/* * Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved. * Copyright (c) 2023, NVIDIA Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv3_private.h" uintptr_t gicv3_get_multichip_base(uint32_t spi_id, uintptr_t gicd_base) { #if GICV3_IMPL_GIC600_MULTICHIP if (gic600_multichip_is_initialized()) { return gic600_multichip_gicd_base_for_spi(spi_id); } #endif return gicd_base; } /****************************************************************************** * This function marks the core as awake in the re-distributor and * ensures that the interface is active. *****************************************************************************/ void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base) { /* * The WAKER_PS_BIT should be changed to 0 * only when WAKER_CA_BIT is 1. */ assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U); /* Mark the connected core as awake */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 0 */ while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) { } } /****************************************************************************** * This function marks the core as asleep in the re-distributor and ensures * that the interface is quiescent. *****************************************************************************/ void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base) { /* Mark the connected core as asleep */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 1 */ while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) { } } /******************************************************************************* * This function probes the Redistributor frames when the driver is initialised * and saves their base addresses. These base addresses are used later to * initialise each Redistributor interface. ******************************************************************************/ void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, unsigned int rdistif_num, uintptr_t gicr_base, mpidr_hash_fn mpidr_to_core_pos) { u_register_t mpidr; unsigned int proc_num; uint64_t typer_val; uintptr_t rdistif_base = gicr_base; assert(rdistif_base_addrs != NULL); /* * Iterate over the Redistributor frames. Store the base address of each * frame in the platform provided array. Use the "Processor Number" * field to index into the array if the platform has not provided a hash * function to convert an MPIDR (obtained from the "Affinity Value" * field into a linear index. */ do { typer_val = gicr_read_typer(rdistif_base); if (mpidr_to_core_pos != NULL) { mpidr = mpidr_from_gicr_typer(typer_val); proc_num = mpidr_to_core_pos(mpidr); } else { proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK; } if (proc_num < rdistif_num) { rdistif_base_addrs[proc_num] = rdistif_base; } rdistif_base += gicv3_redist_size(typer_val); } while ((typer_val & TYPER_LAST_BIT) == 0U); } /******************************************************************************* * Helper function to get the maximum SPI INTID + 1. ******************************************************************************/ unsigned int gicv3_get_spi_limit(uintptr_t gicd_base) { unsigned int spi_limit; unsigned int typer_reg = gicd_read_typer(gicd_base); /* (maximum SPI INTID + 1) is equal to 32 * (GICD_TYPER.ITLinesNumber+1) */ spi_limit = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5; /* Filter out special INTIDs 1020-1023 */ if (spi_limit > (MAX_SPI_ID + 1U)) { return MAX_SPI_ID + 1U; } return spi_limit; } #if GIC_EXT_INTID /******************************************************************************* * Helper function to get the maximum ESPI INTID + 1. ******************************************************************************/ unsigned int gicv3_get_espi_limit(uintptr_t gicd_base) { unsigned int typer_reg = gicd_read_typer(gicd_base); /* Check if extended SPI range is implemented */ if ((typer_reg & TYPER_ESPI) != 0U) { /* * (maximum ESPI INTID + 1) is equal to * 32 * (GICD_TYPER.ESPI_range + 1) + 4096 */ return ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) & TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID; } return 0U; } #endif /* GIC_EXT_INTID */ /******************************************************************************* * Helper function to configure the default attributes of (E)SPIs. ******************************************************************************/ void gicv3_spis_config_defaults(uintptr_t gicd_base) { unsigned