driver that implements Block I/O PPIs will manage multiple block devices, the PPIs that want to talk to a single device must specify the device index that was assigned during the enumeration process. This index is a number from one to NumberBlockDevices. @param[out] MediaInfo The media information of the specified block media. The caller is responsible for the ownership of this data structure. @par Note: The MediaInfo structure describes an enumeration of possible block device types. This enumeration exists because no device paths are actually passed across interfaces that describe the type or class of hardware that is publishing the block I/O interface. This enumeration will allow for policy decisions in the Recovery PEIM, such as "Try to recover from legacy floppy first, LS-120 second, CD-ROM third." If there are multiple partitions abstracted by a given device type, they should be reported in ascending order; this order also applies to nested partitions, such as legacy MBR, where the outermost partitions would have precedence in the reporting order. The same logic applies to systems such as IDE that have precedence relationships like "Master/Slave" or "Primary/Secondary". The master device should be reported first, the slave second. @retval EFI_SUCCESS Media information about the specified block device was obtained successfully. @retval EFI_DEVICE_ERROR Cannot get the media information due to a hardware error. **/ EFI_STATUS EFIAPI UfsBlockIoPeimGetMediaInfo2 ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This, IN UINTN DeviceIndex, OUT EFI_PEI_BLOCK_IO2_MEDIA *MediaInfo ); /** Reads the requested number of blocks from the specified block device. The function reads the requested number of blocks from the device. All the blocks are read, or an error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA. @param[in] PeiServices General-purpose services that are available to every PEIM. @param[in] This Indicates the EFI_PEI_RECOVERY_BLOCK_IO2_PPI instance. @param[in] DeviceIndex Specifies the block device to which the function wants to talk. Because the driver that implements Block I/O PPIs will manage multiple block devices, PPIs that want to talk to a single device must specify the device index that was assigned during the enumeration process. This index is a number from one to NumberBlockDevices. @param[in] StartLBA The starting logical block address (LBA) to read from on the device @param[in] BufferSize The size of the Buffer in bytes. This number must be a multiple of the intrinsic block size of the device. @param[out] Buffer A pointer to the destination buffer for the data. The caller is responsible for the ownership of the buffer. @retval EFI_SUCCESS The data was read correctly from the device. @retval EFI_DEVICE_ERROR The device reported an error while attempting to perform the read operation. @retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not properly aligned. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of the device. **/ EFI_STATUS EFIAPI UfsBlockIoPeimReadBlocks2 ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This, IN UINTN DeviceIndex, IN EFI_PEI_LBA StartLBA, IN UINTN BufferSize, OUT VOID *Buffer ); /** Initialize the memory management pool for the host controller. @param Private The Ufs Peim driver private data. @retval EFI_SUCCESS The memory pool is initialized. @retval Others Fail to init the memory pool. **/ EFI_STATUS UfsPeimInitMemPool ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ); /** Release the memory management pool. @param Pool The memory pool to free. @retval EFI_DEVICE_ERROR Fail to free the memory pool. @retval EFI_SUCCESS The memory pool is freed. **/ EFI_STATUS UfsPeimFreeMemPool ( IN UFS_PEIM_MEM_POOL *Pool ); /** Allocate some memory from the host controller's memory pool which can be used to communicate with host controller. @param Pool The host controller's memory pool. @param Size Size of the memory to allocate. @return The allocated memory or NULL. **/ VOID * UfsPeimAllocateMem ( IN UFS_PEIM_MEM_POOL *Pool, IN UINTN Size ); /** Free the allocated memory back to the memory pool. @param Pool The memory pool of the host controller. @param Mem The memory to free. @param Size The size of the memory to free. **/ VOID UfsPeimFreeMem ( IN UFS_PEIM_MEM_POOL *Pool, IN VOID *Mem, IN UINTN Size ); /** Initialize IOMMU. **/ VOID IoMmuInit ( VOID ); /** Provides the controller-specific addresses required to access system memory from a DMA bus master. @param Operation Indicates if the bus master is going to read or write to system memory. @param HostAddress The system memory address to map to the PCI controller. @param NumberOfBytes On input the number of bytes to map. On output the number of bytes that were mapped. @param DeviceAddress The resulting map address for the bus master PCI controller to use to access the hosts HostAddress. @param Mapping A resulting value to pass to Unmap(). @retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes. @retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer. @retval EFI_INVALID_PARAMETER One or more parameters are invalid. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @retval EFI_DEVICE_ERROR The system hardware could not map the requested address. **/ EFI_STATUS IoMmuMap ( IN EDKII_IOMMU_OPERATION Operation, IN VOID *HostAddress, IN OUT UINTN *NumberOfBytes, OUT EFI_PHYSICAL_ADDRESS *DeviceAddress, OUT VOID **Mapping ); /** Completes the Map() operation and releases any corresponding resources. @param Mapping The mapping value returned from Map(). @retval EFI_SUCCESS The range was unmapped. @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map(). @retval EFI_DEVICE_ERROR The data was not committed to the target system memory. **/ EFI_STATUS IoMmuUnmap ( IN VOID *Mapping ); /** Allocates pages that are suitable for an OperationBusMasterCommonBuffer or OperationBusMasterCommonBuffer64 mapping. @param Pages The number of pages to allocate. @param HostAddress A pointer to store the base system memory address of the allocated range. @param DeviceAddress The resulting map address for the bus master PCI controller to use to access the hosts HostAddress. @param Mapping A resulting value to pass to Unmap(). @retval EFI_SUCCESS The requested memory pages were allocated. @retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are MEMORY_WRITE_COMBINE and MEMORY_CACHED. @retval EFI_INVALID_PARAMETER One or more parameters are invalid. @retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated. **/ EFI_STATUS IoMmuAllocateBuffer ( IN UINTN Pages, OUT VOID **HostAddress, OUT EFI_PHYSICAL_ADDRESS *DeviceAddress, OUT VOID **Mapping ); /** Frees memory that was allocated with AllocateBuffer(). @param Pages The number of pages to free. @param HostAddress The base system memory address of the allocated range. @param Mapping The mapping value returned from Map(). @retval EFI_SUCCESS The requested memory pages were freed. @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages was not allocated with AllocateBuffer(). **/ EFI_STATUS IoMmuFreeBuffer ( IN UINTN Pages, IN VOID *HostAddress, IN VOID *Mapping ); /** One notified function to cleanup the allocated DMA buffers at the end of PEI. @param[in] PeiServices Pointer to PEI Services Table. @param[in] NotifyDescriptor Pointer to the descriptor for the Notification event that caused this function to execute. @param[in] Ppi Pointer to the PPI data associated with this function. @retval EFI_SUCCESS The function completes successfully **/ EFI_STATUS EFIAPI UfsEndOfPei ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor, IN VOID *Ppi ); #endif