/** @file
Compression routine. The compression algorithm is a mixture of LZ77 and Huffman
coding. LZ77 transforms the source data into a sequence of Original Characters
and Pointers to repeated strings.
This sequence is further divided into Blocks and Huffman codings are applied to
each Block.
Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "Compress.h"
#include "Decompress.h"
#include "TianoCompress.h"
#include "EfiUtilityMsgs.h"
#include "ParseInf.h"
#include
#include "assert.h"
//
// Macro Definitions
//
static BOOLEAN VerboseMode = FALSE;
static BOOLEAN QuietMode = FALSE;
#undef UINT8_MAX
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 19
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define BLKSIZ (1U << 14) // 16 * 1024U
#define PERC_FLAG 0x80000000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >> UINT8_BIT)
//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//
//#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 5
//#define NT (CODE_BIT + 3)
//#define TBIT 5
//#if NT > NP
//#define NPT NT
//#else
//#define NPT NP
//#endif
//
// Global Variables
//
STATIC BOOLEAN ENCODE = FALSE;
STATIC BOOLEAN DECODE = FALSE;
STATIC BOOLEAN UEFIMODE = FALSE;
STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;
STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT], *mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;
STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC - 1], mCrcTable[UINT8_MAX + 1],
mCFreq[2 * NC - 1], mCCode[NC], mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];
STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext = NULL;
static UINT64 DebugLevel;
static BOOLEAN DebugMode;
//
// functions
//
EFI_STATUS
TianoCompress (
IN UINT8 *SrcBuffer,
IN UINT32 SrcSize,
IN UINT8 *DstBuffer,
IN OUT UINT32 *DstSize
)
/*++
Routine Description:
The internal implementation of [Efi/Tiano]Compress().
Arguments:
SrcBuffer - The buffer storing the source data
SrcSize - The size of source data
DstBuffer - The buffer to store the compressed data
Version - The version of de/compression algorithm.
Version 1 for EFI 1.1 de/compression algorithm.
Version 2 for Tiano de/compression algorithm.
Returns:
EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
DstSize contains the size needed.
EFI_SUCCESS - Compression is successful.
EFI_OUT_OF_RESOURCES - No resource to complete function.
EFI_INVALID_PARAMETER - Parameter supplied is wrong.
--*/
{
EFI_STATUS Status;
//
// Initializations
//
mBufSiz = 0;
mBuf = NULL;
mText = NULL;
mLevel = NULL;
mChildCount = NULL;
mPosition = NULL;
mParent = NULL;
mPrev = NULL;
mNext = NULL;
mSrc = SrcBuffer;
mSrcUpperLimit = mSrc + SrcSize;
mDst = DstBuffer;
mDstUpperLimit = mDst +*DstSize;
PutDword (0L);
PutDword (0L);
MakeCrcTable ();
mOrigSize = mCompSize = 0;
mCrc = INIT_CRC;
//
// Compress it
//
Status = Encode ();
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
//
// Null terminate the compressed data
//
if (mDst < mDstUpperLimit) {
*mDst++ = 0;
}
//
// Fill in compressed size and original size
//
mDst = DstBuffer;
PutDword (mCompSize + 1);
PutDword (mOrigSize);
//
// Return
//
if (mCompSize + 1 + 8 > *DstSize) {
*DstSize = mCompSize + 1 + 8;
return EFI_BUFFER_TOO_SMALL;
} else {
*DstSize = mCompSize + 1 + 8;
return EFI_SUCCESS;
}
}
STATIC
VOID
PutDword (
IN UINT32 Data
)
/*++
Routine Description:
Put a dword to output stream
Arguments:
Data - the dword to put
Returns: (VOID)
--*/
{
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff);
}
}
STATIC
EFI_STATUS
AllocateMemory (
VOID
)
/*++
Routine Description:
Allocate memory spaces for data structures used in compression process
Arguments:
VOID
Returns:
EFI_SUCCESS - Memory is allocated successfully
EFI_OUT_OF_RESOURCES - Allocation fails
--*/
{
UINT32 Index;
mText = malloc (WNDSIZ * 2 + MAXMATCH);
if (mText == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
return EFI_OUT_OF_RESOURCES;
}
for (Index = 0; Index < WNDSIZ * 2 + MAXMATCH; Index++) {
mText[Index] = 0;
}
mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));
mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));
mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));
mParent = malloc (WNDSIZ * 2 * sizeof (*mParent));
mPrev = malloc (WNDSIZ * 2 * sizeof (*mPrev));
mNext = malloc ((MAX_HASH_VAL + 1) * sizeof (*mNext));
if (mLevel == NULL || mChildCount == NULL || mPosition == NULL ||
mParent == NULL || mPrev == NULL || mNext == NULL) {
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
return EFI_OUT_OF_RESOURCES;
}
mBufSiz = BLKSIZ;
mBuf = malloc (mBufSiz);
while (mBuf == NULL) {
mBufSiz = (mBufSiz / 10U) * 9U;
if (mBufSiz < 4 * 1024U) {
return EFI_OUT_OF_RESOURCES;
}
mBuf = malloc (mBufSiz);
}
mBuf[0] = 0;
return EFI_SUCCESS;
}
VOID
FreeMemory (
VOID
)
/*++
Routine Description:
Called when compression is completed to free memory previously allocated.
Arguments: (VOID)
Returns: (VOID)
--*/
{
if (mText != NULL) {
free (mText);
}
if (mLevel != NULL) {
free (mLevel);
}
if (mChildCount != NULL) {
free (mChildCount);
}
if (mPosition != NULL) {
free (mPosition);
}
if (mParent != NULL) {
free (mParent);
}
if (mPrev != NULL) {
free (mPrev);
}
if (mNext != NULL) {
free (mNext);
}
if (mBuf != NULL) {
free (mBuf);
}
return ;
}
STATIC
VOID
InitSlide (
VOID
)
/*++
Routine Description:
Initialize String Info Log data structures
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE Index;
for (Index = WNDSIZ; Index <= WNDSIZ + UINT8_MAX; Index++) {
mLevel[Index] = 1;
mPosition[Index] = NIL; // sentinel
}
for (Index = WNDSIZ; Index < WNDSIZ * 2; Index++) {
mParent[Index] = NIL;
}
mAvail = 1;
for (Index = 1; Index < WNDSIZ - 1; Index++) {
mNext[Index] = (NODE) (Index + 1);
}
mNext[WNDSIZ - 1] = NIL;
for (Index = WNDSIZ * 2; Index <= MAX_HASH_VAL; Index++) {
mNext[Index] = NIL;
}
}
STATIC
NODE
Child (
IN NODE NodeQ,
IN UINT8 CharC
)
/*++
Routine Description:
Find child node given the parent node and the edge character
Arguments:
NodeQ - the parent node
CharC - the edge character
Returns:
The child node (NIL if not found)
--*/
{
NODE NodeR;
NodeR = mNext[HASH (NodeQ, CharC)];
//
// sentinel
//
mParent[NIL] = NodeQ;
while (mParent[NodeR] != NodeQ) {
NodeR = mNext[NodeR];
}
return NodeR;
}
STATIC
VOID
MakeChild (
IN NODE Parent,
IN UINT8 CharC,
IN NODE Child
)
/*++
Routine Description:
Create a new child for a given parent node.
