/** @file Header file for SdDxe Driver. This file defines common data structures, macro definitions and some module internal function header files. Copyright (c) 2015 - 2017, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #ifndef _SD_DXE_H_ #define _SD_DXE_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "SdBlockIo.h" #include "SdDiskInfo.h" // // Global Variables // extern EFI_DRIVER_BINDING_PROTOCOL gSdDxeDriverBinding; extern EFI_COMPONENT_NAME_PROTOCOL gSdDxeComponentName; extern EFI_COMPONENT_NAME2_PROTOCOL gSdDxeComponentName2; #define SD_DEVICE_SIGNATURE SIGNATURE_32 ('S', 'D', 't', 'f') #define SD_DEVICE_DATA_FROM_BLKIO(a) \ CR(a, SD_DEVICE, BlockIo, SD_DEVICE_SIGNATURE) #define SD_DEVICE_DATA_FROM_BLKIO2(a) \ CR(a, SD_DEVICE, BlockIo2, SD_DEVICE_SIGNATURE) #define SD_DEVICE_DATA_FROM_ERASEBLK(a) \ CR(a, SD_DEVICE, EraseBlock, SD_DEVICE_SIGNATURE) #define SD_DEVICE_DATA_FROM_DISKINFO(a) \ CR(a, SD_DEVICE, DiskInfo, SD_DEVICE_SIGNATURE) // // Take 2.5 seconds as generic time out value, 1 microsecond as unit. // #define SD_GENERIC_TIMEOUT 2500 * 1000 #define SD_REQUEST_SIGNATURE SIGNATURE_32 ('S', 'D', 'R', 'E') #define SD_MODEL_NAME_MAX_LEN 32 typedef struct _SD_DEVICE SD_DEVICE; typedef struct _SD_DRIVER_PRIVATE_DATA SD_DRIVER_PRIVATE_DATA; // // Asynchronous I/O request. // typedef struct { UINT32 Signature; LIST_ENTRY Link; EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk; EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk; EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet; BOOLEAN IsEnd; EFI_BLOCK_IO2_TOKEN *Token; EFI_EVENT Event; } SD_REQUEST; #define SD_REQUEST_FROM_LINK(a) \ CR(a, SD_REQUEST, Link, SD_REQUEST_SIGNATURE) struct _SD_DEVICE { UINT32 Signature; EFI_HANDLE Handle; EFI_DEVICE_PATH_PROTOCOL *DevicePath; UINT8 Slot; BOOLEAN SectorAddressing; EFI_BLOCK_IO_PROTOCOL BlockIo; EFI_BLOCK_IO2_PROTOCOL BlockIo2; EFI_BLOCK_IO_MEDIA BlockMedia; EFI_ERASE_BLOCK_PROTOCOL EraseBlock; EFI_DISK_INFO_PROTOCOL DiskInfo; LIST_ENTRY Queue; SD_CSD Csd; SD_CID Cid; EFI_UNICODE_STRING_TABLE *ControllerNameTable; // // The model name consists of three fields in CID register // 1) OEM/Application ID (2 bytes) // 2) Product Name (5 bytes) // 3) Product Serial Number (4 bytes) // The delimiters of these fields are whitespace. // CHAR16 ModelName[SD_MODEL_NAME_MAX_LEN]; SD_DRIVER_PRIVATE_DATA *Private; }; // // SD DXE driver private data structure // struct _SD_DRIVER_PRIVATE_DATA { EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru; EFI_HANDLE Controller; EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; EFI_HANDLE DriverBindingHandle; }; /** Tests to see if this driver supports a given controller. If a child device is provided, it further tests to see if this driver supports creating a handle for the specified child device. This function checks to see if the driver specified by This supports the device specified by ControllerHandle. Drivers will typically use the device path attached to ControllerHandle and/or the services from the bus I/O abstraction attached to ControllerHandle to determine if the driver supports ControllerHandle. This function may be called many times during platform initialization. In order to reduce boot times, the tests performed by this function must be very small, and take as little time as possible to execute. This function must not change the state of any hardware devices, and this function must be aware that the device specified by ControllerHandle may already be managed by the same driver or a different driver. This function must match its calls to AllocatePages() with FreePages(), AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol(). Since ControllerHandle may have been previously started by the same driver, if a protocol is already in the opened state, then it must not be closed with CloseProtocol(). This is required to guarantee the state of ControllerHandle is not modified by this function. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle The handle of the controller to test. This handle must support a protocol interface that supplies an I/O abstraction to the driver. @param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This parameter is ignored by device drivers, and is optional for bus drivers. For bus drivers, if this parameter is not NULL, then the bus driver must determine if the bus controller specified by ControllerHandle and the child controller specified by RemainingDevicePath are both supported by this bus driver. @retval EFI_SUCCESS The device specified by ControllerHandle and RemainingDevicePath is supported by the driver specified by This. @retval EFI_ALREADY_STARTED The device specified by ControllerHandle and RemainingDevicePath is already being managed by the driver specified by This. @retval EFI_ACCESS_DENIED The device specified by ControllerHandle and RemainingDevicePath is already being managed by a different driver or an application that requires exclusive access. Currently not implemented. @retval EFI_UNSUPPORTED The device specified by ControllerHandle and RemainingDevicePath is not supported by the driver specified by This. **/ EFI_STATUS EFIAPI SdDxeDriverBindingSupported ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ); /** Starts a device controller or a bus controller. The Start() function is designed to be invoked from the EFI boot service ConnectController(). As a result, much of the error checking on the parameters to Start() has been moved into this common boot service. It is legal to call Start() from other locations, but the following calling restrictions must be followed or the system behavior will not be deterministic. 