int i, num_ints; #if GIC_EXT_INTID unsigned int num_eints; #endif num_ints = gicv3_get_spi_limit(gicd_base); INFO("Maximum SPI INTID supported: %u\n", num_ints - 1); /* Treat all (E)SPIs as G1NS by default. We do 32 at a time. */ for (i = MIN_SPI_ID; i < num_ints; i += (1U << IGROUPR_SHIFT)) { gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U); } #if GIC_EXT_INTID num_eints = gicv3_get_espi_limit(gicd_base); if (num_eints != 0U) { INFO("Maximum ESPI INTID supported: %u\n", num_eints - 1); for (i = MIN_ESPI_ID; i < num_eints; i += (1U << IGROUPR_SHIFT)) { gicd_write_igroupr(gicv3_get_multichip_base(i, gicd_base), i, ~0U); } } else { INFO("ESPI range is not implemented.\n"); } #endif /* Setup the default (E)SPI priorities doing four at a time */ for (i = MIN_SPI_ID; i < num_ints; i += (1U << IPRIORITYR_SHIFT)) { gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL); } #if GIC_EXT_INTID for (i = MIN_ESPI_ID; i < num_eints; i += (1U << IPRIORITYR_SHIFT)) { gicd_write_ipriorityr(gicv3_get_multichip_base(i, gicd_base), i, GICD_IPRIORITYR_DEF_VAL); } #endif /* * Treat all (E)SPIs as level triggered by default, write 16 at a time */ for (i = MIN_SPI_ID; i < num_ints; i += (1U << ICFGR_SHIFT)) { gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U); } #if GIC_EXT_INTID for (i = MIN_ESPI_ID; i < num_eints; i += (1U << ICFGR_SHIFT)) { gicd_write_icfgr(gicv3_get_multichip_base(i, gicd_base), i, 0U); } #endif } /******************************************************************************* * Helper function to configure properties of secure (E)SPIs ******************************************************************************/ unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num) { unsigned int i; const interrupt_prop_t *current_prop; unsigned long long gic_affinity_val; unsigned int ctlr_enable = 0U; /* Make sure there's a valid property array */ if (interrupt_props_num > 0U) { assert(interrupt_props != NULL); } for (i = 0U; i < interrupt_props_num; i++) { current_prop = &interrupt_props[i]; unsigned int intr_num = current_prop->intr_num; uintptr_t multichip_gicd_base = gicv3_get_multichip_base(intr_num, gicd_base); /* Skip SGI, (E)PPI and LPI interrupts */ if (!IS_SPI(intr_num)) { continue; } /* Configure this interrupt as a secure interrupt */ gicd_clr_igroupr(multichip_gicd_base, intr_num); /* Configure this interrupt as G0 or a G1S interrupt */ assert((current_prop->intr_grp == INTR_GROUP0) || (current_prop->intr_grp == INTR_GROUP1S)); if (current_prop->intr_grp == INTR_GROUP1S) { gicd_set_igrpmodr(multichip_gicd_base, intr_num); ctlr_enable |= CTLR_ENABLE_G1S_BIT; } else { gicd_clr_igrpmodr(multichip_gicd_base, intr_num); ctlr_enable |= CTLR_ENABLE_G0_BIT; } /* Set interrupt configuration */ gicd_set_icfgr(multichip_gicd_base, intr_num, current_prop->intr_cfg); /* Set the priority of this interrupt */ gicd_set_ipriorityr(multichip_gicd_base, intr_num, current_prop->intr_pri); /* Target (E)SPIs to the primary CPU */ gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0U); gicd_write_irouter(multichip_gicd_base, intr_num, gic_affinity_val); /* Enable this interrupt */ gicd_set_isenabler(multichip_gicd_base, intr_num); } return ctlr_enable; } /******************************************************************************* * Helper function to configure the default attributes of (E)SPIs ******************************************************************************/ void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base) { unsigned int i, ppi_regs_num, regs_num; #if GIC_EXT_INTID /* Calculate number of PPI registers */ ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >> TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1; /* All other values except PPInum [0-2] are reserved */ if (ppi_regs_num > 3U) { ppi_regs_num = 1U; } #else ppi_regs_num = 1U; #endif /* * Disable all SGIs (imp. def.)