/***************************************************************************** * macroblock.c: macroblock encoding ***************************************************************************** * Copyright (C) 2003-2022 x264 project * * Authors: Laurent Aimar * Loren Merritt * Fiona Glaser * Henrik Gramner * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common/common.h" #include "macroblock.h" /* These chroma DC functions don't have assembly versions and are only used here. */ #define ZIG(i,y,x) level[i] = dct[x*2+y]; static inline void zigzag_scan_2x2_dc( dctcoef level[4], dctcoef dct[4] ) { ZIG(0,0,0) ZIG(1,0,1) ZIG(2,1,0) ZIG(3,1,1) } #undef ZIG static inline void zigzag_scan_2x4_dc( dctcoef level[8], dctcoef dct[8] ) { level[0] = dct[0]; level[1] = dct[2]; level[2] = dct[1]; level[3] = dct[4]; level[4] = dct[6]; level[5] = dct[3]; level[6] = dct[5]; level[7] = dct[7]; } #define IDCT_DEQUANT_2X2_START \ int d0 = dct[0] + dct[1]; \ int d1 = dct[2] + dct[3]; \ int d2 = dct[0] - dct[1]; \ int d3 = dct[2] - dct[3]; \ int dmf = dequant_mf[i_qp%6][0] << i_qp/6; static inline void idct_dequant_2x2_dc( dctcoef dct[4], dctcoef dct4x4[4][16], int dequant_mf[6][16], int i_qp ) { IDCT_DEQUANT_2X2_START dct4x4[0][0] = (d0 + d1) * dmf >> 5; dct4x4[1][0] = (d0 - d1) * dmf >> 5; dct4x4[2][0] = (d2 + d3) * dmf >> 5; dct4x4[3][0] = (d2 - d3) * dmf >> 5; } static inline void idct_dequant_2x2_dconly( dctcoef dct[4], int dequant_mf[6][16], int i_qp ) { IDCT_DEQUANT_2X2_START dct[0] = (d0 + d1) * dmf >> 5; dct[1] = (d0 - d1) * dmf >> 5; dct[2] = (d2 + d3) * dmf >> 5; dct[3] = (d2 - d3) * dmf >> 5; } #undef IDCT_2X2_DEQUANT_START static inline void dct2x2dc( dctcoef d[4], dctcoef dct4x4[4][16] ) { int d0 = dct4x4[0][0] + dct4x4[1][0]; int d1 = dct4x4[2][0] + dct4x4[3][0]; int d2 = dct4x4[0][0] - dct4x4[1][0]; int d3 = dct4x4[2][0] - dct4x4[3][0]; d[0] = d0 + d1; d[2] = d2 + d3; d[1] = d0 - d1; d[3] = d2 - d3; dct4x4[0][0] = 0; dct4x4[1][0] = 0; dct4x4[2][0] = 0; dct4x4[3][0] = 0; } static ALWAYS_INLINE int array_non_zero( dctcoef *v, int i_count ) { if( WORD_SIZE == 8 ) { for( int i = 0; i < i_count; i += 8/sizeof(dctcoef) ) if( M64( &v[i] ) ) return 1; } else { for( int i = 0; i < i_count; i += 4/sizeof(dctcoef) ) if( M32( &v[i] ) ) return 1; } return 0; } /* All encoding functions must output the correct CBP and NNZ values. * The entropy coding functions will check CBP first, then NNZ, before * actually reading the DCT coefficients. NNZ still must be correct even * if CBP is zero because of the use of NNZ values for context selection. * "NNZ" need only be 0 or 1 rather than the exact coefficient count because * that is only needed in CAVLC, and will be calculated by CAVLC's residual * coding and stored as necessary. */ /* This means that decimation can be done merely by adjusting the CBP and NNZ * rather than memsetting the coefficients. */ static void mb_encode_i16x16( x264_t *h, int p, int i_qp ) { pixel *p_src = h->mb.pic.p_fenc[p]; pixel *p_dst = h->mb.pic.p_fdec[p]; ALIGNED_ARRAY_64( dctcoef, dct4x4,[16],[16] ); ALIGNED_ARRAY_64( dctcoef, dct_dc4x4,[16] ); int nz, block_cbp = 0; int decimate_score = h->mb.b_dct_decimate ? 