1. ControllerHandle must be a valid EFI_HANDLE. 2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned EFI_DEVICE_PATH_PROTOCOL. 3. Prior to calling Start(), the Supported() function for the driver specified by This must have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle The handle of the controller to start. This handle must support a protocol interface that supplies an I/O abstraction to the driver. @param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This parameter is ignored by device drivers, and is optional for bus drivers. For a bus driver, if this parameter is NULL, then handles for all the children of Controller are created by this driver. If this parameter is not NULL and the first Device Path Node is not the End of Device Path Node, then only the handle for the child device specified by the first Device Path Node of RemainingDevicePath is created by this driver. If the first Device Path Node of RemainingDevicePath is the End of Device Path Node, no child handle is created by this driver. @retval EFI_SUCCESS The device was started. @retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @retval Others The driver failed to start the device. **/ EFI_STATUS EFIAPI SdDxeDriverBindingStart ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ); /** Stops a device controller or a bus controller. The Stop() function is designed to be invoked from the EFI boot service DisconnectController(). As a result, much of the error checking on the parameters to Stop() has been moved into this common boot service. It is legal to call Stop() from other locations, but the following calling restrictions must be followed or the system behavior will not be deterministic. 1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this same driver's Start() function. 2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid EFI_HANDLE. In addition, all of these handles must have been created in this driver's Start() function, and the Start() function must have called OpenProtocol() on ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle A handle to the device being stopped. The handle must support a bus specific I/O protocol for the driver to use to stop the device. @param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer. @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL if NumberOfChildren is 0. @retval EFI_SUCCESS The device was stopped. @retval EFI_DEVICE_ERROR The device could not be stopped due to a device error. **/ EFI_STATUS EFIAPI SdDxeDriverBindingStop ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer ); /** Retrieves a Unicode string that is the user readable name of the driver. This function retrieves the user readable name of a driver in the form of a Unicode string. If the driver specified by This has a user readable name in the language specified by Language, then a pointer to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If the driver specified by This does not support the language specified by Language, then EFI_UNSUPPORTED is returned. @param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or EFI_COMPONENT_NAME_PROTOCOL instance. @param Language[in] A pointer to a Null-terminated ASCII string array indicating the language. This is the language of the driver name that the caller is requesting, and it must match one of the languages specified in SupportedLanguages. The number of languages supported by a driver is up to the driver writer. Language is specified in RFC 4646 or ISO 639-2 language code format. @param DriverName[out] A pointer to the Unicode string to return. This Unicode string is the name of the driver specified by This in the language specified by Language. @retval EFI_SUCCESS The Unicode string for the Driver specified by This and the language specified by Language was returned in DriverName. @retval EFI_INVALID_PARAMETER Language is NULL. @retval EFI_INVALID_PARAMETER DriverName is NULL. @retval EFI_UNSUPPORTED The driver specified by This does not support the language specified by Language. **/ EFI_STATUS EFIAPI SdDxeComponentNameGetDriverName ( IN EFI_COMPONENT_NAME_PROTOCOL *This, IN CHAR8 *Language, OUT CHAR16 **DriverName ); /** Retrieves a Unicode string that is the user readable name of the controller that is being managed by a driver. This function retrieves the user readable name of the controller specified by ControllerHandle and