Arguments:
Parent - the parent node
CharC - the edge character
Child - the child node
Returns: (VOID)
--*/
{
NODE Node1;
NODE Node2;
Node1 = (NODE) HASH (Parent, CharC);
Node2 = mNext[Node1];
mNext[Node1] = Child;
mNext[Child] = Node2;
mPrev[Node2] = Child;
mPrev[Child] = Node1;
mParent[Child] = Parent;
mChildCount[Parent]++;
}
STATIC
VOID
Split (
NODE Old
)
/*++
Routine Description:
Split a node.
Arguments:
Old - the node to split
Returns: (VOID)
--*/
{
NODE New;
NODE TempNode;
New = mAvail;
mAvail = mNext[New];
mChildCount[New] = 0;
TempNode = mPrev[Old];
mPrev[New] = TempNode;
mNext[TempNode] = New;
TempNode = mNext[Old];
mNext[New] = TempNode;
mPrev[TempNode] = New;
mParent[New] = mParent[Old];
mLevel[New] = (UINT8) mMatchLen;
mPosition[New] = mPos;
MakeChild (New, mText[mMatchPos + mMatchLen], Old);
MakeChild (New, mText[mPos + mMatchLen], mPos);
}
STATIC
VOID
InsertNode (
VOID
)
/*++
Routine Description:
Insert string info for current position into the String Info Log
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE NodeQ;
NODE NodeR;
NODE Index2;
NODE NodeT;
UINT8 CharC;
UINT8 *t1;
UINT8 *t2;
if (mMatchLen >= 4) {
//
// We have just got a long match, the target tree
// can be located by MatchPos + 1. Traverse the tree
// from bottom up to get to a proper starting point.
// The usage of PERC_FLAG ensures proper node deletion
// in DeleteNode() later.
//
mMatchLen--;
NodeR = (NODE) ((mMatchPos + 1) | WNDSIZ);
NodeQ = mParent[NodeR];
while (NodeQ == NIL) {
NodeR = mNext[NodeR];
NodeQ = mParent[NodeR];
}
while (mLevel[NodeQ] >= mMatchLen) {
NodeR = NodeQ;
NodeQ = mParent[NodeQ];
}
NodeT = NodeQ;
while (mPosition[NodeT] < 0) {
mPosition[NodeT] = mPos;
NodeT = mParent[NodeT];
}
if (NodeT < WNDSIZ) {
mPosition[NodeT] = (NODE) (mPos | (UINT32) PERC_FLAG);
}
} else {
//
// Locate the target tree
//
NodeQ = (NODE) (mText[mPos] + WNDSIZ);
CharC = mText[mPos + 1];
NodeR = Child (NodeQ, CharC);
if (NodeR == NIL) {
MakeChild (NodeQ, CharC, mPos);
mMatchLen = 1;
return ;
}
mMatchLen = 2;
}
//
// Traverse down the tree to find a match.
// Update Position value along the route.
// Node split or creation is involved.
//
for (;;) {
if (NodeR >= WNDSIZ) {
Index2 = MAXMATCH;
mMatchPos = NodeR;
} else {
Index2 = mLevel[NodeR];
mMatchPos = (NODE) (mPosition[NodeR] & (UINT32)~PERC_FLAG);
}
if (mMatchPos >= mPos) {
mMatchPos -= WNDSIZ;
}
t1 = &mText[mPos + mMatchLen];
t2 = &mText[mMatchPos + mMatchLen];
while (mMatchLen < Index2) {
if (*t1 != *t2) {
Split (NodeR);
return ;
}
mMatchLen++;
t1++;
t2++;
}
if (mMatchLen >= MAXMATCH) {
break;
}
mPosition[NodeR] = mPos;
NodeQ = NodeR;
NodeR = Child (NodeQ, *t1);
if (NodeR == NIL) {
MakeChild (NodeQ, *t1, mPos);
return ;
}
mMatchLen++;
}
NodeT = mPrev[NodeR];
mPrev[mPos] = NodeT;
mNext[NodeT] = mPos;
NodeT = mNext[NodeR];
mNext[mPos] = NodeT;
mPrev[NodeT] = mPos;
mParent[mPos] = NodeQ;
mParent[NodeR] = NIL;
//
// Special usage of 'next'
//
mNext[NodeR] = mPos;
}
STATIC
VOID
DeleteNode (
VOID
)
/*++
Routine Description:
Delete outdated string info. (The Usage of PERC_FLAG
ensures a clean deletion)
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE NodeQ;
NODE NodeR;
NODE NodeS;
NODE NodeT;
NODE NodeU;
if (mParent[mPos] == NIL) {
return ;
}
NodeR = mPrev[mPos];
NodeS = mNext[mPos];
mNext[NodeR] = NodeS;
mPrev[NodeS] = NodeR;
NodeR = mParent[mPos];
mParent[mPos] = NIL;
if (NodeR >= WNDSIZ) {
return ;
}
mChildCount[NodeR]--;
if (mChildCount[NodeR] > 1) {
return ;
}
NodeT = (NODE) (mPosition[NodeR] & (UINT32)~PERC_FLAG);
if (NodeT >= mPos) {
NodeT -= WNDSIZ;
}
NodeS = NodeT;
NodeQ = mParent[NodeR];
NodeU = mPosition[NodeQ];
while (NodeU & (UINT32) PERC_FLAG) {
NodeU &= (UINT32)~PERC_FLAG;
if (NodeU >= mPos) {
NodeU -= WNDSIZ;
}
if (NodeU > NodeS) {
NodeS = NodeU;
}
mPosition[NodeQ] = (NODE) (NodeS | WNDSIZ);
NodeQ = mParent[NodeQ];
NodeU = mPosition[NodeQ];
}
if (NodeQ < WNDSIZ) {
if (NodeU >= mPos) {
NodeU -= WNDSIZ;
}
if (NodeU > NodeS) {
NodeS = NodeU;
}
mPosition[NodeQ] = (NODE) (NodeS | WNDSIZ | (UINT32) PERC_FLAG);
}
NodeS = Child (NodeR, mText[NodeT + mLevel[NodeR]]);
NodeT = mPrev[NodeS];
NodeU = mNext[NodeS];
mNext[NodeT] = NodeU;
mPrev[NodeU] = NodeT;
NodeT = mPrev[NodeR];
mNext[NodeT] = NodeS;
mPrev[NodeS] = NodeT;
NodeT = mNext[NodeR];
mPrev[NodeT] = NodeS;
mNext[NodeS] = NodeT;
mParent[NodeS] = mParent[NodeR];
mParent[NodeR] = NIL;
mNext[NodeR] = mAvail;
mAvail = NodeR;
}
STATIC
VOID
GetNextMatch (
VOID
)
/*++
Routine Description:
Advance the current position (read in new data if needed).
Delete outdated string info. Find a match string for current position.
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Number;
mRemainder--;
mPos++;
if (mPos == WNDSIZ * 2) {
memmove (&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
Number = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);
mRemainder += Number;
mPos = WNDSIZ;
}
DeleteNode ();
InsertNode ();
}
STATIC
EFI_STATUS
Encode (
VOID
)
/*++
Routine Description:
The main controlling routine for compression process.
