/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include "crypto/x509.h" int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b) { int i; const X509_CINF *ai, *bi; if (b == NULL) return a != NULL; if (a == NULL) return -1; ai = &a->cert_info; bi = &b->cert_info; i = ASN1_INTEGER_cmp(&ai->serialNumber, &bi->serialNumber); if (i != 0) return i < 0 ? -1 : 1; return X509_NAME_cmp(ai->issuer, bi->issuer); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_and_serial_hash(X509 *a) { unsigned long ret = 0; EVP_MD_CTX *ctx = EVP_MD_CTX_new(); unsigned char md[16]; char *f = NULL; EVP_MD *digest = NULL; if (ctx == NULL) goto err; f = X509_NAME_oneline(a->cert_info.issuer, NULL, 0); if (f == NULL) goto err; digest = EVP_MD_fetch(a->libctx, SN_md5, a->propq); if (digest == NULL) goto err; if (!EVP_DigestInit_ex(ctx, digest, NULL)) goto err; if (!EVP_DigestUpdate(ctx, (unsigned char *)f, strlen(f))) goto err; if (!EVP_DigestUpdate (ctx, (unsigned char *)a->cert_info.serialNumber.data, (unsigned long)a->cert_info.serialNumber.length)) goto err; if (!EVP_DigestFinal_ex(ctx, &(md[0]), NULL)) goto err; ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; err: OPENSSL_free(f); EVP_MD_free(digest); EVP_MD_CTX_free(ctx); return ret; } #endif int X509_issuer_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.issuer, b->cert_info.issuer); } int X509_subject_name_cmp(const X509 *a, const X509 *b) { return X509_NAME_cmp(a->cert_info.subject, b->cert_info.subject); } int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) { return X509_NAME_cmp(a->crl.issuer, b->crl.issuer); } int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) { int rv; if ((a->flags & EXFLAG_NO_FINGERPRINT) == 0 && (b->flags & EXFLAG_NO_FINGERPRINT) == 0) rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); else return -2; return rv < 0 ? -1 : rv > 0; } X509_NAME *X509_get_issuer_name(const X509 *a) { return a->cert_info.issuer; } unsigned long X509_issuer_name_hash(X509 *x) { return X509_NAME_hash_ex(x->cert_info.issuer, NULL, NULL, NULL); } #ifndef OPENSSL_NO_MD5 unsigned long X509_issuer_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.issuer); } #endif X509_NAME *X509_get_subject_name(const X509 *a) { return a->cert_info.subject; } ASN1_INTEGER *X509_get_serialNumber(X509 *a) { return &a->cert_info.serialNumber; } const ASN1_INTEGER *X509_get0_serialNumber(const X509 *a) { return &a->cert_info.serialNumber; } unsigned long X509_subject_name_hash(X509 *x) { return X509_NAME_hash_ex(x->cert_info.subject, NULL, NULL, NULL); } #ifndef OPENSSL_NO_MD5 unsigned long X509_subject_name_hash_old(X509 *x) { return X509_NAME_hash_old(x->cert_info.subject); } #endif /* * Compare two certificates: they must be identical for this to work. NB: * Although "cmp" operations are generally prototyped to take "const" * arguments (eg. for use in STACKs), the way X509 handling is - these * operations may involve ensuring the hashes are up-to-date and ensuring * certain cert information is cached. So this is the point where the * "depth-first" constification tree has to halt with an evil cast. */ int X509_cmp(const X509 *a, const X509 *b) { int rv = 0; if (a == b) /* for efficiency */ return 0; /* attempt to compute cert hash */ (void)X509_check_purpose((X509 *)a, -1, 0); (void)X509_check_purpose((X509 *)b, -1, 0); if ((a->ex_flags & EXFLAG_NO_FINGERPRINT) == 0 && (b->ex_flags & EXFLAG_NO_FINGERPRINT) == 0) rv = memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); if (rv != 0) return rv < 0 ? -1 : 1; /* Check for match against stored encoding too */ if (!a->cert_info.enc.modified && !b->cert_info.enc.modified) { if (a->cert_info.enc.len < b->cert_info.enc.len) return -1; if (a->cert_info.enc.len > b->cert_info.enc.len) return 1; rv = memcmp(a->cert_info.enc.enc, b->cert_info.enc.enc, a->cert_info.enc.len); } return rv < 0 ? -1 : rv > 0; } int ossl_x509_add_cert_new(STACK_OF(X509) **p_sk, X509 *cert, int flags) { if (*p_sk == NULL && (*p_sk = sk_X509_new_null()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); return 0; } return X509_add_cert(*p_sk, cert, flags); } int X509_add_cert(STACK_OF(X509) *sk, X509 *cert, int flags) { if (sk == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((flags & X509_ADD_FLAG_NO_DUP) != 0) { /* * not using sk_X509_set_cmp_func() and sk_X509_find() * because this re-orders the certs on the stack */ int i; for (i = 0; i < sk_X509_num(sk); i++) { if (X509_cmp(sk_X509_value(sk, i), cert) == 0) return 1; } } if ((flags & X509_ADD_FLAG_NO_SS) != 0) { int ret = X509_self_signed(cert, 0); if (ret != 0) return ret > 0 ? 