0 : 9; int i_quant_cat = p ? CQM_4IC : CQM_4IY; int i_mode = h->mb.i_intra16x16_pred_mode; if( h->mb.b_lossless ) x264_predict_lossless_16x16( h, p, i_mode ); else h->predict_16x16[i_mode]( h->mb.pic.p_fdec[p] ); if( h->mb.b_lossless ) { for( int i = 0; i < 16; i++ ) { int oe = block_idx_xy_fenc[i]; int od = block_idx_xy_fdec[i]; nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16*p+i], p_src+oe, p_dst+od, &dct_dc4x4[block_idx_yx_1d[i]] ); h->mb.cache.non_zero_count[x264_scan8[16*p+i]] = nz; block_cbp |= nz; } h->mb.i_cbp_luma |= block_cbp * 0xf; h->mb.cache.non_zero_count[x264_scan8[LUMA_DC+p]] = array_non_zero( dct_dc4x4, 16 ); h->zigzagf.scan_4x4( h->dct.luma16x16_dc[p], dct_dc4x4 ); return; } CLEAR_16x16_NNZ( p ); h->dctf.sub16x16_dct( dct4x4, p_src, p_dst ); if( h->mb.b_noise_reduction ) for( int idx = 0; idx < 16; idx++ ) h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0], h->nr_offset[0], 16 ); for( int idx = 0; idx < 16; idx++ ) { dct_dc4x4[block_idx_xy_1d[idx]] = dct4x4[idx][0]; dct4x4[idx][0] = 0; } if( h->mb.b_trellis ) { for( int idx = 0; idx < 16; idx++ ) if( x264_quant_4x4_trellis( h, dct4x4[idx], i_quant_cat, i_qp, ctx_cat_plane[DCT_LUMA_AC][p], 1, !!p, idx ) ) { block_cbp = 0xf; h->zigzagf.scan_4x4( h->dct.luma4x4[16*p+idx], dct4x4[idx] ); h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[i_quant_cat], i_qp ); if( decimate_score < 6 ) decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[16*p+idx] ); h->mb.cache.non_zero_count[x264_scan8[16*p+idx]] = 1; } } else { for( int i8x8 = 0; i8x8 < 4; i8x8++ ) { nz = h->quantf.quant_4x4x4( &dct4x4[i8x8*4], h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] ); if( nz ) { block_cbp = 0xf; FOREACH_BIT( idx, i8x8*4, nz ) { h->zigzagf.scan_4x4( h->dct.luma4x4[16*p+idx], dct4x4[idx] ); h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[i_quant_cat], i_qp ); if( decimate_score < 6 ) decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[16*p+idx] ); h->mb.cache.non_zero_count[x264_scan8[16*p+idx]] = 1; } } } } /* Writing the 16 CBFs in an i16x16 block is quite costly, so decimation can save many bits. */ /* More useful with CAVLC, but still useful with CABAC. */ if( decimate_score < 6 ) { CLEAR_16x16_NNZ( p ); block_cbp = 0; } else h->mb.i_cbp_luma |= block_cbp; h->dctf.dct4x4dc( dct_dc4x4 ); if( h->mb.b_trellis ) nz = x264_quant_luma_dc_trellis( h, dct_dc4x4, i_quant_cat, i_qp, ctx_cat_plane[DCT_LUMA_DC][p], 1, LUMA_DC+p ); else nz = h->quantf.quant_4x4_dc( dct_dc4x4, h->quant4_mf[i_quant_cat][i_qp][0]>>1, h->quant4_bias[i_quant_cat][i_qp][0]<<1 ); h->mb.cache.non_zero_count[x264_scan8[LUMA_DC+p]] = nz; if( nz ) { h->zigzagf.scan_4x4( h->dct.luma16x16_dc[p], dct_dc4x4 ); /* output samples to fdec */ h->dctf.idct4x4dc( dct_dc4x4 ); h->quantf.dequant_4x4_dc( dct_dc4x4, h->dequant4_mf[i_quant_cat], i_qp ); /* XXX not inversed */ if( block_cbp ) for( int i = 0; i < 16; i++ ) dct4x4[i][0] = dct_dc4x4[block_idx_xy_1d[i]]; } /* put pixels to fdec */ if( block_cbp ) h->dctf.add16x16_idct( p_dst, dct4x4 ); else if( nz ) h->dctf.add16x16_idct_dc( p_dst, dct_dc4x4 ); } /* Round down coefficients losslessly in DC-only chroma blocks. * Unlike luma blocks, this can't be done with a lookup table or * other shortcut technique because of the interdependencies * between the coefficients due to the chroma DC transform. */ static ALWAYS_INLINE int mb_optimize_chroma_dc( x264_t *h, dctcoef *dct_dc, int dequant_mf[6][16], int i_qp, int chroma422 ) { int dmf = dequant_mf[i_qp%6][0] << i_qp/6; /* If the QP is too high, there's no benefit to rounding optimization. */ if( dmf > 32*64 ) return 1; if( chroma422 ) return h->quantf.optimize_chroma_2x4_dc( dct_dc, dmf ); else return h->quantf.optimize_chroma_2x2_dc( dct_dc, dmf ); } static ALWAYS_INLINE void mb_encode_chroma_internal( x264_t *h, int b_inter, int i_qp, int chroma422 ) { int nz, nz_dc; int b_decimate = b_inter && h->mb.b_dct_decimate; int (*dequant_mf)[16] = h->dequant4_mf[CQM_4IC + b_inter]; ALIGNED_ARRAY_16( dctcoef, dct_dc,[8] ); h->mb.i_cbp_chroma = 