Arguments: (VOID)
Returns:
EFI_SUCCESS - The compression is successful
EFI_OUT_0F_RESOURCES - Not enough memory for compression process
--*/
{
EFI_STATUS Status;
INT32 LastMatchLen;
NODE LastMatchPos;
Status = AllocateMemory ();
if (EFI_ERROR (Status)) {
FreeMemory ();
return Status;
}
InitSlide ();
HufEncodeStart ();
mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);
mMatchLen = 0;
mPos = WNDSIZ;
InsertNode ();
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
while (mRemainder > 0) {
LastMatchLen = mMatchLen;
LastMatchPos = mMatchPos;
GetNextMatch ();
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {
//
// Not enough benefits are gained by outputting a pointer,
// so just output the original character
//
Output (mText[mPos - 1], 0);
} else {
if (LastMatchLen == THRESHOLD) {
if (((mPos - LastMatchPos - 2) & (WNDSIZ - 1)) > (1U << 11)) {
Output (mText[mPos - 1], 0);
continue;
}
}
//
// Outputting a pointer is beneficial enough, do it.
//
Output (
LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
(mPos - LastMatchPos - 2) & (WNDSIZ - 1)
);
LastMatchLen--;
while (LastMatchLen > 0) {
GetNextMatch ();
LastMatchLen--;
}
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
}
}
HufEncodeEnd ();
FreeMemory ();
return EFI_SUCCESS;
}
STATIC
VOID
CountTFreq (
VOID
)
/*++
Routine Description:
Count the frequencies for the Extra Set
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
INT32 Number;
INT32 Count;
for (Index = 0; Index < NT; Index++) {
mTFreq[Index] = 0;
}
Number = NC;
while (Number > 0 && mCLen[Number - 1] == 0) {
Number--;
}
Index = 0;
while (Index < Number) {
Index3 = mCLen[Index++];
if (Index3 == 0) {
Count = 1;
while (Index < Number && mCLen[Index] == 0) {
Index++;
Count++;
}
if (Count <= 2) {
mTFreq[0] = (UINT16) (mTFreq[0] + Count);
} else if (Count <= 18) {
mTFreq[1]++;
} else if (Count == 19) {
mTFreq[0]++;
mTFreq[1]++;
} else {
mTFreq[2]++;
}
} else {
mTFreq[Index3 + 2]++;
}
}
}
STATIC
VOID
WritePTLen (
IN INT32 Number,
IN INT32 nbit,
IN INT32 Special
)
/*++
Routine Description:
Outputs the code length array for the Extra Set or the Position Set.
Arguments:
Number - the number of symbols
nbit - the number of bits needed to represent 'n'
Special - the special symbol that needs to be take care of
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
while (Number > 0 && mPTLen[Number - 1] == 0) {
Number--;
}
PutBits (nbit, Number);
Index = 0;
while (Index < Number) {
Index3 = mPTLen[Index++];
if (Index3 <= 6) {
PutBits (3, Index3);
} else {
PutBits (Index3 - 3, (1U << (Index3 - 3)) - 2);
}
if (Index == Special) {
while (Index < 6 && mPTLen[Index] == 0) {
Index++;
}
PutBits (2, (Index - 3) & 3);
}
}
}
STATIC
VOID
WriteCLen (
VOID
)
/*++
Routine Description:
Outputs the code length array for Char&Length Set
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
INT32 Number;
INT32 Count;
Number = NC;
while (Number > 0 && mCLen[Number - 1] == 0) {
Number--;
}
PutBits (CBIT, Number);
Index = 0;
while (Index < Number) {
Index3 = mCLen[Index++];
if (Index3 == 0) {
Count = 1;
while (Index < Number && mCLen[Index] == 0) {
Index++;
Count++;
}
if (Count <= 2) {
for (Index3 = 0; Index3 < Count; Index3++) {
PutBits (mPTLen[0], mPTCode[0]);
}
} else if (Count <= 18) {
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, Count - 3);
} else if (Count == 19) {
PutBits (mPTLen[0], mPTCode[0]);
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, 15);
} else {
PutBits (mPTLen[2], mPTCode[2]);
PutBits (CBIT, Count - 20);
}
} else {
PutBits (mPTLen[Index3 + 2], mPTCode[Index3 + 2]);
}
}
}
STATIC
VOID
EncodeC (
IN INT32 Value
)
{
PutBits (mCLen[Value], mCCode[Value]);
}
STATIC
VOID
EncodeP (
IN UINT32 Value
)
{
UINT32 Index;
UINT32 NodeQ;
Index = 0;
NodeQ = Value;
while (NodeQ) {
NodeQ >>= 1;
Index++;
}
PutBits (mPTLen[Index], mPTCode[Index]);
if (Index > 1) {
PutBits (Index - 1, Value & (0xFFFFFFFFU >> (32 - Index + 1)));
}
}
STATIC
VOID
SendBlock (
VOID
)
/*++
Routine Description:
Huffman code the block and output it.
Arguments:
(VOID)
Returns:
(VOID)
--*/
{
UINT32 Index;
UINT32 Index2;
UINT32 Index3;
UINT32 Flags;
UINT32 Root;
UINT32 Pos;
UINT32 Size;
Flags = 0;
Root = MakeTree (NC, mCFreq, mCLen, mCCode);
Size = mCFreq[Root];
PutBits (16, Size);
if (Root >= NC) {
CountTFreq ();
Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);
if (Root >= NT) {
WritePTLen (NT, TBIT, 3);
} else {
PutBits (TBIT, 0);
PutBits (TBIT, Root);
}
WriteCLen ();
} else {
PutBits (TBIT, 0);
PutBits (TBIT, 0);
PutBits (CBIT, 0);
PutBits (CBIT, Root);
}
Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);
if (Root >= NP) {
WritePTLen (NP, PBIT, -1);
} else {
PutBits (PBIT, 0);
PutBits (PBIT, Root);
}
Pos = 0;
for (Index = 0; Index < Size; Index++) {
if (Index % UINT8_BIT == 0) {
Flags = mBuf[Pos++];
} else {
Flags <<= 1;
}
if (Flags & (1U << (UINT8_BIT - 1))) {
EncodeC (mBuf[Pos++] + (1U << UINT8_BIT));
Index3 = mBuf[Pos++];
for (Index2 = 0; Index2 < 3; Index2++) {
Index3 <<= UINT8_BIT;
Index3 += mBuf[Pos++];
}
EncodeP (Index3);
} else {
EncodeC (mBuf[Pos++]);
}
}
for (Index = 0; Index < NC; Index++) {
mCFreq[Index] = 0;
}
for (Index = 0; Index < NP; Index++) {
mPFreq[Index] = 0;
}
}
STATIC
VOID
Output (
IN UINT32 CharC,
IN UINT32 Pos
)
/*++
Routine Description:
Outputs an Original Character or a Pointer
Arguments:
CharC - The original character or the 'String Length' element of a Pointer
Pos - The 'Position' field of a Pointer
Returns: (VOID)
--*/
{
STATIC UINT32 CPos;
if ((mOutputMask >>= 1) == 0) {
mOutputMask = 1U << (UINT8_BIT - 1);
//
// Check the buffer overflow per outputing UINT8_BIT symbols
// which is an Original Character or a Pointer. The biggest
// symbol is a Pointer which occupies 5 bytes.
