/* Copyright (c) 2014, Intel Corporation. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Developers and authors: * Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center * (2) University of Haifa * Reference: * Shay Gueron and Vlad Krasnov * "Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes" * http://eprint.iacr.org/2013/816 */ #include "ecp_nistz256.h" #include "ecp_nistz.h" #include "../bn/internal.h" #include "../../limbs/limbs.inl" #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wsign-conversion" #endif /* Functions implemented in assembly */ /* Modular neg: res = -a mod P */ void GFp_nistz256_neg(Limb res[P256_LIMBS], const Limb a[P256_LIMBS]); /* One converted into the Montgomery domain */ static const Limb ONE[P256_LIMBS] = { TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), }; static void copy_conditional(Limb dst[P256_LIMBS], const Limb src[P256_LIMBS], Limb move) { Limb mask1 = move; Limb mask2 = ~mask1; dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); if (P256_LIMBS == 8) { dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); } } void GFp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); #if defined(GFp_USE_LARGE_TABLE) void GFp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a, const P256_POINT_AFFINE *b); #endif void GFp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b); // |GFp_nistz256_point_add| is defined in assembly language in X86-64 only. #if !defined(OPENSSL_X86_64) static const BN_ULONG Q[P256_LIMBS] = { TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xffffffff), TOBN(0x00000000, 0x00000000), TOBN(0xffffffff, 0x00000001), }; static inline Limb is_equal(const Limb a[P256_LIMBS], const Limb b[P256_LIMBS]) { return LIMBS_equal(a, b, P256_LIMBS); } static inline Limb is_zero(const BN_ULONG a[P256_LIMBS]) { return LIMBS_are_zero(a, P256_LIMBS); } static inline void elem_mul_by_2(Limb r[P256_LIMBS], const Limb a[P256_LIMBS]) { LIMBS_shl_mod(r, a, Q, P256_LIMBS); } static inline void elem_mul_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS], const Limb b[P256_LIMBS]) { GFp_nistz256_mul_mont(r, a, b); } static inline void elem_sqr_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS]) { GFp_nistz256_sqr_mont(r, a); } static inline void elem_sub(Limb r[P256_LIMBS], const Limb a[P256_LIMBS], const Limb b[P256_LIMBS]) { LIMBS_sub_mod(r, a, b, Q, P256_LIMBS); } /* Point addition: r = a+b */ void GFp_nistz256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b) { BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; BN_ULONG Z1sqr[P256_LIMBS]; BN_ULONG Z2sqr[P256_LIMBS]; BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; BN_ULONG Hsqr[P256_LIMBS]; BN_ULONG Rsqr[P256_LIMBS]; BN_ULONG Hcub[P256_LIMBS]; BN_ULONG res_x[P256_LIMBS]; BN_ULONG res_y[P256_LIMBS]; BN_ULONG res_z[P256_LIMBS]; const BN_ULONG *in1_x = a->X; const BN_ULONG *in1_y = a->Y; const BN_ULONG *in1_z = a->Z; const BN_ULONG *in2_x = b->X; const BN_ULONG *in2_y = b->Y; const BN_ULONG *in2_z = b->Z; BN_ULONG in1infty = is_zero(a->Z); BN_ULONG in2infty = is_zero(b->Z); elem_sqr_mont(Z2sqr, in2_z); /* Z2^2 */ elem_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ elem_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */ elem_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ elem_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */ elem_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ elem_sub(R, S2, S1); /* R = S2 - S1 */ elem_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */ elem_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ elem_sub(H, U2, U1); /* H = U2 - U1 */ BN_ULONG is_exceptional = is_equal(U1, U2) & ~in1infty & ~in2infty; if (is_exceptional) { if (is_equal(S1, S2)) { GFp_nistz256_point_double(r, a); } else { limbs_zero(r->X, P256_LIMBS); limbs_zero(r->Y, P256_LIMBS); limbs_zero(r->Z, P256_LIMBS); } return; } elem_sqr_mont(Rsqr, R); /* R^2 */ elem_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ elem_sqr_mont(Hsqr, H); /* H^2 */ elem_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ elem_mul_mont(Hcub, Hsqr, H); /* H^3 */ elem_mul_mont(U2, U1, Hsqr); /* U1*H^2 */ elem_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ elem_sub(res_x, Rsqr, Hsqr); elem_sub(res_x, res_x, Hcub); elem_sub(res_y, U2, res_x); elem_mul_mont(S2, S1, Hcub); elem_mul_mont(res_y, R, res_y); elem_sub(res_y, res_y, S2); copy_conditional(res_x, in2_x, in1infty); copy_conditional(res_y, in2_y, in1infty); copy_conditional(res_z, in2_z, in1infty); copy_conditional(res_x, in1_x, in2infty); copy_conditional(res_y, in1_y, in2infty); copy_conditional(res_z, in1_z, in2infty); limbs_copy(r->X, res_x, P256_LIMBS); limbs_copy(r->Y, res_y, P256_LIMBS); limbs_copy(r->Z, res_z, P256_LIMBS); } #endif /* r = p * p_scalar */ void GFp_nistz256_point_mul(P256_POINT *r, const Limb p_scalar[P256_LIMBS], const Limb p_x[P256_LIMBS], const Limb p_y[P256_LIMBS]) { static const size_t