/************************************************************************** Copyright 1998-1999 Precision Insight, Inc., Cedar Park, Texas. Copyright © 2002 David Dawes All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sub license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************/ /* * Authors: * Keith Whitwell * David Dawes * */ #ifndef _SNA_H_ #define _SNA_H_ #include #include #include #include #if XF86_CRTC_VERSION >= 5 #define HAS_PIXMAP_SHARING 1 #endif #include #include #include #include #include #include #include #include "../compat-api.h" #include #include #if HAVE_DRI2 #include #endif #if HAVE_DRI3 #include #endif #if HAVE_UDEV #include #endif #include #include #include "xassert.h" #include "compiler.h" #include "debug.h" #define DEBUG_NO_BLT 0 #define DEBUG_FLUSH_BATCH 0 #define TEST_ALL 0 #define TEST_ACCEL (TEST_ALL || 0) #define TEST_BATCH (TEST_ALL || 0) #define TEST_BLT (TEST_ALL || 0) #define TEST_COMPOSITE (TEST_ALL || 0) #define TEST_DAMAGE (TEST_ALL || 0) #define TEST_GRADIENT (TEST_ALL || 0) #define TEST_GLYPHS (TEST_ALL || 0) #define TEST_IO (TEST_ALL || 0) #define TEST_KGEM (TEST_ALL || 0) #define TEST_RENDER (TEST_ALL || 0) #include "intel_driver.h" #include "intel_list.h" #include "kgem.h" #include "sna_damage.h" #include "sna_render.h" #include "fb/fb.h" struct sna_cursor; struct sna_crtc; struct sna_client { struct list events; int is_compositor; /* only 4 bits used */ }; extern DevPrivateKeyRec sna_client_key; pure static inline struct sna_client *sna_client(ClientPtr client) { return __get_private(client, sna_client_key); } struct sna_cow { struct kgem_bo *bo; struct list list; int refcnt; }; struct sna_pixmap { PixmapPtr pixmap; struct kgem_bo *gpu_bo, *cpu_bo; struct sna_damage *gpu_damage, *cpu_damage; struct sna_cow *cow; void *ptr; #define PTR(ptr) ((void*)((uintptr_t)(ptr) & ~1)) bool (*move_to_gpu)(struct sna *, struct sna_pixmap *, unsigned); void *move_to_gpu_data; struct list flush_list; struct list cow_list; uint32_t stride; uint32_t clear_color; #define SOURCE_BIAS 4 uint8_t source_count; uint8_t pinned :4; #define PIN_SCANOUT 0x1 #define PIN_DRI2 0x2 #define PIN_DRI3 0x4 #define PIN_PRIME 0x8 uint8_t create :4; uint8_t mapped :2; #define MAPPED_NONE 0 #define MAPPED_GTT 1 #define MAPPED_CPU 2 uint8_t flush :2; #define FLUSH_READ 1 #define FLUSH_WRITE 2 uint8_t shm :1; uint8_t clear :1; uint8_t header :1; uint8_t cpu :1; }; #define IS_STATIC_PTR(ptr) ((uintptr_t)(ptr) & 1) #define MAKE_STATIC_PTR(ptr) ((void*)((uintptr_t)(ptr) | 1)) struct sna_glyph { PicturePtr atlas; struct sna_coordinate coordinate; uint16_t size, pos; pixman_image_t *image; }; static inline WindowPtr get_root_window(ScreenPtr screen) { #if XORG_VERSION_CURRENT >= XORG_VERSION_NUMERIC(1,10,0,0,0) return screen->root; #else return WindowTable[screen->myNum]; #endif } #if !NDEBUG static PixmapPtr check_pixmap(PixmapPtr pixmap) { if (pixmap != NULL) { assert(pixmap->refcnt >= 1); assert(pixmap->devKind != 0xdeadbeef); } return pixmap; } #else #define check_pixmap(p) p #endif static inline PixmapPtr get_window_pixmap(WindowPtr window) { assert(window); assert(window->drawable.type != DRAWABLE_PIXMAP); return check_pixmap(fbGetWindowPixmap(window)); } static inline PixmapPtr get_drawable_pixmap(DrawablePtr drawable) { assert(drawable); if (drawable->type == DRAWABLE_PIXMAP) return check_pixmap((PixmapPtr)drawable); else return get_window_pixmap((WindowPtr)drawable); } extern DevPrivateKeyRec sna_pixmap_key; pure static inline struct sna_pixmap *sna_pixmap(PixmapPtr pixmap) { return ((void **)__get_private(pixmap, sna_pixmap_key))[1]; } static inline struct sna_pixmap *sna_pixmap_from_drawable(DrawablePtr drawable) { return sna_pixmap(get_drawable_pixmap(drawable)); } struct sna_gc { long changes; long serial; const GCFuncs *old_funcs; void *priv; }; static inline struct sna_gc *sna_gc(GCPtr gc) { return (struct sna_gc *)__get_private(gc, sna_gc_key); } enum { FLUSH_TIMER = 0, THROTTLE_TIMER, EXPIRE_TIMER, #if DEBUG_MEMORY DEBUG_MEMORY_TIMER, #endif NUM_TIMERS }; struct sna { struct kgem kgem; ScrnInfoPtr scrn; struct intel_device *dev; unsigned