//
if (mOutputPos >= mBufSiz - 5 * UINT8_BIT) {
SendBlock ();
mOutputPos = 0;
}
CPos = mOutputPos++;
mBuf[CPos] = 0;
}
mBuf[mOutputPos++] = (UINT8) CharC;
mCFreq[CharC]++;
if (CharC >= (1U << UINT8_BIT)) {
mBuf[CPos] |= mOutputMask;
mBuf[mOutputPos++] = (UINT8) (Pos >> 24);
mBuf[mOutputPos++] = (UINT8) (Pos >> 16);
mBuf[mOutputPos++] = (UINT8) (Pos >> (UINT8_BIT));
mBuf[mOutputPos++] = (UINT8) Pos;
CharC = 0;
while (Pos) {
Pos >>= 1;
CharC++;
}
mPFreq[CharC]++;
}
}
STATIC
VOID
HufEncodeStart (
VOID
)
{
INT32 Index;
for (Index = 0; Index < NC; Index++) {
mCFreq[Index] = 0;
}
for (Index = 0; Index < NP; Index++) {
mPFreq[Index] = 0;
}
mOutputPos = mOutputMask = 0;
InitPutBits ();
return ;
}
STATIC
VOID
HufEncodeEnd (
VOID
)
{
SendBlock ();
//
// Flush remaining bits
//
PutBits (UINT8_BIT - 1, 0);
return ;
}
STATIC
VOID
MakeCrcTable (
VOID
)
{
UINT32 Index;
UINT32 Index2;
UINT32 Temp;
for (Index = 0; Index <= UINT8_MAX; Index++) {
Temp = Index;
for (Index2 = 0; Index2 < UINT8_BIT; Index2++) {
if (Temp & 1) {
Temp = (Temp >> 1) ^ CRCPOLY;
} else {
Temp >>= 1;
}
}
mCrcTable[Index] = (UINT16) Temp;
}
}
STATIC
VOID
PutBits (
IN INT32 Number,
IN UINT32 Value
)
/*++
Routine Description:
Outputs rightmost n bits of x
Arguments:
Number - the rightmost n bits of the data is used
x - the data
Returns: (VOID)
--*/
{
UINT8 Temp;
while (Number >= mBitCount) {
//
// Number -= mBitCount should never equal to 32
//
Temp = (UINT8) (mSubBitBuf | (Value >> (Number -= mBitCount)));
if (mDst < mDstUpperLimit) {
*mDst++ = Temp;
}
mCompSize++;
mSubBitBuf = 0;
mBitCount = UINT8_BIT;
}
mSubBitBuf |= Value << (mBitCount -= Number);
}
STATIC
INT32
FreadCrc (
OUT UINT8 *Pointer,
IN INT32 Number
)
/*++
Routine Description:
Read in source data
Arguments:
Pointer - the buffer to hold the data
Number - number of bytes to read
Returns:
number of bytes actually read
--*/
{
INT32 Index;
for (Index = 0; mSrc < mSrcUpperLimit && Index < Number; Index++) {
*Pointer++ = *mSrc++;
}
Number = Index;
Pointer -= Number;
mOrigSize += Number;
Index--;
while (Index >= 0) {
UPDATE_CRC (*Pointer++);
Index--;
}
return Number;
}
STATIC
VOID
InitPutBits (
VOID
)
{
mBitCount = UINT8_BIT;
mSubBitBuf = 0;
}
STATIC
VOID
CountLen (
IN INT32 Index
)
/*++
Routine Description:
Count the number of each code length for a Huffman tree.
Arguments:
Index - the top node
Returns: (VOID)
--*/
{
STATIC INT32 Depth = 0;
if (Index < mN) {
mLenCnt[(Depth < 16) ? Depth : 16]++;
} else {
Depth++;
CountLen (mLeft[Index]);
CountLen (mRight[Index]);
Depth--;
}
}
STATIC
VOID
MakeLen (
IN INT32 Root
)
/*++
Routine Description:
Create code length array for a Huffman tree
Arguments:
Root - the root of the tree
Returns:
VOID
--*/
{
INT32 Index;
INT32 Index3;
UINT32 Cum;
for (Index = 0; Index <= 16; Index++) {
mLenCnt[Index] = 0;
}
CountLen (Root);
//
// Adjust the length count array so that
// no code will be generated longer than its designated length
//
Cum = 0;
for (Index = 16; Index > 0; Index--) {
Cum += mLenCnt[Index] << (16 - Index);
}
while (Cum != (1U << 16)) {
mLenCnt[16]--;
for (Index = 15; Index > 0; Index--) {
if (mLenCnt[Index] != 0) {
mLenCnt[Index]--;
mLenCnt[Index + 1] += 2;
break;
}
}
Cum--;
}
for (Index = 16; Index > 0; Index--) {
Index3 = mLenCnt[Index];
Index3--;
while (Index3 >= 0) {
mLen[*mSortPtr++] = (UINT8) Index;
Index3--;
}
}
}
STATIC
VOID
DownHeap (
IN INT32 Index
)
{
INT32 Index2;
INT32 Index3;
//
// priority queue: send Index-th entry down heap
//
Index3 = mHeap[Index];
Index2 = 2 * Index;
while (Index2 <= mHeapSize) {
if (Index2 < mHeapSize && mFreq[mHeap[Index2]] > mFreq[mHeap[Index2 + 1]]) {
Index2++;
}
if (mFreq[Index3] <= mFreq[mHeap[Index2]]) {
break;
}
mHeap[Index] = mHeap[Index2];
Index = Index2;
Index2 = 2 * Index;
}
mHeap[Index] = (INT16) Index3;
}
STATIC
VOID
MakeCode (
IN INT32 Number,
IN UINT8 Len[ ],
OUT UINT16 Code[]
)
/*++
Routine Description:
Assign code to each symbol based on the code length array
Arguments:
Number - number of symbols
Len - the code length array
Code - stores codes for each symbol
Returns: (VOID)
--*/
{
INT32 Index;
UINT16 Start[18];
Start[1] = 0;
for (Index = 1; Index <= 16; Index++) {
Start[Index + 1] = (UINT16) ((Start[Index] + mLenCnt[Index]) << 1);
}
for (Index = 0; Index < Number; Index++) {
Code[Index] = Start[Len[Index]]++;
}
}
STATIC
INT32
MakeTree (
IN INT32 NParm,
IN UINT16 FreqParm[],
OUT UINT8 LenParm[ ],
OUT UINT16 CodeParm[]
)
/*++
Routine Description:
Generates Huffman codes given a frequency distribution of symbols
Arguments:
NParm - number of symbols
FreqParm - frequency of each symbol
LenParm - code length for each symbol
CodeParm - code for each symbol
Returns:
Root of the Huffman tree.
