/* * Copyright © 2007-2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "sna.h" #include "sna_reg.h" #include "kgem_debug.h" struct drm_i915_gem_relocation_entry * kgem_debug_get_reloc_entry(struct kgem *kgem, uint32_t offset) { int i; offset *= sizeof(uint32_t); for (i = 0; i < kgem->nreloc; i++) if (kgem->reloc[i].offset == offset) return kgem->reloc+i; assert(!"valid relocation entry, unknown batch offset"); return NULL; } struct kgem_bo * kgem_debug_get_bo_for_reloc_entry(struct kgem *kgem, struct drm_i915_gem_relocation_entry *reloc) { struct kgem_bo *bo; if (reloc == NULL) return NULL; list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->target_handle == reloc->target_handle && bo->proxy == NULL) break; assert(&bo->request != &kgem->next_request->buffers); return bo; } static int kgem_debug_handle_is_fenced(struct kgem *kgem, uint32_t handle) { int i; if (kgem->has_handle_lut) return kgem->exec[handle].flags & EXEC_OBJECT_NEEDS_FENCE; for (i = 0; i < kgem->nexec; i++) if (kgem->exec[i].handle == handle) return kgem->exec[i].flags & EXEC_OBJECT_NEEDS_FENCE; return 0; } static int kgem_debug_handle_tiling(struct kgem *kgem, uint32_t handle) { struct kgem_bo *bo; list_for_each_entry(bo, &kgem->next_request->buffers, request) if (bo->target_handle == handle) return bo->tiling; return 0; } void kgem_debug_print(const uint32_t *data, uint32_t offset, unsigned int index, const char *fmt, ...) { va_list va; char buf[240]; int len; len = snprintf(buf, sizeof(buf), "0x%08x: 0x%08x: %s", (offset + index) * 4, data[index], index == 0 ? "" : " "); va_start(va, fmt); vsnprintf(buf + len, sizeof(buf) - len, fmt, va); va_end(va); ErrorF("%s", buf); } static int decode_nop(struct kgem *kgem, uint32_t offset) { uint32_t *data = kgem->batch + offset; kgem_debug_print(data, offset, 0, "UNKNOWN\n"); assert(0); return 1; } static int decode_mi(struct kgem *kgem, uint32_t offset) { static const struct { uint32_t opcode; int len_mask; int min_len; int max_len; const char *name; } opcodes[] = { { 0x08, 0, 1, 1, "MI_ARB_ON_OFF" }, { 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" }, { 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" }, { 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" }, { 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" }, { 0x04, 0, 1, 1, "MI_FLUSH" }, { 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" }, { 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" }, { 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" }, { 0x00, 0, 1, 1, "MI_NOOP" }, { 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" }, { 0x07, 0, 1, 1, "MI_REPORT_HEAD" }, { 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT" }, { 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" }, { 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" }, { 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" }, { 0x02, 0, 1, 1, "MI_USER_INTERRUPT" }, { 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT" }, { 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" }, { 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" }, { 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH" }, }; uint32_t *data = kgem->batch + offset; int op; for (op = 0; op < ARRAY_SIZE(opcodes); op++) { if ((data[0] & 0x1f800000) >> 23 == opcodes[op].opcode) { unsigned int len = 1, i; kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name); if (opcodes[op].max_len > 1) { len = (data[0] & opcodes[op].len_mask) + 2; if (len < opcodes[op].min_len || len > opcodes[op].max_len) { ErrorF("Bad length (%d) in %s, [%d, %d]\n", len, opcodes[op].name, opcodes[op].min_len, opcodes[op].max_len); assert(0); } } for (i = 1; i < len; i++) kgem_debug_print(data, offset, i, "dword %d\n", i); return len; } } kgem_debug_print(data, offset, 0, "MI UNKNOWN\n"); assert(0); return 1; } static int __decode_2d(struct kgem *kgem, uint32_t offset) { static const struct { uint32_t opcode; int min_len; int max_len; const char *name; } opcodes[] = { { 0x40, 5, 5, "COLOR_BLT" }, { 0x43, 6, 6, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 6, 6, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" }, }; unsigned int op, len; const char *format = NULL; uint32_t *data = kgem->batch + offset; struct drm_i915_gem_relocation_entry *reloc; /* Special case the two most common ops that we detail in full */ switch ((data[0] & 0x1fc00000) >> 22) { case 0x50: kgem_debug_print(data, offset, 0, "XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; assert(len == 6); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } kgem_debug_print(data, offset, 1, "format %s, rop %x, pitch %d, " "clipping %sabled\n", format, (data[1] >> 16) & 0xff, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); kgem_debug_print(data, offset, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); kgem_debug_print(data, offset, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); reloc = kgem_debug_get_reloc_entry(kgem, offset+4); kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n", data[4], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); kgem_debug_print(data, offset, 5, "color\n"); assert(kgem->gen >= 040 || kgem_debug_handle_is_fenced(kgem, reloc->target_handle)); return len; case 0x53: kgem_debug_print(data, offset, 0, "XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, " "src tile %d, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 15) & 1, (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; assert(len == 8); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } kgem_debug_print(data, offset, 1, "format %s, rop %x, dst pitch %d, " "clipping %sabled\n", format, (data[1] >> 16) & 0xff, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); kgem_debug_print(data, offset, 2, "dst (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); kgem_debug_print(data, offset, 3, "dst (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); reloc = kgem_debug_get_reloc_entry(kgem, offset+4); assert(reloc); kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x, (fenced? %d, tiling? %d)]\n", data[4], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); assert(kgem->gen >= 040 || kgem_debug_handle_is_fenced(kgem, reloc->target_handle)); kgem_debug_print(data, offset, 5, "src (%d,%d)\n", data[5] & 0xffff, data[5] >> 16); kgem_debug_print(data, offset, 6, "src pitch %d\n", (short)(data[6] & 0xffff)); reloc = kgem_debug_get_reloc_entry(kgem, offset+7); assert(reloc); kgem_debug_print(data, offset, 7, "src offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n", data[7], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); assert(kgem->gen >= 040 || kgem_debug_handle_is_fenced(kgem, reloc->target_handle)); return len; } for (op = 0; op < ARRAY_SIZE(opcodes); op++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes[op].opcode) { unsigned int i; len = 1; kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name); if (opcodes[op].max_len > 1) { len = (data[0] & 0x000000ff) + 2; assert(len >= opcodes[op].min_len && len <= opcodes[op].max_len); } for (i = 1; i < len; i++) kgem_debug_print(data, offset, i, "dword %d\n", i); return len; } } kgem_debug_print(data, offset, 0, "2D UNKNOWN\n"); assert(0); return 1; } static int __decode_2d_gen8(struct kgem *kgem, uint32_t offset) { static const struct { uint32_t opcode; int min_len; int max_len; const char *name; } opcodes[] = { { 0x43, 8, 8, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 10, 10, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 7, 7, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" }, }; unsigned int op, len; const char *format = NULL; uint32_t *data = kgem->batch + offset; struct drm_i915_gem_relocation_entry *reloc; /* Special case the two most common ops that we detail in full */ switch ((data[0] & 0x1fc00000) >> 22) { case 0x50: kgem_debug_print(data, offset, 0, "XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; assert(len == 7); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } kgem_debug_print(data, offset, 1, "format %s, rop %x, pitch %d, " "clipping %sabled\n", format, (data[1] >> 16) & 