ChildHandle in the form of a Unicode string. If the driver specified by This has a user readable name in the language specified by Language, then a pointer to the controller name is returned in ControllerName, and EFI_SUCCESS is returned. If the driver specified by This is not currently managing the controller specified by ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned. If the driver specified by This does not support the language specified by Language, then EFI_UNSUPPORTED is returned. @param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or EFI_COMPONENT_NAME_PROTOCOL instance. @param ControllerHandle[in] The handle of a controller that the driver specified by This is managing. This handle specifies the controller whose name is to be returned. @param ChildHandle[in] The handle of the child controller to retrieve the name of. This is an optional parameter that may be NULL. It will be NULL for device drivers. It will also be NULL for a bus drivers that wish to retrieve the name of the bus controller. It will not be NULL for a bus driver that wishes to retrieve the name of a child controller. @param Language[in] A pointer to a Null-terminated ASCII string array indicating the language. This is the language of the driver name that the caller is requesting, and it must match one of the languages specified in SupportedLanguages. The number of languages supported by a driver is up to the driver writer. Language is specified in RFC 4646 or ISO 639-2 language code format. @param ControllerName[out] A pointer to the Unicode string to return. This Unicode string is the name of the controller specified by ControllerHandle and ChildHandle in the language specified by Language from the point of view of the driver specified by This. @retval EFI_SUCCESS The Unicode string for the user readable name in the language specified by Language for the driver specified by This was returned in DriverName. @retval EFI_INVALID_PARAMETER ControllerHandle is NULL. @retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid EFI_HANDLE. @retval EFI_INVALID_PARAMETER Language is NULL. @retval EFI_INVALID_PARAMETER ControllerName is NULL. @retval EFI_UNSUPPORTED The driver specified by This is not currently managing the controller specified by ControllerHandle and ChildHandle. @retval EFI_UNSUPPORTED The driver specified by This does not support the language specified by Language. **/ EFI_STATUS EFIAPI SdDxeComponentNameGetControllerName ( IN EFI_COMPONENT_NAME_PROTOCOL *This, IN EFI_HANDLE ControllerHandle, IN EFI_HANDLE ChildHandle OPTIONAL, IN CHAR8 *Language, OUT CHAR16 **ControllerName ); /** Send command SET_RELATIVE_ADDRESS to the device to set the device address. @param[in] Device A pointer to the SD_DEVICE instance. @param[out] Rca The relative device address to assign. @retval EFI_SUCCESS The request is executed successfully. @retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources. @retval Others The request could not be executed successfully. **/ EFI_STATUS SdSetRca ( IN SD_DEVICE *Device, OUT UINT16 *Rca ); /** Send command SELECT to the device to select/deselect the device. @param[in] Device A pointer to the SD_DEVICE instance. @param[in] Rca The relative device address to use. @retval EFI_SUCCESS The request is executed successfully. @retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources. @retval Others The request could not be executed successfully. **/ EFI_STATUS SdSelect ( IN SD_DEVICE *Device, IN UINT16 Rca ); /** Send command SEND_STATUS to the device to get device status. @param[in] Device A pointer to the SD_DEVICE instance. @param[in] Rca The relative device address to use. @param[out] DevStatus The buffer to store the device status. @retval EFI_SUCCESS The request is executed successfully. @retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources. @retval Others The request could not be executed successfully. **/ EFI_STATUS SdSendStatus ( IN SD_DEVICE *Device, IN UINT16 Rca, OUT UINT32 *DevStatus ); /** Send command SEND_CSD to the device to get the CSD register data. @param[in] Device A pointer to the SD_DEVICE instance. @param[in] Rca The relative device address to use. @param[out] Csd The buffer to store the SD_CSD register data. @retval EFI_SUCCESS The request is executed successfully. @retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources. @retval Others The request could not be executed successfully. **/ EFI_STATUS SdGetCsd ( IN SD_DEVICE *Device, IN UINT16 Rca, OUT SD_CSD *Csd ); /** Send command SEND_CID to the device to get the CID register data. @param[in] Device A pointer to the SD_DEVICE instance. @param[in] Rca The relative device address to use. @param[out] Cid The buffer to store the SD_CID register data. @retval EFI_SUCCESS The request is executed successfully. @retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources. @retval Others The request could not be executed successfully. **/ EFI_STATUS SdGetCid ( IN SD_DEVICE *Device, IN UINT16 Rca, OUT SD_CID *Cid ); #endif