/(E)PPIs before configuring them. * This is a more scalable approach as it avoids clearing * the enable bits in the GICD_CTLR. */ for (i = 0U; i < ppi_regs_num; ++i) { gicr_write_icenabler(gicr_base, i, ~0U); } /* Wait for pending writes to GICR_ICENABLER */ gicr_wait_for_pending_write(gicr_base); /* 32 interrupt IDs per GICR_IGROUPR register */ for (i = 0U; i < ppi_regs_num; ++i) { /* Treat all SGIs/(E)PPIs as G1NS by default */ gicr_write_igroupr(gicr_base, i, ~0U); } /* 4 interrupt IDs per GICR_IPRIORITYR register */ regs_num = ppi_regs_num << 3; for (i = 0U; i < regs_num; ++i) { /* Setup the default (E)PPI/SGI priorities doing 4 at a time */ gicr_write_ipriorityr(gicr_base, i, GICD_IPRIORITYR_DEF_VAL); } /* 16 interrupt IDs per GICR_ICFGR register */ regs_num = ppi_regs_num << 1; for (i = (MIN_PPI_ID >> ICFGR_SHIFT); i < regs_num; ++i) { /* Configure all (E)PPIs as level triggered by default */ gicr_write_icfgr(gicr_base, i, 0U); } } /******************************************************************************* * Helper function to configure properties of secure G0 and G1S (E)PPIs and SGIs ******************************************************************************/ unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num) { unsigned int i; const interrupt_prop_t *current_prop; unsigned int ctlr_enable = 0U; /* Make sure there's a valid property array */ if (interrupt_props_num > 0U) { assert(interrupt_props != NULL); } for (i = 0U; i < interrupt_props_num; i++) { current_prop = &interrupt_props[i]; unsigned int intr_num = current_prop->intr_num; /* Skip (E)SPI interrupt */ if (!IS_SGI_PPI(intr_num)) { continue; } /* Configure this interrupt as a secure interrupt */ gicr_clr_igroupr(gicr_base, intr_num); /* Configure this interrupt as G0 or a G1S interrupt */ assert((current_prop->intr_grp == INTR_GROUP0) || (current_prop->intr_grp == INTR_GROUP1S)); if (current_prop->intr_grp == INTR_GROUP1S) { gicr_set_igrpmodr(gicr_base, intr_num); ctlr_enable |= CTLR_ENABLE_G1S_BIT; } else { gicr_clr_igrpmodr(gicr_base, intr_num); ctlr_enable |= CTLR_ENABLE_G0_BIT; } /* Set the priority of this interrupt */ gicr_set_ipriorityr(gicr_base, intr_num, current_prop->intr_pri); /* * Set interrupt configuration for (E)PPIs. * Configurations for SGIs 0-15 are ignored. */ if (intr_num >= MIN_PPI_ID) { gicr_set_icfgr(gicr_base, intr_num, current_prop->intr_cfg); } /* Enable this interrupt */ gicr_set_isenabler(gicr_base, intr_num); } return ctlr_enable; } /** * gicv3_rdistif_get_number_frames() - determine size of GICv3 GICR region * @gicr_frame: base address of the GICR region to check * * This iterates over the GICR_TYPER registers of multiple GICR frames in * a GICR region, to find the instance which has the LAST bit set. For most * systems this corresponds to the number of cores handled by a redistributor, * but there could be disabled cores among them. * It assumes that each GICR region is fully accessible (till the LAST bit * marks the end of the region). * If a platform has multiple GICR regions, this function would need to be * called multiple times, providing the respective GICR base address each time. * * Return: number of valid GICR frames (at least 1, up to PLATFORM_CORE_COUNT) ******************************************************************************/ unsigned int gicv3_rdistif_get_number_frames(const uintptr_t gicr_frame) { uintptr_t rdistif_base = gicr_frame; unsigned int count; for (count = 1U; count < PLATFORM_CORE_COUNT; count++) { uint64_t typer_val = gicr_read_typer(rdistif_base); if ((typer_val & TYPER_LAST_BIT) != 0U) { break; } rdistif_base += gicv3_redist_size(typer_val); } return count; } unsigned int gicv3_get_component_partnum(const uintptr_t gic_frame) { unsigned int part_id; /* * The lower 8 bits of PIDR0, complemented by the lower 4 bits of * PIDR1 contain a part number identifying the GIC component at a * particular base address. */ part_id = mmio_read_32(gic_frame + GICD_PIDR0_GICV3) & 0xff; part_id |= (mmio_read_32(gic_frame + GICD_PIDR1_GICV3) << 8) & 0xf00; return part_id; } /******************************************************************************* * Helper function to return product ID and revision of GIC * @gicd_base: base address of the GIC distributor * @gic_prod_id: retrieved product id of GIC * @gic_rev: retrieved revision of GIC ******************************************************************************/ void gicv3_get_component_prodid_rev(const uintptr_t gicd_base, unsigned int *gic_prod_id, uint8_t *gic_rev) { unsigned int gicd_iidr; uint8_t gic_variant; gicd_iidr = gicd_read_iidr(gicd_base); *gic_prod_id = gicd_iidr >> IIDR_PRODUCT_ID_SHIFT; *gic_prod_id &= IIDR_PRODUCT_ID_MASK; gic_variant = gicd_iidr >> IIDR_VARIANT_SHIFT; gic_variant &= IIDR_VARIANT_MASK; *gic_rev = gicd_iidr >> IIDR_REV_SHIFT; *gic_rev &= IIDR_REV_MASK; /* * pack gic variant and gic_rev in 1 byte * gic_rev = gic_variant[7:4] and gic_rev[0:3] */ *gic_rev = *gic_rev | gic_variant << 0x4; }