0xff, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); kgem_debug_print(data, offset, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); kgem_debug_print(data, offset, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); reloc = kgem_debug_get_reloc_entry(kgem, offset+4); kgem_debug_print(data, offset, 4, "dst offset 0x%016llx [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n", (long long)*(uint64_t *)&data[4], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); kgem_debug_print(data, offset, 6, "color\n"); return len; case 0x53: kgem_debug_print(data, offset, 0, "XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, " "src tile %d, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 15) & 1, (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; assert(len == 10); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } kgem_debug_print(data, offset, 1, "format %s, rop %x, dst pitch %d, " "clipping %sabled\n", format, (data[1] >> 16) & 0xff, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); kgem_debug_print(data, offset, 2, "dst (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); kgem_debug_print(data, offset, 3, "dst (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); reloc = kgem_debug_get_reloc_entry(kgem, offset+4); assert(reloc); kgem_debug_print(data, offset, 4, "dst offset 0x%016llx [handle=%d, delta=%d, read=%x, write=%x, (fenced? %d, tiling? %d)]\n", (long long)*(uint64_t *)&data[4], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); kgem_debug_print(data, offset, 6, "src (%d,%d)\n", data[6] & 0xffff, data[6] >> 16); kgem_debug_print(data, offset, 7, "src pitch %d\n", (short)(data[7] & 0xffff)); reloc = kgem_debug_get_reloc_entry(kgem, offset+8); assert(reloc); kgem_debug_print(data, offset, 8, "src offset 0x%016llx [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n", (long long)*(uint64_t *)&data[8], reloc->target_handle, reloc->delta, reloc->read_domains, reloc->write_domain, kgem_debug_handle_is_fenced(kgem, reloc->target_handle), kgem_debug_handle_tiling(kgem, reloc->target_handle)); return len; } for (op = 0; op < ARRAY_SIZE(opcodes); op++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes[op].opcode) { unsigned int i; len = 1; kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name); if (opcodes[op].max_len > 1) { len = (data[0] & 0x000000ff) + 2; assert(len >= opcodes[op].min_len && len <= opcodes[op].max_len); } for (i = 1; i < len; i++) kgem_debug_print(data, offset, i, "dword %d\n", i); return len; } } kgem_debug_print(data, offset, 0, "2D UNKNOWN\n"); assert(0); return 1; } static int (*decode_2d(int gen))(struct kgem*, uint32_t) { if (gen >= 0100) return __decode_2d_gen8; else return __decode_2d; } static int kgem_nop_decode_3d(struct kgem *kgem, uint32_t offset) { uint32_t *data = kgem->batch + offset; return (data[0] & 0xf) + 2; } static void kgem_nop_finish_state(struct kgem *kgem) { } static int (*decode_3d(int gen))(struct kgem*, uint32_t) { if (gen >= 0100) { return kgem_nop_decode_3d; } else if (gen >= 070) { return kgem_gen7_decode_3d; } else if (gen >= 060) { return kgem_gen6_decode_3d; } else if (gen >= 050) { return kgem_gen5_decode_3d; } else if (gen >= 040) { return kgem_gen4_decode_3d; } else if (gen >= 030) { return kgem_gen3_decode_3d; } else if (gen >= 020) { return kgem_gen2_decode_3d; } assert(0); } static void (*finish_state(int gen))(struct kgem*) { if (gen >= 0100) { return kgem_nop_finish_state; } else if (gen >= 070) { return kgem_gen7_finish_state; } else if (gen >= 060) { return kgem_gen6_finish_state; } else if (gen >= 050) { return kgem_gen5_finish_state; } else if (gen >= 040) { return kgem_gen4_finish_state; } else if (gen >= 030) { return kgem_gen3_finish_state; } else if (gen >= 020) { return kgem_gen2_finish_state; } assert(0); } void __kgem_batch_debug(struct kgem *kgem, uint32_t nbatch) { int (*const decode[])(struct kgem *, uint32_t) = { decode_mi, decode_nop, decode_2d(kgem->gen), decode_3d(kgem->gen), }; uint32_t offset = 0; while (offset < nbatch) { int class = (kgem->batch[offset] & 0xe0000000) >> 29; assert(class < ARRAY_SIZE(decode)); offset += decode[class](kgem, offset); } finish_state(kgem->gen)(kgem); }