flags; #define SNA_IS_SLAVED 0x1 #define SNA_IS_HOSTED 0x2 #define SNA_NO_WAIT 0x10 #define SNA_NO_FLIP 0x20 #define SNA_NO_VSYNC 0x40 #define SNA_TRIPLE_BUFFER 0x80 #define SNA_TEAR_FREE 0x100 #define SNA_WANT_TEAR_FREE 0x200 #define SNA_FORCE_SHADOW 0x400 #define SNA_FLUSH_GTT 0x800 #define SNA_PERFORMANCE 0x1000 #define SNA_POWERSAVE 0x2000 #define SNA_NO_DPMS 0x4000 #define SNA_HAS_FLIP 0x10000 #define SNA_HAS_ASYNC_FLIP 0x20000 #define SNA_LINEAR_FB 0x40000 #define SNA_REPROBE 0x80000000 unsigned cpu_features; #define MMX 0x1 #define SSE 0x2 #define SSE2 0x4 #define SSE3 0x8 #define SSSE3 0x10 #define SSE4_1 0x20 #define SSE4_2 0x40 #define AVX 0x80 #define AVX2 0x100 bool ignore_copy_area : 1; unsigned watch_shm_flush; unsigned watch_dri_flush; unsigned damage_event; bool needs_shm_flush; bool needs_dri_flush; struct timeval timer_tv; uint32_t timer_expire[NUM_TIMERS]; uint16_t timer_active; int vblank_interval; struct list flush_pixmaps; struct list active_pixmaps; PixmapPtr front; PixmapPtr freed_pixmap; struct sna_mode { DamagePtr shadow_damage; struct kgem_bo *shadow; unsigned front_active; unsigned shadow_active; unsigned rr_active; unsigned flip_active; unsigned hidden; bool shadow_enabled; bool dirty; struct drm_event_vblank *shadow_events; int shadow_nevent; int shadow_size; int max_crtc_width, max_crtc_height; RegionRec shadow_region; RegionRec shadow_cancel; struct list shadow_crtc; bool shadow_dirty; unsigned num_real_crtc; unsigned num_real_output; unsigned num_real_encoder; unsigned num_fake; unsigned serial; uint32_t *encoders; #if HAVE_UDEV struct udev_monitor *backlight_monitor; pointer backlight_handler; #endif Bool (*rrGetInfo)(ScreenPtr, Rotation *); } mode; struct { struct sna_cursor *cursors; xf86CursorInfoPtr info; CursorPtr ref; unsigned serial; uint32_t fg, bg; int size; bool disable; bool active; int last_x; int last_y; unsigned max_size; bool use_gtt; int num_stash; struct sna_cursor *stash; void *scratch; } cursor; struct sna_dri2 { bool available : 1; bool enable : 1; bool open : 1; #if HAVE_DRI2 void *flip_pending; unsigned client_count; #endif } dri2; struct sna_dri3 { bool available :1; bool override : 1; bool enable : 1; bool open :1; #if HAVE_DRI3 SyncScreenCreateFenceFunc create_fence; struct list pixmaps; #endif } dri3; struct sna_present { bool available; bool open; #if HAVE_PRESENT struct list vblank_queue; uint64_t unflip; void *freed_info; #endif } present; struct sna_xv { XvAdaptorPtr adaptors; int num_adaptors; } xv; EntityInfoPtr pEnt; const struct intel_device_info *info; #if !HAVE_NOTIFY_FD ScreenBlockHandlerProcPtr BlockHandler; ScreenWakeupHandlerProcPtr WakeupHandler; #endif CloseScreenProcPtr CloseScreen; PicturePtr clear; struct { uint32_t fill_bo; uint32_t fill_pixel; uint32_t fill_alu; } blt_state; union { unsigned gt; struct gen2_render_state gen2; struct gen3_render_state gen3; struct gen4_render_state gen4; struct gen5_render_state gen5; struct gen6_render_state gen6; struct gen7_render_state gen7; struct gen8_render_state gen8; struct gen9_render_state gen9; } render_state; /* Broken-out options. */ OptionInfoPtr Options; /* Driver phase/state information */ bool suspended; #if HAVE_UDEV struct udev_monitor *uevent_monitor; pointer uevent_handler; #endif struct { int fd; uint8_t offset; uint8_t remain; char event[256]; } acpi; struct sna_render render; #if DEBUG_MEMORY struct { int pixmap_allocs; int pixmap_cached; int cpu_bo_allocs; size_t shadow_pixels_bytes; size_t cpu_bo_bytes; } debug_memory; #endif }; bool sna_mode_pre_init(ScrnInfoPtr scrn, struct sna *sna); bool sna_mode_fake_init(struct sna *sna, int num_fake); bool sna_mode_wants_tear_free(struct sna *sna); void sna_mode_adjust_frame(struct sna *sna, int x, int y); extern void sna_mode_discover(struct sna *sna, bool tell); extern void sna_mode_check(struct sna *sna); extern bool sna_mode_disable(struct sna *sna); extern void sna_mode_enable(struct sna *sna); extern void sna_mode_reset(struct sna *sna); extern int sna_mode_wakeup(struct sna *sna); extern void sna_mode_redisplay(struct sna *sna); extern void sna_shadow_set_crtc(struct sna *sna, xf86CrtcPtr crtc, struct kgem_bo *bo); extern void sna_shadow_steal_crtcs(struct sna *sna, struct list *list); extern void sna_shadow_unsteal_crtcs(struct sna *sna, struct list *list); extern void sna_shadow_unset_crtc(struct sna *sna, xf86CrtcPtr crtc); extern bool sna_pixmap_discard_shadow_damage(struct sna_pixmap *priv, const RegionRec *region); extern void sna_mode_set_primary(struct sna *sna); extern bool sna_mode_find_hotplug_connector(struct sna *sna, unsigned id); extern void sna_mode_close(struct sna *sna); extern void sna_mode_fini(struct sna *sna); extern void sna_crtc_config_notify(ScreenPtr screen); extern bool sna_cursors_init(ScreenPtr screen, struct sna *sna); extern CARD32 sna_mode_coldplug(OsTimerPtr timer, CARD32 now, void *data); #define COLDPLUG_DELAY_MS 2000 typedef void (*sna_flip_handler_t)(struct drm_event_vblank *e, void *data); extern bool sna_needs_page_flip(struct sna *sna, struct kgem_bo *bo); extern int sna_page_flip(struct sna *sna, struct kgem_bo *bo, sna_flip_handler_t handler, void *data); pure static inline struct sna * to_sna(ScrnInfoPtr scrn) { struct sna *sna = scrn->driverPrivate; assert(sna->scrn == scrn); return sna; } pure static inline struct sna * to_sna_from_screen(ScreenPtr screen) { return to_sna(xf86ScreenToScrn(screen)); } pure static inline ScreenPtr to_screen_from_sna(struct sna *sna) { ScreenPtr screen = xf86ScrnToScreen(sna->scrn); assert(!screen || sna == to_sna_from_screen(screen)); return screen; } pure static inline struct sna * to_sna_from_pixmap(PixmapPtr pixmap) { return ((void **)__get_private(pixmap, sna_pixmap_key))[0]; } pure static inline struct sna * to_sna_from_drawable(DrawablePtr drawable) { return to_sna_from_screen(drawable->pScreen); } static inline struct sna * to_sna_from_kgem(struct kgem *kgem) { return container_of(kgem, struct sna, kgem); } #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #endif #ifndef ALIGN #define ALIGN(i,m) (((i) + (m) - 1) & ~((m) - 1)) #endif #ifndef MIN #define MIN(a,b) ((a) <= (b) ? (a) : (b)) #endif #ifndef MAX #define MAX(a,b) ((a) >= (b) ? (a) : (b)) #endif extern xf86CrtcPtr sna_covering_crtc(struct sna *sna, const BoxRec *box, xf86CrtcPtr desired); extern xf86CrtcPtr sna_primary_crtc(struct sna *sna); extern bool sna_wait_for_scanline(struct sna *sna, PixmapPtr pixmap, xf86CrtcPtr crtc, const BoxRec *clip); const struct ust_msc { uint64_t msc; int tv_sec; int tv_usec; } *sna_crtc_last_swap(xf86CrtcPtr crtc); uint64_t sna_crtc_record_swap(xf86CrtcPtr crtc, int tv_sec, int tv_usec, unsigned seq); static inline uint64_t sna_crtc_record_vblank(xf86CrtcPtr crtc, const union drm_wait_vblank *vbl) { return sna_crtc_record_swap(crtc, vbl->reply.tval_sec, vbl->reply.tval_usec, vbl->reply.sequence); } static inline uint64_t sna_crtc_record_event(xf86CrtcPtr crtc, struct drm_event_vblank *event) { return sna_crtc_record_swap(crtc, event->tv_sec, event->tv_usec, event->sequence); } static inline uint64_t ust64(int tv_sec, int tv_usec) { return (uint64_t)tv_sec * 1000000 + tv_usec; } static inline uint64_t swap_ust(const struct ust_msc *swap) { return ust64(swap->tv_sec, swap->tv_usec); } #if HAVE_DRI2 bool sna_dri2_open(struct sna *sna, ScreenPtr pScreen); void sna_dri2_page_flip_handler(struct sna *sna, struct drm_event_vblank *event); void sna_dri2_vblank_handler(struct drm_event_vblank *event); void sna_dri2_pixmap_update_bo(struct sna *sna, PixmapPtr pixmap, struct kgem_bo *bo); void sna_dri2_decouple_window(WindowPtr win); void sna_dri2_destroy_window(WindowPtr win); void sna_dri2_close(struct sna *sna, ScreenPtr pScreen); #else static inline bool sna_dri2_open(struct sna *sna, ScreenPtr pScreen) { return false; } static inline void sna_dri2_page_flip_handler(struct sna *sna, struct drm_event_vblank *event) { } static inline void sna_dri2_vblank_handler(struct drm_event_vblank *event) { } static inline void sna_dri2_pixmap_update_bo(struct sna *sna, PixmapPtr pixmap, struct kgem_bo *bo) { } static inline void sna_dri2_decouple_window(WindowPtr win) { } static inline void sna_dri2_destroy_window(WindowPtr win) { } static inline void sna_dri2_close(struct sna *sna, ScreenPtr pScreen) { } #endif #if HAVE_DRI3 bool sna_dri3_open(struct sna *sna, ScreenPtr pScreen); void sna_dri3_close(struct sna *sna, ScreenPtr pScreen); #else static inline bool sna_dri3_open(struct sna *sna, ScreenPtr pScreen) { return false; } static inline void sna_dri3_close(struct sna *sna, ScreenPtr pScreen) { } #endif #if HAVE_PRESENT bool sna_present_open(struct sna *sna, ScreenPtr pScreen); void sna_present_update(struct sna *sna); void sna_present_close(struct sna *sna, ScreenPtr pScreen); void sna_present_vblank_handler(struct drm_event_vblank *event); void sna_present_cancel_flip(struct sna *sna); #else static inline bool sna_present_open(struct sna *sna, ScreenPtr pScreen) { return false; } static inline void sna_present_update(struct sna *sna) { } static inline void sna_present_close(struct sna *sna, ScreenPtr pScreen) { } static inline void sna_present_vblank_handler(struct drm_event_vblank *event) { } static inline void sna_present_cancel_flip(struct sna *sna) { } #endif extern unsigned sna_crtc_count_sprites(xf86CrtcPtr crtc); extern bool sna_crtc_set_sprite_rotation(xf86CrtcPtr crtc, unsigned idx, uint32_t rotation); extern void sna_crtc_set_sprite_colorspace(xf86CrtcPtr crtc, unsigned idx, int colorspace); extern uint32_t sna_crtc_to_sprite(xf86CrtcPtr crtc, unsigned idx); extern bool sna_crtc_is_transformed(xf86CrtcPtr crtc); bool sna_has_sprite_format(struct sna *sna, uint32_t format); #define CRTC_VBLANK 0x7 #define CRTC_ON 0x80000000 uint32_t sna_crtc_id(xf86CrtcPtr crtc); struct sna_crtc_public { unsigned long flags; struct list vblank_queue; }; static inline unsigned long *sna_crtc_flags(xf86CrtcPtr crtc) { struct sna_crtc_public *pub = crtc->driver_private; assert(pub); return &pub->flags; } static inline struct list *sna_crtc_vblank_queue(xf86CrtcPtr crtc) { struct sna_crtc_public *pub = crtc->driver_private; assert(pub); return &pub->vblank_queue; } static inline unsigned sna_crtc_pipe(xf86CrtcPtr crtc) { return *sna_crtc_flags(crtc) >> 8 & 0xff; } static inline bool sna_crtc_is_on(xf86CrtcPtr crtc) { return *sna_crtc_flags(crtc) & CRTC_ON; } static inline void sna_crtc_set_vblank(xf86CrtcPtr crtc) { DBG(("%s: current vblank count: %d\n", __FUNCTION__, *sna_crtc_flags(crtc) & CRTC_VBLANK)); assert((*sna_crtc_flags(crtc) & CRTC_VBLANK) < CRTC_VBLANK); ++*sna_crtc_flags(crtc); } static inline void sna_crtc_clear_vblank(xf86CrtcPtr crtc) { DBG(("%s: current vblank count: %d\n", __FUNCTION__, *sna_crtc_flags(crtc) & CRTC_VBLANK)); assert(*sna_crtc_flags(crtc) & CRTC_VBLANK); --*sna_crtc_flags(crtc); } static inline bool sna_crtc_has_vblank(xf86CrtcPtr crtc) { return *sna_crtc_flags(crtc) & CRTC_VBLANK; } CARD32 sna_format_for_depth(int depth); CARD32 sna_render_format_for_depth(int depth); void sna_debug_flush(struct sna *sna); static inline bool get_window_deltas(PixmapPtr pixmap, int16_t *x, int16_t *y) { #ifdef COMPOSITE *x = -pixmap->screen_x; *y = -pixmap->screen_y; return pixmap->screen_x | pixmap->screen_y; #else *x = *y = 0; return false; #endif } static inline bool get_drawable_deltas(DrawablePtr drawable, PixmapPtr pixmap, int16_t *x, int16_t *y) { #ifdef COMPOSITE if (drawable->type == DRAWABLE_WINDOW) return get_window_deltas(pixmap, x, y); #endif *x = *y = 0; return false; } static inline int get_drawable_dx(DrawablePtr drawable) { #ifdef COMPOSITE if (drawable->type == DRAWABLE_WINDOW) return -get_drawable_pixmap(drawable)->screen_x; #endif return 0; } static inline int get_drawable_dy(DrawablePtr drawable) { #ifdef COMPOSITE if (drawable->type == DRAWABLE_WINDOW) return -get_drawable_pixmap(drawable)->screen_y; #endif return 0; } struct sna_pixmap *sna_pixmap_attach_to_bo(PixmapPtr pixmap, struct kgem_bo *bo); static inline bool sna_pixmap_is_scanout(struct sna *sna, PixmapPtr pixmap) { return (pixmap == sna->front && !sna->mode.shadow_active && (sna->flags & SNA_NO_WAIT) == 0); } static inline int sna_max_tile_copy_size(struct sna *sna, struct kgem_bo *src, struct kgem_bo *dst) { int min_object; int max_size; max_size = sna->kgem.aperture_high * PAGE_SIZE; max_size -= MAX(kgem_bo_size(src), kgem_bo_size(dst)); if (max_size <= 0) { DBG(("%s: tiles cannot fit into aperture\n", __FUNCTION__)); return 0; } if (max_size > sna->kgem.max_copy_tile_size) max_size = sna->kgem.max_copy_tile_size; min_object = MIN(kgem_bo_size(src), kgem_bo_size(dst)) / 2; if (max_size > min_object) max_size = min_object; if (max_size <= 4096) max_size = 0; DBG(("%s: using max tile size of %d\n", __FUNCTION__, max_size)); return max_size; } PixmapPtr sna_pixmap_create_upload(ScreenPtr screen, int width, int height, int depth, unsigned flags); PixmapPtr sna_pixmap_create_unattached(ScreenPtr screen, int width, int height, int depth); void sna_pixmap_destroy(PixmapPtr pixmap); #define assert_pixmap_map(pixmap, priv) do { \ assert(priv->mapped != MAPPED_NONE || pixmap->devPrivate.ptr == PTR(priv->ptr)); \ assert(priv->mapped != MAPPED_CPU || pixmap->devPrivate.ptr == MAP(priv->gpu_bo->map__cpu)); \ assert(priv->mapped != MAPPED_GTT || pixmap->devPrivate.ptr == priv->gpu_bo->map__gtt || pixmap->devPrivate.ptr == priv->gpu_bo->map__wc); \ } while (0) static inline void sna_pixmap_unmap(PixmapPtr pixmap, struct sna_pixmap *priv) { if (priv->mapped == MAPPED_NONE) { assert(pixmap->devPrivate.ptr == PTR(priv->ptr)); return; } DBG(("%s: pixmap=%ld dropping %s mapping\n", __FUNCTION__, pixmap->drawable.serialNumber, priv->mapped == MAPPED_CPU ? "cpu" : "gtt")); assert_pixmap_map(pixmap, priv); pixmap->devPrivate.ptr = PTR(priv->ptr); pixmap->devKind = priv->stride; priv->mapped = MAPPED_NONE; } bool sna_pixmap_undo_cow(struct sna *sna, struct sna_pixmap *priv, unsigned flags); #define MOVE_WRITE 0x1 #define MOVE_READ 0x2 #define MOVE_INPLACE_HINT 0x4 #define MOVE_ASYNC_HINT 0x8 #define MOVE_SOURCE_HINT 0x10 #define MOVE_WHOLE_HINT 0x20 #define __MOVE_FORCE 0x40 #define __MOVE_DRI 0x80 #define __MOVE_SCANOUT 0x100 #define __MOVE_TILED 0x200 #define __MOVE_PRIME 0x400 struct sna_pixmap * sna_pixmap_move_area_to_gpu(PixmapPtr pixmap, const BoxRec *box, unsigned int flags); struct sna_pixmap *sna_pixmap_move_to_gpu(PixmapPtr pixmap, unsigned flags); static inline struct sna_pixmap * sna_pixmap_force_to_gpu(PixmapPtr pixmap, unsigned flags) { /* Unlike move-to-gpu, we ignore wedged and always create the GPU bo */ DBG(("%s(pixmap=%ld, flags=%x)\n", __FUNCTION__, pixmap->drawable.serialNumber, flags)); return sna_pixmap_move_to_gpu(pixmap, flags | __MOVE_FORCE); } bool must_check _sna_pixmap_move_to_cpu(PixmapPtr pixmap, unsigned flags); static inline bool must_check sna_pixmap_move_to_cpu(PixmapPtr pixmap, unsigned flags) { if (flags == MOVE_READ) { struct sna_pixmap *priv = sna_pixmap(pixmap); if (priv == NULL) return true; } return _sna_pixmap_move_to_cpu(pixmap, flags); } bool must_check sna_drawable_move_region_to_cpu(DrawablePtr drawable, RegionPtr region, unsigned flags); bool must_check sna_drawable_move_to_cpu(DrawablePtr drawable, unsigned flags); static inline bool must_check sna_drawable_move_to_gpu(DrawablePtr drawable, unsigned flags) { return sna_pixmap_move_to_gpu(get_drawable_pixmap(drawable), flags) != NULL; } void sna_add_flush_pixmap(struct sna *sna, struct sna_pixmap *priv, struct kgem_bo *bo); struct kgem_bo *sna_pixmap_change_tiling(PixmapPtr pixmap, uint32_t tiling); #define PREFER_GPU 0x1 #define FORCE_GPU 0x2 #define RENDER_GPU 0x4 #define IGNORE_DAMAGE 0x8 #define REPLACES 0x10 struct kgem_bo * sna_drawable_use_bo(DrawablePtr drawable, unsigned flags, const BoxRec *box, struct sna_damage ***damage); inline static int16_t bound(int16_t a, uint16_t b) { int v = (int)a + (int)b; if (v > MAXSHORT) return MAXSHORT; return v; } inline static int16_t clamp(int16_t a, int16_t b) { int v = (int)a + (int)b; if (v > MAXSHORT) return MAXSHORT; if (v < MINSHORT) return MINSHORT; return v; } static inline bool box_empty(const BoxRec *box) { return box->x2 <= box->x1 || box->y2 <= box->y1; } static inline bool box_covers_pixmap(PixmapPtr pixmap, const BoxRec *box) { int w = box->x2 - box->x1; int h = box->y2 - box->y1; return pixmap->drawable.width <= w && pixmap->drawable.height <= h; } static inline bool box_inplace(PixmapPtr pixmap, const BoxRec *box) { struct sna *sna = to_sna_from_pixmap(pixmap); return ((int)(box->x2 - box->x1) * (int)(box->y2 - box->y1) * pixmap->drawable.bitsPerPixel >> 12) >= sna->kgem.half_cpu_cache_pages; } static inline bool whole_pixmap_inplace(PixmapPtr pixmap) { struct sna *sna = to_sna_from_pixmap(pixmap); return ((int)pixmap->drawable.width * (int)pixmap->drawable.height * pixmap->drawable.bitsPerPixel >> 12) >= sna->kgem.half_cpu_cache_pages; } static inline bool region_subsumes_drawable(RegionPtr region, DrawablePtr drawable) { const BoxRec *extents; if (region->data) return false; extents = RegionExtents(region); return extents->x1 <= 0 && extents->y1 <= 0 && extents->x2 >= drawable->width && extents->y2 >= drawable->height; } static inline bool region_subsumes_pixmap(const RegionRec *region, PixmapPtr pixmap) { if (region->data) return false; return (region->extents.x2 - region->extents.x1 >= pixmap->drawable.width && region->extents.y2 - region->extents.y1 >= pixmap->drawable.height); } static inline bool region_subsumes_damage(const RegionRec *region, struct sna_damage *damage) { const BoxRec *re, *de; DBG(("%s?\n", __FUNCTION__)); assert(damage); re = ®ion->extents; de = &DAMAGE_PTR(damage)->extents; DBG(("%s: region (%d, %d), (%d, %d), damage (%d, %d), (%d, %d)\n", __FUNCTION__, re->x1, re->y1, re->x2, re->y2, de->x1, de->y1, de->x2, de->y2)); if (re->x2 < de->x2 || re->x1 > de->x1 || re->y2 < de->y2 || re->y1 > de->y1) { DBG(("%s: not contained\n", __FUNCTION__)); return false; } if (region->data == NULL) { DBG(("%s: singular region contains damage\n", __FUNCTION__)); return true; } return pixman_region_contains_rectangle((RegionPtr)region, (BoxPtr)de) == PIXMAN_REGION_IN; } static inline bool sna_drawable_is_clear(DrawablePtr d) { struct sna_pixmap *priv = sna_pixmap(get_drawable_pixmap(d)); return priv && priv->clear && priv->clear_color == 0; } static inline struct kgem_bo *__sna_pixmap_get_bo(PixmapPtr pixmap) { return sna_pixmap(pixmap)->gpu_bo; } static inline struct kgem_bo *__sna_drawable_peek_bo(DrawablePtr d) { struct sna_pixmap *priv = sna_pixmap(get_drawable_pixmap(d)); return priv ? priv->gpu_bo : NULL; } static inline struct kgem_bo *sna_pixmap_pin(PixmapPtr pixmap, unsigned flags) { struct sna_pixmap *priv; priv = sna_pixmap_force_to_gpu(pixmap, MOVE_READ); if (!priv) return NULL; priv->pinned |= flags; return priv->gpu_bo; } static inline bool _sna_transform_point(const PictTransform *transform, int64_t x, int64_t y, int64_t result[3]) { int j; for (j = 0; j < 3; j++) result[j] = (transform->matrix[j][0] * x + transform->matrix[j][1] * y + transform->matrix[j][2]); return result[2] != 0; } static inline void _sna_get_transformed_coordinates(int x, int y, const PictTransform *transform, float *x_out, float *y_out) { int64_t result[3]; _sna_transform_point(transform, x, y, result); *x_out = result[0] / (double)result[2]; *y_out = result[1] / (double)result[2]; } static inline void _sna_get_transformed_scaled(int x, int y, const PictTransform *transform, const float *sf, float *x_out, float *y_out) { *x_out = sf[0] * (transform->matrix[0][0] * x + transform->matrix[0][1] * y + transform->matrix[0][2]); *y_out = sf[1] * (transform->matrix[1][0] * x + transform->matrix[1][1] * y + transform->matrix[1][2]); } void sna_get_transformed_coordinates(int x, int y, const PictTransform *transform, float *x_out, float *y_out); void sna_get_transformed_coordinates_3d(int x, int y, const PictTransform *transform, float *x_out, float *y_out, float *z_out); bool sna_transform_is_affine(const PictTransform *t); bool sna_transform_is_translation(const PictTransform *t, pixman_fixed_t *tx, pixman_fixed_t *ty); bool sna_transform_is_integer_translation(const PictTransform *t, int16_t *tx, int16_t *ty); bool sna_transform_is_imprecise_integer_translation(const PictTransform *t, int filter, bool precise, int16_t *tx, int16_t *ty); static inline bool sna_affine_transform_is_rotation(const PictTransform *t) { assert(sna_transform_is_affine(t)); return t->matrix[0][1] | t->matrix[1][0]; } static inline bool sna_transform_equal(const PictTransform *a, const PictTransform *b) { if (a == b) return true; if (a == NULL || b == NULL) return false; return