--*/
{
INT32 Index;
INT32 Index2;
INT32 Index3;
INT32 Avail;
//
// make tree, calculate len[], return root
//
mN = NParm;
mFreq = FreqParm;
mLen = LenParm;
Avail = mN;
mHeapSize = 0;
mHeap[1] = 0;
for (Index = 0; Index < mN; Index++) {
mLen[Index] = 0;
if (mFreq[Index]) {
mHeapSize++;
mHeap[mHeapSize] = (INT16) Index;
}
}
if (mHeapSize < 2) {
CodeParm[mHeap[1]] = 0;
return mHeap[1];
}
for (Index = mHeapSize / 2; Index >= 1; Index--) {
//
// make priority queue
//
DownHeap (Index);
}
mSortPtr = CodeParm;
do {
Index = mHeap[1];
if (Index < mN) {
*mSortPtr++ = (UINT16) Index;
}
mHeap[1] = mHeap[mHeapSize--];
DownHeap (1);
Index2 = mHeap[1];
if (Index2 < mN) {
*mSortPtr++ = (UINT16) Index2;
}
Index3 = Avail++;
mFreq[Index3] = (UINT16) (mFreq[Index] + mFreq[Index2]);
mHeap[1] = (INT16) Index3;
DownHeap (1);
mLeft[Index3] = (UINT16) Index;
mRight[Index3] = (UINT16) Index2;
} while (mHeapSize > 1);
mSortPtr = CodeParm;
MakeLen (Index3);
MakeCode (NParm, LenParm, CodeParm);
//
// return root
//
return Index3;
}
EFI_STATUS
GetFileContents (
IN char *InputFileName,
OUT UINT8 *FileBuffer,
OUT UINT32 *BufferLength
)
/*++
Routine Description:
Get the contents of file specified in InputFileName
into FileBuffer.
Arguments:
InputFileName - Name of the input file.
FileBuffer - Output buffer to contain data
BufferLength - Actual length of the data
Returns:
EFI_SUCCESS on successful return
EFI_ABORTED if unable to open input file.
--*/
{
UINTN Size;
UINTN FileSize;
FILE *InputFile;
Size = 0;
//
// Copy the file contents to the output buffer.
//
InputFile = fopen (LongFilePath (InputFileName), "rb");
if (InputFile == NULL) {
Error (NULL, 0, 0001, "Error opening file: %s", InputFileName);
return EFI_ABORTED;
}
fseek (InputFile, 0, SEEK_END);
FileSize = ftell (InputFile);
fseek (InputFile, 0, SEEK_SET);
//
// Now read the contents of the file into the buffer
//
if (FileSize > 0 && FileBuffer != NULL) {
if (fread (FileBuffer, FileSize, 1, InputFile) != 1) {
Error (NULL, 0, 0004, "Error reading contents of input file: %s", InputFileName);
fclose (InputFile);
return EFI_ABORTED;
}
}
fclose (InputFile);
Size += (UINTN) FileSize;
*BufferLength = Size;
if (FileBuffer != NULL) {
return EFI_SUCCESS;
} else {
return EFI_BUFFER_TOO_SMALL;
}
}
VOID
Version (
VOID
)
/*++
Routine Description:
Displays the standard utility information to SDTOUT
Arguments:
None
Returns:
None
--*/
{
fprintf (stdout, "%s Version %d.%d %s \n", UTILITY_NAME, UTILITY_MAJOR_VERSION, UTILITY_MINOR_VERSION, __BUILD_VERSION);
}
VOID
Usage (
VOID
)
/*++
Routine Description:
Displays the utility usage syntax to STDOUT
Arguments:
None
Returns:
None
--*/
{
//
// Summary usage
//
fprintf (stdout, "Usage: %s -e|-d [options] \n\n", UTILITY_NAME);
//
// Copyright declaration
//
fprintf (stdout, "Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.\n\n");
//
// Details Option
//
fprintf (stdout, "Options:\n");
fprintf (stdout, " --uefi\n\
Enable UefiCompress, use TianoCompress when without this option\n");
fprintf (stdout, " -o FileName, --output FileName\n\
File will be created to store the output content.\n");
fprintf (stdout, " -v, --verbose\n\
Turn on verbose output with informational messages.\n");
fprintf (stdout, " -q, --quiet\n\
Disable all messages except key message and fatal error\n");
fprintf (stdout, " --debug [0-9]\n\
Enable debug messages, at input debug level.\n");
fprintf (stdout, " --version\n\
Show program's version number and exit.\n");
fprintf (stdout, " -h, --help\n\
Show this help message and exit.\n");
}
int
main (
int argc,
char *argv[]
)
/*++
Routine Description:
Main
Arguments:
command line parameters
Returns:
EFI_SUCCESS Section header successfully generated and section concatenated.
EFI_ABORTED Could not generate the section
EFI_OUT_OF_RESOURCES No resource to complete the operation.
--*/
{
FILE *OutputFile;
char *OutputFileName;
char *InputFileName;
FILE *InputFile;
EFI_STATUS Status;
UINT8 *FileBuffer;
UINT8 *OutBuffer;
UINT32 InputLength;
UINT32 DstSize;
SCRATCH_DATA *Scratch;
UINT8 *Src;
UINT32 OrigSize;
UINT32 CompSize;
SetUtilityName(UTILITY_NAME);
FileBuffer = NULL;
Src = NULL;
OutBuffer = NULL;
Scratch = NULL;
OrigSize = 0;
CompSize = 0;
InputLength = 0;
InputFileName = NULL;
OutputFileName = NULL;
InputFile = NULL;
OutputFile = NULL;
DstSize=0;
DebugLevel = 0;
DebugMode = FALSE;
//
// Verify the correct number of arguments
//
if (argc == 1) {
Error (NULL, 0, 1001, "Missing options", "No input options specified.");
Usage();
return 0;
}
if ((strcmp(argv[1], "-h") == 0) || (strcmp(argv[1], "--help") == 0)) {
Usage();
return 0;
}
if ((strcmp(argv[1], "--version") == 0)) {
Version();
return 0;
}
argc--;
argv++;
if (strcmp(argv[0],"-e") == 0) {
//
// encode the input file
//
ENCODE = TRUE;
argc--;
argv++;
} else if (strcmp(argv[0], "-d") == 0) {
//
// decode the input file
//
DECODE = TRUE;
argc--;
argv++;
} else {
//
// Error command line
//
Error (NULL, 0, 1003, "Invalid option value", "the options specified are not recognized.");
Usage();
return 1;
}
while (argc > 0) {
if ((strcmp(argv[0], "-v") == 0) || (stricmp(argv[0], "--verbose") == 0)) {
VerboseMode = TRUE;
argc--;
argv++;
continue;
}
if (stricmp(argv[0], "--uefi") == 0) {
UEFIMODE = TRUE;
argc--;
argv++;
continue;
}
if (stricmp (argv[0], "--debug") == 0) {
argc-=2;
argv++;
Status = AsciiStringToUint64(argv[0], FALSE, &DebugLevel);
if (DebugLevel > 9) {
Error (NULL, 0 ,2000, "Invalid parameter", "Unrecognized argument %s", argv[0]);
goto ERROR;
}
if (DebugLevel>=5 && DebugLevel <=9){
DebugMode = TRUE;