kWindowSize = 5; static const crypto_word kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; uint8_t p_str[(P256_LIMBS * sizeof(Limb)) + 1]; gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]), p_scalar, P256_LIMBS); /* A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should * add no more than 63 bytes of overhead. Thus, |table| should require * ~1599 ((96 * 16) + 63) bytes of stack space. */ alignas(64) P256_POINT table[16]; /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is * not stored. All other values are actually stored with an offset of -1 in * table. */ P256_POINT *row = table; limbs_copy(row[1 - 1].X, p_x, P256_LIMBS); limbs_copy(row[1 - 1].Y, p_y, P256_LIMBS); limbs_copy(row[1 - 1].Z, ONE, P256_LIMBS); GFp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); GFp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); GFp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); GFp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); GFp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); GFp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); GFp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); GFp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); GFp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); GFp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); GFp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); GFp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); GFp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); GFp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); GFp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); Limb tmp[P256_LIMBS]; alignas(32) P256_POINT h; static const size_t START_INDEX = 256 - 1; size_t index = START_INDEX; crypto_word raw_wvalue; crypto_word recoded_is_negative; crypto_word recoded; raw_wvalue = p_str[(index - 1) / 8]; raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask; booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize); dev_assert_secret(!recoded_is_negative); GFp_nistz256_select_w5(r, table, recoded); while (index >= kWindowSize) { if (index != START_INDEX) { size_t off = (index - 1) / 8; raw_wvalue = p_str[off] | p_str[off + 1] << 8; raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask; booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize); GFp_nistz256_select_w5(&h, table, recoded); GFp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, recoded_is_negative); GFp_nistz256_point_add(r, r, &h); } index -= kWindowSize; GFp_nistz256_point_double(r, r); GFp_nistz256_point_double(r, r); GFp_nistz256_point_double(r, r); GFp_nistz256_point_double(r, r); GFp_nistz256_point_double(r, r); } /* Final window */ raw_wvalue = p_str[0]; raw_wvalue = (raw_wvalue << 1) & kMask; booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize); GFp_nistz256_select_w5(&h, table, recoded); GFp_nistz256_neg(tmp, h.Y); copy_conditional(h.Y, tmp, recoded_is_negative); GFp_nistz256_point_add(r, r, &h); } #if defined(GFp_USE_LARGE_TABLE) /* Precomputed tables for the default generator */ #include "ecp_nistz256_table.inl" static const size_t kWindowSize = 7; static inline void select_precomputed(P256_POINT_AFFINE *p, size_t i, crypto_word raw_wvalue) { crypto_word recoded_is_negative; crypto_word recoded; booth_recode(&recoded_is_negative, &recoded, raw_wvalue, kWindowSize); GFp_nistz256_select_w7(p, GFp_nistz256_precomputed[i], recoded); Limb neg_y[P256_LIMBS]; GFp_nistz256_neg(neg_y, p->Y); copy_conditional(p->Y, neg_y, recoded_is_negative); } /* This assumes that |x| and |y| have been each been reduced to their minimal * unique representations. */ static Limb is_infinity(const Limb x[P256_LIMBS], const Limb y[P256_LIMBS]) { Limb acc = 0; for (size_t i = 0; i < P256_LIMBS; ++i) { acc |= x[i] | y[i]; } return constant_time_is_zero_w(acc); } void GFp_nistz256_point_mul_base(P256_POINT *r, const Limb g_scalar[P256_LIMBS]) { static const crypto_word kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; uint8_t p_str[(P256_LIMBS * sizeof(Limb)) + 1]; gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]), g_scalar, P256_LIMBS); /* First window */ size_t index = kWindowSize; alignas(32) P256_POINT_AFFINE t; crypto_word raw_wvalue = (p_str[0] << 1) & kMask; select_precomputed(&t, 0, raw_wvalue); alignas(32) P256_POINT p; limbs_copy(p.X, t.X, P256_LIMBS); limbs_copy(p.Y, t.Y, P256_LIMBS); limbs_copy(p.Z, ONE, P256_LIMBS); /* If it is at the point at infinity then p.p.X will be zero. */ copy_conditional(p.Z, p.X, is_infinity(p.X, p.Y)); for (size_t i = 1; i < 37; i++) { size_t off = (index - 1) / 8; raw_wvalue = p_str[off] | p_str[off + 1] << 8; raw_wvalue = (raw_wvalue >> ((index - 1) % 8)) & kMask; index += kWindowSize; select_precomputed(&t, i, raw_wvalue); GFp_nistz256_point_add_affine(&p, &p, &t); } limbs_copy(r->X, p.X, P256_LIMBS); limbs_copy(r->Y, p.Y, P256_LIMBS); limbs_copy(r->Z, p.Z, P256_LIMBS); } #endif