1 : 0; } if (!sk_X509_insert(sk, cert, (flags & X509_ADD_FLAG_PREPEND) != 0 ? 0 : -1)) { ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); return 0; } if ((flags & X509_ADD_FLAG_UP_REF) != 0) (void)X509_up_ref(cert); return 1; } int X509_add_certs(STACK_OF(X509) *sk, STACK_OF(X509) *certs, int flags) /* compiler would allow 'const' for the certs, yet they may get up-ref'ed */ { if (sk == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ossl_x509_add_certs_new(&sk, certs, flags); } int ossl_x509_add_certs_new(STACK_OF(X509) **p_sk, STACK_OF(X509) *certs, int flags) /* compiler would allow 'const' for the certs, yet they may get up-ref'ed */ { int n = sk_X509_num(certs /* may be NULL */); int i; for (i = 0; i < n; i++) { int j = (flags & X509_ADD_FLAG_PREPEND) == 0 ? i : n - 1 - i; /* if prepend, add certs in reverse order to keep original order */ if (!ossl_x509_add_cert_new(p_sk, sk_X509_value(certs, j), flags)) return 0; } return 1; } int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) { int ret; if (b == NULL) return a != NULL; if (a == NULL) return -1; /* Ensure canonical encoding is present and up to date */ if (a->canon_enc == NULL || a->modified) { ret = i2d_X509_NAME((X509_NAME *)a, NULL); if (ret < 0) return -2; } if (b->canon_enc == NULL || b->modified) { ret = i2d_X509_NAME((X509_NAME *)b, NULL); if (ret < 0) return -2; } ret = a->canon_enclen - b->canon_enclen; if (ret == 0 && a->canon_enclen == 0) return 0; if (a->canon_enc == NULL || b->canon_enc == NULL) return -2; if (ret == 0) ret = memcmp(a->canon_enc, b->canon_enc, a->canon_enclen); return ret < 0 ? -1 : ret > 0; } unsigned long X509_NAME_hash_ex(const X509_NAME *x, OSSL_LIB_CTX *libctx, const char *propq, int *ok) { unsigned long ret = 0; unsigned char md[SHA_DIGEST_LENGTH]; EVP_MD *sha1 = EVP_MD_fetch(libctx, "SHA1", propq); /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); if (ok != NULL) *ok = 0; if (sha1 != NULL && EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, sha1, NULL)) { ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; if (ok != NULL) *ok = 1; } EVP_MD_free(sha1); return ret; } #ifndef OPENSSL_NO_MD5 /* * I now DER encode the name and hash it. Since I cache the DER encoding, * this is reasonably efficient. */ unsigned long X509_NAME_hash_old(const X509_NAME *x) { EVP_MD *md5 = EVP_MD_fetch(NULL, OSSL_DIGEST_NAME_MD5, "-fips"); EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); unsigned long ret = 0; unsigned char md[16]; if (md5 == NULL || md_ctx == NULL) goto end; /* Make sure X509_NAME structure contains valid cached encoding */ i2d_X509_NAME(x, NULL); if (EVP_DigestInit_ex(md_ctx, md5, NULL) && EVP_DigestUpdate(md_ctx, x->bytes->data, x->bytes->length) && EVP_DigestFinal_ex(md_ctx, md, NULL)) ret = (((unsigned long)md[0]) | ((unsigned long)md[1] << 8L) | ((unsigned long)md[2] << 16L) | ((unsigned long)md[3] << 24L) ) & 0xffffffffL; end: EVP_MD_CTX_free(md_ctx); EVP_MD_free(md5); return ret; } #endif /* Search a stack of X509 for a match */ X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, const X509_NAME *name, const ASN1_INTEGER *serial) { int i; X509 x, *x509 = NULL; if (!sk) return NULL; x.cert_info.serialNumber = *serial; x.cert_info.issuer = (X509_NAME *)name; /* won't modify it */ for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_issuer_and_serial_cmp(x509, &x) == 0) return x509; } return NULL; } X509 *X509_find_by_subject(STACK_OF(X509) *sk, const X509_NAME *name) { X509 *x509; int i; for (i = 0; i < sk_X509_num(sk); i++) { x509 = sk_X509_value(sk, i); if (X509_NAME_cmp(X509_get_subject_name(x509), name) == 0) return x509; } return NULL; } EVP_PKEY *X509_get0_pubkey(const X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get0(x->cert_info.key); } EVP_PKEY *X509_get_pubkey(X509 *x) { if (x == NULL) return NULL; return X509_PUBKEY_get(x->cert_info.key); } int X509_check_private_key(const X509 *x, const EVP_PKEY *k) { const EVP_PKEY *xk; int ret; xk = X509_get0_pubkey(x); if (xk == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY); return 0; } switch (ret = EVP_PKEY_eq(xk, k)) { case 0: ERR_raise(ERR_LIB_X509, X509_R_KEY_VALUES_MISMATCH); break; case -1: ERR_raise(ERR_LIB_X509, X509_R_KEY_TYPE_MISMATCH); break; case -2: ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_KEY_TYPE); break; } return ret > 0; } /* * Check a suite B algorithm is permitted: pass in a public key and the NID * of its signature (or 0 if no signature). The pflags is a pointer to a * flags field which must contain the suite B verification flags. */ #ifndef OPENSSL_NO_EC static int check_suite_b(EVP_PKEY *pkey, int sign_nid, unsigned long *pflags) { char curve_name[80]; size_t curve_name_len; int curve_nid; if (pkey == NULL || !EVP_PKEY_is_a(pkey, "EC")) return X509_V_ERR_SUITE_B_INVALID_ALGORITHM; if (!EVP_PKEY_get_group_name(pkey, curve_name, sizeof(curve_name), &curve_name_len)) return X509_V_ERR_SUITE_B_INVALID_CURVE; curve_nid = OBJ_txt2nid(curve_name); /* Check curve is consistent with LOS */ if (curve_nid == NID_secp384r1) { /* P-384 */ /* * Check signature algorithm is consistent with curve. */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA384) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_192_LOS)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; /* If we encounter P-384 we cannot use P-256 later */ *pflags &= ~X509_V_FLAG_SUITEB_128_LOS_ONLY; } else if (curve_nid == NID_X9_62_prime256v1) { /* P-256 */ if (sign_nid != -1 && sign_nid != NID_ecdsa_with_SHA256) return X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM; if (!(*pflags & X509_V_FLAG_SUITEB_128_LOS_ONLY)) return X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED; } else { return X509_V_ERR_SUITE_B_INVALID_CURVE; } return X509_V_OK; } int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { int rv, i, sign_nid; EVP_PKEY *pk; unsigned long tflags = flags; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; /* If no EE certificate passed in must be first in chain */ if (x == NULL) { x = sk_X509_value(chain, 0); i = 1; } else { i = 0; } pk = X509_get0_pubkey(x); /* * With DANE-EE(3) success, or DANE-EE(3)/PKIX-EE(1) failure we don't build * a chain all, just report trust success or failure, but must also report * Suite-B errors if applicable. This is indicated via a NULL chain * pointer. All we need to do is check the leaf key algorithm. */ if (chain == NULL) return check_suite_b(pk, -1, &tflags); if (X509_get_version(x) != X509_VERSION_3) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; /* Correct error depth */ i = 0; goto end; } /* Check EE key only */ rv = check_suite_b(pk, -1, &tflags); if (rv != X509_V_OK) { /* Correct error depth */ i = 0; goto end; } for (; i < sk_X509_num(chain); i++) { sign_nid = X509_get_signature_nid(x); x = sk_X509_value(chain, i); if (X509_get_version(x) != X509_VERSION_3) { rv = X509_V_ERR_SUITE_B_INVALID_VERSION; goto end; } pk = X509_get0_pubkey(x); rv = check_suite_b(pk, sign_nid, &tflags); if (rv != X509_V_OK) goto end; } /* Final check: root CA signature */ rv = check_suite_b(pk, X509_get_signature_nid(x), &tflags); end: if (rv != X509_V_OK) { /* Invalid signature or LOS errors are for previous cert */ if ((rv == X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM || rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED) && i) i--; /* * If we have LOS error and flags changed then we are signing P-384 * with P-256. Use more meaningful error. */ if (rv == X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED && flags != tflags) rv = X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256; if (perror_depth) *perror_depth = i; } return rv; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { int sign_nid; if (!(flags & X509_V_FLAG_SUITEB_128_LOS)) return X509_V_OK; sign_nid = OBJ_obj2nid(crl->crl.sig_alg.algorithm); return check_suite_b(pk, sign_nid, &flags); } #else int X509_chain_check_suiteb(int *perror_depth, X509 *x, STACK_OF(X509) *chain, unsigned long flags) { return 0; } int X509_CRL_check_suiteb(X509_CRL *crl, EVP_PKEY *pk, unsigned long flags) { return 0; } #endif /* * Not strictly speaking an "up_ref" as a STACK doesn't have a reference * count but it has the same effect by duping the STACK and upping the ref of * each X509 structure. */ STACK_OF(X509) *X509_chain_up_ref(STACK_OF(X509) *chain) { STACK_OF(X509) *ret = sk_X509_dup(chain); int i; if (ret == NULL) return NULL; for (i = 0; i < sk_X509_num(ret); i++) { X509 *x = sk_X509_value(ret, i); if (!X509_up_ref(x)) goto err; } return ret; err: while (i-- > 0) X509_free(sk_X509_value(ret, i)); sk_X509_free(ret); return NULL; }