} else {
DebugMode = FALSE;
}
argv++;
continue;
}
if ((strcmp(argv[0], "-q") == 0) || (stricmp (argv[0], "--quiet") == 0)) {
QuietMode = TRUE;
argc--;
argv++;
continue;
}
if ((strcmp(argv[0], "-o") == 0) || (stricmp (argv[0], "--output") == 0)) {
if (argv[1] == NULL || argv[1][0] == '-') {
Error (NULL, 0, 1003, "Invalid option value", "Output File name is missing for -o option");
goto ERROR;
}
OutputFileName = argv[1];
argc -=2;
argv +=2;
continue;
}
if (argv[0][0]!='-') {
InputFileName = argv[0];
argc--;
argv++;
continue;
}
Error (NULL, 0, 1000, "Unknown option", argv[0]);
goto ERROR;
}
if (InputFileName == NULL) {
Error (NULL, 0, 1001, "Missing options", "No input files specified.");
goto ERROR;
}
//
// All Parameters has been parsed, now set the message print level
//
if (QuietMode) {
SetPrintLevel(40);
} else if (VerboseMode) {
SetPrintLevel(15);
} else if (DebugMode) {
SetPrintLevel(DebugLevel);
}
if (VerboseMode) {
VerboseMsg("%s tool start.\n", UTILITY_NAME);
}
Scratch = (SCRATCH_DATA *)malloc(sizeof(SCRATCH_DATA));
if (Scratch == NULL) {
Error (NULL, 0, 4001, "Resource:", "Memory cannot be allocated!");
goto ERROR;
}
InputFile = fopen (LongFilePath (InputFileName), "rb");
if (InputFile == NULL) {
Error (NULL, 0, 0001, "Error opening input file", InputFileName);
goto ERROR;
}
Status = GetFileContents(
InputFileName,
FileBuffer,
&InputLength);
if (Status == EFI_BUFFER_TOO_SMALL) {
FileBuffer = (UINT8 *) malloc (InputLength);
if (FileBuffer == NULL) {
Error (NULL, 0, 4001, "Resource:", "Memory cannot be allocated!");
goto ERROR;
}
Status = GetFileContents (
InputFileName,
FileBuffer,
&InputLength
);
}
if (EFI_ERROR(Status)) {
Error (NULL, 0, 0004, "Error getting contents of file: %s", InputFileName);
goto ERROR;
}
if (OutputFileName == NULL) {
OutputFileName = DEFAULT_OUTPUT_FILE;
}
OutputFile = fopen (LongFilePath (OutputFileName), "wb");
if (OutputFile == NULL) {
Error (NULL, 0, 0001, "Error opening output file for writing", OutputFileName);
goto ERROR;
}
if (ENCODE) {
//
// First call TianoCompress to get DstSize
//
if (DebugMode) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Encoding", NULL);
}
if (UEFIMODE) {
Status = EfiCompress ((UINT8 *)FileBuffer, InputLength, OutBuffer, &DstSize);
} else {
Status = TianoCompress ((UINT8 *)FileBuffer, InputLength, OutBuffer, &DstSize);
}
if (Status == EFI_BUFFER_TOO_SMALL) {
OutBuffer = (UINT8 *) malloc (DstSize);
if (OutBuffer == NULL) {
Error (NULL, 0, 4001, "Resource:", "Memory cannot be allocated!");
goto ERROR;
}
}
if (UEFIMODE) {
Status = EfiCompress ((UINT8 *)FileBuffer, InputLength, OutBuffer, &DstSize);
} else {
Status = TianoCompress ((UINT8 *)FileBuffer, InputLength, OutBuffer, &DstSize);
}
if (Status != EFI_SUCCESS) {
Error (NULL, 0, 0007, "Error compressing file", NULL);
goto ERROR;
}
if (OutBuffer == NULL) {
Error (NULL, 0, 4001, "Resource:", "Memory cannot be allocated!");
goto ERROR;
}
fwrite(OutBuffer,(size_t)DstSize, 1, OutputFile);
fclose(OutputFile);
fclose(InputFile);
free(Scratch);
free(FileBuffer);
free(OutBuffer);
if (DebugMode) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Encoding Successful!\n", NULL);
}
if (VerboseMode) {
VerboseMsg("Encoding successful\n");
}
return 0;
}
else if (DECODE) {
if (DebugMode) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Decoding\n", NULL);
}
if (UEFIMODE) {
Status = Extract((VOID *)FileBuffer, InputLength, (VOID *)&OutBuffer, &DstSize, 1);
if (Status != EFI_SUCCESS) {
goto ERROR;
}
fwrite(OutBuffer, (size_t)(DstSize), 1, OutputFile);
} else {
if (InputLength < 8){
Error (NULL, 0, 3000, "Invalid", "The input file %s is too small.", InputFileName);
goto ERROR;
}
//
// Get Compressed file original size
//
Src = (UINT8 *)FileBuffer;
OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
CompSize = Src[0] + (Src[1] << 8) + (Src[2] <<16) + (Src[3] <<24);
//
// Allocate OutputBuffer
//
if (InputLength < CompSize + 8 || (CompSize + 8) < 8) {
Error (NULL, 0, 3000, "Invalid", "The input file %s data is invalid.", InputFileName);
goto ERROR;
}
OutBuffer = (UINT8 *)malloc(OrigSize);
if (OutBuffer == NULL) {
Error (NULL, 0, 4001, "Resource:", "Memory cannot be allocated!");
goto ERROR;
}
Status = TDecompress((VOID *)FileBuffer, (VOID *)OutBuffer, (VOID *)Scratch, 2);
if (Status != EFI_SUCCESS) {
goto ERROR;
}
fwrite(OutBuffer, (size_t)(Scratch->mOrigSize), 1, OutputFile);
}
fclose(OutputFile);
fclose(InputFile);
if (Scratch != NULL) {
free(Scratch);
}
if (FileBuffer != NULL) {
free(FileBuffer);
}
if (OutBuffer != NULL) {
free(OutBuffer);
}
if (DebugMode) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Encoding successful!\n", NULL);
}
if (VerboseMode) {
VerboseMsg("Decoding successful\n");
}
return 0;
}
ERROR:
if (DebugMode) {
if (ENCODE) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Encoding Error\n", NULL);
} else if (DECODE) {
DebugMsg(UTILITY_NAME, 0, DebugLevel, "Decoding Error\n", NULL);
}
}
if (OutputFile != NULL) {
fclose(OutputFile);
}
if (InputFile != NULL) {
fclose (InputFile);
}
if (Scratch != NULL) {
free(Scratch);
}
if (FileBuffer != NULL) {
free(FileBuffer);
}
if (OutBuffer != NULL) {
free(OutBuffer);
}
if (VerboseMode) {
VerboseMsg("%s tool done with return code is 0x%x.\n", UTILITY_NAME, GetUtilityStatus ());
}
return GetUtilityStatus ();
}
VOID
FillBuf (
IN SCRATCH_DATA *Sd,
IN UINT16 NumOfBits
)
/*++
Routine Description:
Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source.
Arguments:
Sd - The global scratch data
NumOfBits - The number of bits to shift and read.