memcmp(a, b, sizeof(*a)) == 0; } static inline bool sna_picture_alphamap_equal(PicturePtr a, PicturePtr b) { if (a->alphaMap != b->alphaMap) return false; if (a->alphaMap) return false; return (a->alphaOrigin.x == b->alphaOrigin.x && a->alphaOrigin.y == b->alphaOrigin.y); } static inline bool wedged(struct sna *sna) { return unlikely(sna->kgem.wedged); } static inline bool can_render(struct sna *sna) { return likely(!sna->kgem.wedged && sna->render.prefer_gpu & PREFER_GPU_RENDER); } static inline uint32_t pixmap_size(PixmapPtr pixmap) { return (pixmap->drawable.height - 1) * pixmap->devKind + pixmap->drawable.width * pixmap->drawable.bitsPerPixel/8; } bool sna_accel_init(ScreenPtr sreen, struct sna *sna); void sna_accel_create(struct sna *sna); void sna_accel_block(struct sna *sna, struct timeval **tv); void sna_accel_flush(struct sna *sna); void sna_accel_enter(struct sna *sna); void sna_accel_leave(struct sna *sna); void sna_accel_close(struct sna *sna); void sna_accel_free(struct sna *sna); void sna_watch_flush(struct sna *sna, int enable); void sna_copy_fbcon(struct sna *sna); bool sna_composite_create(struct sna *sna); void sna_composite_close(struct sna *sna); void sna_composite(CARD8 op, PicturePtr src, PicturePtr mask, PicturePtr dst, INT16 src_x, INT16 src_y, INT16 mask_x, INT16 mask_y, INT16 dst_x, INT16 dst_y, CARD16 width, CARD16 height); void sna_composite_fb(CARD8 op, PicturePtr src, PicturePtr mask, PicturePtr dst, RegionPtr region, INT16 src_x, INT16 src_y, INT16 mask_x, INT16 mask_y, INT16 dst_x, INT16 dst_y, CARD16 width, CARD16 height); void sna_composite_rectangles(CARD8 op, PicturePtr dst, xRenderColor *color, int num_rects, xRectangle *rects); void sna_composite_trapezoids(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr maskFormat, INT16 xSrc, INT16 ySrc, int ntrap, xTrapezoid *traps); void sna_add_traps(PicturePtr picture, INT16 x, INT16 y, int n, xTrap *t); void sna_composite_triangles(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr maskFormat, INT16 xSrc, INT16 ySrc, int ntri, xTriangle *tri); void sna_composite_tristrip(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr maskFormat, INT16 xSrc, INT16 ySrc, int npoints, xPointFixed *points); void sna_composite_trifan(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr maskFormat, INT16 xSrc, INT16 ySrc, int npoints, xPointFixed *points); bool sna_gradients_create(struct sna *sna); void sna_gradients_close(struct sna *sna); bool sna_glyphs_create(struct sna *sna); void sna_glyphs(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr mask, INT16 xSrc, INT16 ySrc, int nlist, GlyphListPtr list, GlyphPtr *glyphs); void sna_glyphs__shared(CARD8 op, PicturePtr src, PicturePtr dst, PictFormatPtr mask, INT16 src_x, INT16 src_y, int nlist, GlyphListPtr list, GlyphPtr *glyphs); void sna_glyph_unrealize(ScreenPtr screen, GlyphPtr glyph); void sna_glyphs_close(struct sna *sna); void sna_read_boxes(struct sna *sna, PixmapPtr dst, struct kgem_bo *src_bo, const BoxRec *box, int n); bool sna_write_boxes(struct sna *sna, PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const void *src, int stride, int16_t src_dx, int16_t src_dy, const BoxRec *box, int n); bool sna_write_boxes__xor(struct sna *sna, PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy, const void *src, int stride, int16_t src_dx, int16_t src_dy, const BoxRec *box, int nbox, uint32_t and, uint32_t or); bool sna_replace(struct sna *sna, PixmapPtr pixmap, const void *src, int stride); bool sna_replace__xor(struct sna *sna, PixmapPtr pixmap, const void *src, int stride, uint32_t and, uint32_t or); bool sna_compute_composite_extents(BoxPtr extents, PicturePtr src, PicturePtr mask, PicturePtr dst, INT16 src_x, INT16 src_y, INT16 mask_x, INT16 mask_y, INT16 dst_x, INT16 dst_y, CARD16 width, CARD16 height); bool sna_compute_composite_region(RegionPtr region, PicturePtr src, PicturePtr mask, PicturePtr dst, INT16 src_x, INT16 src_y, INT16 mask_x, INT16 mask_y, INT16 dst_x, INT16 dst_y, CARD16 width, CARD16 height); void memcpy_blt(const void *src, void *dst, int bpp, int32_t src_stride, int32_t dst_stride, int16_t src_x, int16_t