Returns: (VOID)
--*/
{
Sd->mBitBuf = (UINT32) (((UINT64)Sd->mBitBuf) << NumOfBits);
while (NumOfBits > Sd->mBitCount) {
Sd->mBitBuf |= (UINT32) (((UINT64)Sd->mSubBitBuf) << (NumOfBits = (UINT16) (NumOfBits - Sd->mBitCount)));
if (Sd->mCompSize > 0) {
//
// Get 1 byte into SubBitBuf
//
Sd->mCompSize--;
Sd->mSubBitBuf = 0;
Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf++];
Sd->mBitCount = 8;
} else {
//
// No more bits from the source, just pad zero bit.
//
Sd->mSubBitBuf = 0;
Sd->mBitCount = 8;
}
}
Sd->mBitCount = (UINT16) (Sd->mBitCount - NumOfBits);
Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount;
}
UINT32
GetBits (
IN SCRATCH_DATA *Sd,
IN UINT16 NumOfBits
)
/*++
Routine Description:
Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent
NumOfBits of bits from source. Returns NumOfBits of bits that are
popped out.
Arguments:
Sd - The global scratch data.
NumOfBits - The number of bits to pop and read.
Returns:
The bits that are popped out.
--*/
{
UINT32 OutBits;
OutBits = (UINT32) (Sd->mBitBuf >> (BITBUFSIZ - NumOfBits));
FillBuf (Sd, NumOfBits);
return OutBits;
}
UINT16
MakeTable (
IN SCRATCH_DATA *Sd,
IN UINT16 NumOfChar,
IN UINT8 *BitLen,
IN UINT16 TableBits,
OUT UINT16 *Table
)
/*++
Routine Description:
Creates Huffman Code mapping table according to code length array.
Arguments:
Sd - The global scratch data
NumOfChar - Number of symbols in the symbol set
BitLen - Code length array
TableBits - The width of the mapping table
Table - The table
Returns:
0 - OK.
BAD_TABLE - The table is corrupted.
--*/
{
UINT16 Count[17];
UINT16 Weight[17];
UINT16 Start[18];
UINT16 *Pointer;
UINT16 Index3;
UINT16 Index;
UINT16 Len;
UINT16 Char;
UINT16 JuBits;
UINT16 Avail;
UINT16 NextCode;
UINT16 Mask;
UINT16 WordOfStart;
UINT16 WordOfCount;
UINT16 MaxTableLength;
for (Index = 0; Index <= 16; Index++) {
Count[Index] = 0;
}
for (Index = 0; Index < NumOfChar; Index++) {
if (BitLen[Index] > 16) {
return (UINT16) BAD_TABLE;
}
Count[BitLen[Index]]++;
}
Start[0] = 0;
Start[1] = 0;
for (Index = 1; Index <= 16; Index++) {
WordOfStart = Start[Index];
WordOfCount = Count[Index];
Start[Index + 1] = (UINT16) (WordOfStart + (WordOfCount << (16 - Index)));
}
if (Start[17] != 0) {
//
//(1U << 16)
//
return (UINT16) BAD_TABLE;
}
JuBits = (UINT16) (16 - TableBits);
Weight[0] = 0;
for (Index = 1; Index <= TableBits; Index++) {
Start[Index] >>= JuBits;
Weight[Index] = (UINT16) (1U << (TableBits - Index));
}
while (Index <= 16) {
Weight[Index] = (UINT16) (1U << (16 - Index));
Index++;
}
Index = (UINT16) (Start[TableBits + 1] >> JuBits);
if (Index != 0) {
Index3 = (UINT16) (1U << TableBits);
while (Index != Index3) {
Table[Index++] = 0;
}
}
Avail = NumOfChar;
Mask = (UINT16) (1U << (15 - TableBits));
MaxTableLength = (UINT16) (1U << TableBits);
for (Char = 0; Char < NumOfChar; Char++) {
Len = BitLen[Char];
if (Len == 0 || Len >= 17) {
continue;
}
NextCode = (UINT16) (Start[Len] + Weight[Len]);
if (Len <= TableBits) {
if (Start[Len] >= NextCode || NextCode > MaxTableLength){
return (UINT16) BAD_TABLE;
}
for (Index = Start[Len]; Index < NextCode; Index++) {
Table[Index] = Char;
}
} else {
Index3 = Start[Len];
Pointer = &Table[Index3 >> JuBits];
Index = (UINT16) (Len - TableBits);
while (Index != 0) {
if (*Pointer == 0) {
Sd->mRight[Avail] = Sd->mLeft[Avail] = 0;
*Pointer = Avail++;
}
if (Index3 & Mask) {
Pointer = &Sd->mRight[*Pointer];
} else {
Pointer = &Sd->mLeft[*Pointer];
}
Index3 <<= 1;
Index--;
}
*Pointer = Char;
}
Start[Len] = NextCode;
}
//
// Succeeds
//
return 0;
}
UINT32
DecodeP (
IN SCRATCH_DATA *Sd
)
/*++
Routine Description:
Decodes a position value.
Arguments:
Sd - the global scratch data
Returns:
The position value decoded.
--*/
{
UINT16 Val;
UINT32 Mask;
UINT32 Pos;
Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
if (Val >= MAXNP) {
Mask = 1U << (BITBUFSIZ - 1 - 8);
do {
if (Sd->mBitBuf & Mask) {
Val = Sd->mRight[Val];
} else {
Val = Sd->mLeft[Val];
}
Mask >>= 1;
} while (Val >= MAXNP);
}
//
// Advance what we have read
//
FillBuf (Sd, Sd->mPTLen[Val]);
Pos = Val;
if (Val > 1) {
Pos = (UINT32) ((1U << (Val - 1)) + GetBits (Sd, (UINT16) (Val - 1)));
}
return Pos;
}
UINT16
ReadPTLen (
IN SCRATCH_DATA *Sd,
IN UINT16 nn,
IN UINT16 nbit,
IN UINT16 Special
)
/*++
Routine Description:
Reads code lengths for the Extra Set or the Position Set
Arguments:
Sd - The global scratch data
nn - Number of symbols
nbit - Number of bits needed to represent nn
Special - The special symbol that needs to be taken care of
Returns:
0 - OK.
BAD_TABLE - Table is corrupted.
--*/
{
UINT16 Number;
UINT16 CharC;
volatile UINT16 Index;
UINT32 Mask;
assert (nn <= NPT);
Number = (UINT16) GetBits (Sd, nbit);
if (Number == 0) {
CharC = (UINT16) GetBits (Sd, nbit);
for (Index = 0; Index < 256; Index++) {
Sd->mPTTable[Index] = CharC;
}
for (Index = 0; Index < nn; Index++) {
Sd->mPTLen[Index] = 0;
}
return 0;
}
Index = 0;
while (Index < Number) {
CharC = (UINT16) (Sd->mBitBuf >> (BITBUFSIZ - 3));
if (CharC == 7) {
Mask = 1U << (BITBUFSIZ - 1 - 3);
while (Mask & Sd->mBitBuf) {
Mask >>= 1;
CharC += 1;
}
}
FillBuf (Sd, (UINT16) ((CharC < 7) ? 3 : CharC - 3));
Sd->mPTLen[Index++] = (UINT8) CharC;
if (Index == Special) {
CharC = (UINT16) GetBits (Sd, 2);
while ((INT16) (--CharC) >= 0) {
Sd->mPTLen[Index++] = 0;
}
}
}
while (Index < nn) {
Sd->mPTLen[Index++] = 0;
}
return MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable);
}
VOID
ReadCLen (
SCRATCH_DATA *Sd
)
/*++
Routine Description:
Reads code lengths for Char&Len Set.