src_y, int16_t dst_x, int16_t dst_y, uint16_t width, uint16_t height); void affine_blt(const void *src, void *dst, int bpp, int16_t src_x, int16_t src_y, int16_t src_width, int16_t src_height, int32_t src_stride, int16_t dst_x, int16_t dst_y, uint16_t dst_width, uint16_t dst_height, int32_t dst_stride, const struct pixman_f_transform *t); void memmove_box(const void *src, void *dst, int bpp, int32_t stride, const BoxRec *box, int dx, int dy); void memcpy_xor(const void *src, void *dst, int bpp, int32_t src_stride, int32_t dst_stride, int16_t src_x, int16_t src_y, int16_t dst_x, int16_t dst_y, uint16_t width, uint16_t height, uint32_t and, uint32_t or); #define SNA_CREATE_FB 0x10 #define SNA_CREATE_SCRATCH 0x11 inline static bool is_power_of_two(unsigned x) { return (x & (x-1)) == 0; } inline static bool is_clipped(const RegionRec *r, const DrawableRec *d) { DBG(("%s: region[%d]x(%d, %d),(%d, %d) against drawable %dx%d\n", __FUNCTION__, region_num_rects(r), r->extents.x1, r->extents.y1, r->extents.x2, r->extents.y2, d->width, d->height)); return (r->data || r->extents.x2 - r->extents.x1 != d->width || r->extents.y2 - r->extents.y1 != d->height); } inline static bool box_intersect(BoxPtr a, const BoxRec *b) { if (a->x1 < b->x1) a->x1 = b->x1; if (a->x2 > b->x2) a->x2 = b->x2; if (a->x1 >= a->x2) return false; if (a->y1 < b->y1) a->y1 = b->y1; if (a->y2 > b->y2) a->y2 = b->y2; if (a->y1 >= a->y2) return false; return true; } const BoxRec * __find_clip_box_for_y(const BoxRec *begin, const BoxRec *end, int16_t y); inline static const BoxRec * find_clip_box_for_y(const BoxRec *begin, const BoxRec *end, int16_t y) { /* Special case for incremental trapezoid clipping */ if (begin == end) return end; /* Quick test if scanline is within range of clip boxes */ if (begin->y2 > y) { assert(end == begin + 1 || __find_clip_box_for_y(begin, end, y) == begin); return begin; } if (y >= end[-1].y2) { assert(end == begin + 1 || __find_clip_box_for_y(begin, end, y) == end); return end; } /* Otherwise bisect to find the first box crossing y */ return __find_clip_box_for_y(begin, end, y); } unsigned sna_cpu_detect(void); char *sna_cpu_features_to_string(unsigned features, char *line); /* sna_acpi.c */ int sna_acpi_open(void); void sna_acpi_init(struct sna *sna); void _sna_acpi_wakeup(struct sna *sna); static inline void sna_acpi_wakeup(struct sna *sna, void *read_mask) { if (sna->acpi.fd >= 0 && FD_ISSET(sna->acpi.fd, (fd_set*)read_mask)) _sna_acpi_wakeup(sna); } void sna_acpi_fini(struct sna *sna); void sna_threads_init(void); int sna_use_threads (int width, int height, int threshold); void sna_threads_run(int id, void (*func)(void *arg), void *arg); void sna_threads_trap(int sig); void sna_threads_wait(void); void sna_threads_kill(void); void sna_image_composite(pixman_op_t op, pixman_image_t *src, pixman_image_t *mask, pixman_image_t *dst, int16_t src_x, int16_t src_y, int16_t mask_x, int16_t mask_y, int16_t dst_x, int16_t dst_y, uint16_t width, uint16_t height); extern jmp_buf sigjmp[4]; extern volatile sig_atomic_t sigtrap; #define sigtrap_assert_inactive() assert(sigtrap == 0) #define sigtrap_assert_active() assert(sigtrap > 0 && sigtrap <= ARRAY_SIZE(sigjmp)) #define sigtrap_get() sigsetjmp(sigjmp[sigtrap++], 1) static inline void sigtrap_put(void) { sigtrap_assert_active(); --sigtrap; } #define RR_Rotate_All (RR_Rotate_0 | RR_Rotate_90 | RR_Rotate_180 | RR_Rotate_270) #define RR_Reflect_All (RR_Reflect_X | RR_Reflect_Y) #ifndef HAVE_GETLINE #include extern int getline(char **line, size_t *len, FILE *file); #endif static inline void add_shm_flush(struct sna *sna, struct sna_pixmap *priv) { if (!priv->shm) return; DBG(("%s: marking handle=%d for SHM flush\n", __FUNCTION__, priv->cpu_bo->handle)); assert(!priv->flush); sna_add_flush_pixmap(sna, priv, priv->cpu_bo); sna->needs_shm_flush = true; } static inline uint32_t sna_br13_color_depth(int bpp) { uint32_t br13 = 0; switch (bpp) { default: assert(0); /* fall through */ case 32: br13 |= 1 << 25; /* RGB8888 */ /* fall through */ case 16: br13 |= 1 << 24; /* RGB565 */ /* fall through */ case 8: return br13; } } #endif /* _SNA_H */