Arguments:
Sd - the global scratch data
Returns: (VOID)
--*/
{
UINT16 Number;
UINT16 CharC;
volatile UINT16 Index;
UINT32 Mask;
Number = (UINT16) GetBits (Sd, CBIT);
if (Number == 0) {
CharC = (UINT16) GetBits (Sd, CBIT);
for (Index = 0; Index < NC; Index++) {
Sd->mCLen[Index] = 0;
}
for (Index = 0; Index < 4096; Index++) {
Sd->mCTable[Index] = CharC;
}
return ;
}
Index = 0;
while (Index < Number) {
CharC = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
if (CharC >= NT) {
Mask = 1U << (BITBUFSIZ - 1 - 8);
do {
if (Mask & Sd->mBitBuf) {
CharC = Sd->mRight[CharC];
} else {
CharC = Sd->mLeft[CharC];
}
Mask >>= 1;
} while (CharC >= NT);
}
//
// Advance what we have read
//
FillBuf (Sd, Sd->mPTLen[CharC]);
if (CharC <= 2) {
if (CharC == 0) {
CharC = 1;
} else if (CharC == 1) {
CharC = (UINT16) (GetBits (Sd, 4) + 3);
} else if (CharC == 2) {
CharC = (UINT16) (GetBits (Sd, CBIT) + 20);
}
while ((INT16) (--CharC) >= 0) {
Sd->mCLen[Index++] = 0;
}
} else {
Sd->mCLen[Index++] = (UINT8) (CharC - 2);
}
}
while (Index < NC) {
Sd->mCLen[Index++] = 0;
}
MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable);
return ;
}
UINT16
DecodeC (
SCRATCH_DATA *Sd
)
/*++
Routine Description:
Decode a character/length value.
Arguments:
Sd - The global scratch data.
Returns:
The value decoded.
--*/
{
UINT16 Index2;
UINT32 Mask;
if (Sd->mBlockSize == 0) {
//
// Starting a new block
//
Sd->mBlockSize = (UINT16) GetBits (Sd, 16);
Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3);
if (Sd->mBadTableFlag != 0) {
return 0;
}
ReadCLen (Sd);
Sd->mBadTableFlag = ReadPTLen (Sd, MAXNP, Sd->mPBit, (UINT16) (-1));
if (Sd->mBadTableFlag != 0) {
return 0;
}
}
Sd->mBlockSize--;
Index2 = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)];
if (Index2 >= NC) {
Mask = 1U << (BITBUFSIZ - 1 - 12);
do {
if (Sd->mBitBuf & Mask) {
Index2 = Sd->mRight[Index2];
} else {
Index2 = Sd->mLeft[Index2];
}
Mask >>= 1;
} while (Index2 >= NC);
}
//
// Advance what we have read
//
FillBuf (Sd, Sd->mCLen[Index2]);
return Index2;
}
VOID
Decode (
SCRATCH_DATA *Sd
)
/*++
Routine Description:
Decode the source data and put the resulting data into the destination buffer.
Arguments:
Sd - The global scratch data
Returns: (VOID)
--*/
{
UINT16 BytesRemain;
UINT32 DataIdx;
UINT16 CharC;
BytesRemain = (UINT16) (-1);
DataIdx = 0;
for (;;) {
CharC = DecodeC (Sd);
if (Sd->mBadTableFlag != 0) {
goto Done ;
}
if (CharC < 256) {
//
// Process an Original character
//
if (Sd->mOutBuf >= Sd->mOrigSize) {
goto Done ;
} else {
Sd->mDstBase[Sd->mOutBuf++] = (UINT8) CharC;
}
} else {
//
// Process a Pointer
//
CharC = (UINT16) (CharC - (UINT8_MAX + 1 - THRESHOLD));
BytesRemain = CharC;
DataIdx = Sd->mOutBuf - DecodeP (Sd) - 1;
BytesRemain--;
while ((INT16) (BytesRemain) >= 0) {
if (Sd->mOutBuf >= Sd->mOrigSize) {
goto Done ;
}
if (DataIdx >= Sd->mOrigSize) {
Sd->mBadTableFlag = (UINT16) BAD_TABLE;
goto Done ;
}
Sd->mDstBase[Sd->mOutBuf++] = Sd->mDstBase[DataIdx++];
BytesRemain--;
}
//
// Once mOutBuf is fully filled, directly return
//
if (Sd->mOutBuf >= Sd->mOrigSize) {
goto Done ;
}
}
}
Done:
return ;
}
RETURN_STATUS
EFIAPI
TDecompress (
IN VOID *Source,
IN OUT VOID *Destination,
IN OUT VOID *Scratch,
IN UINT32 Version
)
/*++
Routine Description:
The internal implementation of Decompress().
Arguments:
Source - The source buffer containing the compressed data.
Destination - The destination buffer to store the decompressed data
Scratch - The buffer used internally by the decompress routine. This buffer is needed to store intermediate data.
Version - 1 for EFI1.1 Decompress algorithm, 2 for Tiano Decompress algorithm
Returns:
RETURN_SUCCESS - Decompression is successful
RETURN_INVALID_PARAMETER - The source data is corrupted
--*/
{
volatile UINT32 Index;
UINT32 CompSize;
UINT32 OrigSize;
SCRATCH_DATA *Sd;
CONST UINT8 *Src;
UINT8 *Dst;
//
// Verify input is not NULL
//
assert(Source);
// assert(Destination);
assert(Scratch);
Src = (UINT8 *)Source;
Dst = (UINT8 *)Destination;
Sd = (SCRATCH_DATA *) Scratch;
CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24);
OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
//
// If compressed file size is 0, return
//
if (OrigSize == 0) {
return RETURN_SUCCESS;
}
Src = Src + 8;
for (Index = 0; Index < sizeof (SCRATCH_DATA); Index++) {
((UINT8 *) Sd)[Index] = 0;
}
//
// The length of the field 'Position Set Code Length Array Size' in Block Header.
// For EFI 1.1 de/compression algorithm(Version 1), mPBit = 4
// For Tiano de/compression algorithm(Version 2), mPBit = 5
//
switch (Version) {
case 1 :
Sd->mPBit = 4;
break;
case 2 :
Sd->mPBit = 5;
break;
default:
assert(FALSE);
}
Sd->mSrcBase = (UINT8 *)Src;
Sd->mDstBase = Dst;
Sd->mCompSize = CompSize;
Sd->mOrigSize = OrigSize;
//
// Fill the first BITBUFSIZ bits
//
FillBuf (Sd, BITBUFSIZ);
//
// Decompress it
//
Decode (Sd);
if (Sd->mBadTableFlag != 0) {
//
// Something wrong with the source
//
return RETURN_INVALID_PARAMETER;
}
return RETURN_SUCCESS;
}