0; h->nr_count[2] += h->mb.b_noise_reduction * 4; M16( &h->mb.cache.non_zero_count[x264_scan8[16]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[18]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[32]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[34]] ) = 0; if( chroma422 ) { M16( &h->mb.cache.non_zero_count[x264_scan8[24]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[26]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[40]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[42]] ) = 0; } /* Early termination: check variance of chroma residual before encoding. * Don't bother trying early termination at low QPs. * Values are experimentally derived. */ if( b_decimate && i_qp >= (h->mb.b_trellis ? 12 : 18) && !h->mb.b_noise_reduction ) { int thresh = chroma422 ? (x264_lambda2_tab[i_qp] + 16) >> 5 : (x264_lambda2_tab[i_qp] + 32) >> 6; ALIGNED_ARRAY_8( int, ssd,[2] ); int chromapix = chroma422 ? PIXEL_8x16 : PIXEL_8x8; if( h->pixf.var2[chromapix]( h->mb.pic.p_fenc[1], h->mb.pic.p_fdec[1], ssd ) < thresh*4 ) { h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+0]] = 0; h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+1]] = 0; for( int ch = 0; ch < 2; ch++ ) { if( ssd[ch] > thresh ) { pixel *p_src = h->mb.pic.p_fenc[1+ch]; pixel *p_dst = h->mb.pic.p_fdec[1+ch]; if( chroma422 ) /* Cannot be replaced by two calls to sub8x8_dct_dc since the hadamard transform is different */ h->dctf.sub8x16_dct_dc( dct_dc, p_src, p_dst ); else h->dctf.sub8x8_dct_dc( dct_dc, p_src, p_dst ); if( h->mb.b_trellis ) nz_dc = x264_quant_chroma_dc_trellis( h, dct_dc, i_qp+3*chroma422, !b_inter, CHROMA_DC+ch ); else { nz_dc = 0; for( int i = 0; i <= chroma422; i++ ) nz_dc |= h->quantf.quant_2x2_dc( &dct_dc[4*i], h->quant4_mf[CQM_4IC+b_inter][i_qp+3*chroma422][0] >> 1, h->quant4_bias[CQM_4IC+b_inter][i_qp+3*chroma422][0] << 1 ); } if( nz_dc ) { if( !mb_optimize_chroma_dc( h, dct_dc, dequant_mf, i_qp+3*chroma422, chroma422 ) ) continue; h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+ch]] = 1; if( chroma422 ) { zigzag_scan_2x4_dc( h->dct.chroma_dc[ch], dct_dc ); h->quantf.idct_dequant_2x4_dconly( dct_dc, dequant_mf, i_qp+3 ); } else { zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct_dc ); idct_dequant_2x2_dconly( dct_dc, dequant_mf, i_qp ); } for( int i = 0; i <= chroma422; i++ ) h->dctf.add8x8_idct_dc( p_dst + 8*i*FDEC_STRIDE, &dct_dc[4*i] ); h->mb.i_cbp_chroma = 1; } } } return; } } for( int ch = 0; ch < 2; ch++ ) { pixel *p_src = h->mb.pic.p_fenc[1+ch]; pixel *p_dst = h->mb.pic.p_fdec[1+ch]; int i_decimate_score = b_decimate ? 0 : 7; int nz_ac = 0; ALIGNED_ARRAY_64( dctcoef, dct4x4,[8],[16] ); if( h->mb.b_lossless ) { static const uint8_t chroma422_scan[8] = { 0, 2, 1, 5, 3, 6, 4, 7 }; for( int i = 0; i < (chroma422?8:4); i++ ) { int oe = 4*(i&1) + 4*(i>>1)*FENC_STRIDE; int od = 4*(i&1) + 4*(i>>1)*FDEC_STRIDE; nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i+(chroma422?i&4:0)+ch*16], p_src+oe, p_dst+od, &h->dct.chroma_dc[ch][chroma422?chroma422_scan[i]:i] ); h->mb.cache.non_zero_count[x264_scan8[16+i+(chroma422?i&4:0)+ch*16]] = nz; h->mb.i_cbp_chroma |= nz; } h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+ch]] = array_non_zero( h->dct.chroma_dc[ch], chroma422?8:4 ); continue; } for( int i = 0; i <= chroma422; i++ ) h->dctf.sub8x8_dct( &dct4x4[4*i], p_src + 8*i*FENC_STRIDE, p_dst + 8*i*FDEC_STRIDE ); if( h->mb.b_noise_reduction ) for( int i = 0; i < (chroma422?8:4); i++ ) h->quantf.denoise_dct( dct4x4[i], h->nr_residual_sum[2], h->nr_offset[2], 16 ); if( chroma422 ) h->dctf.dct2x4dc( dct_dc, dct4x4 ); else dct2x2dc( dct_dc, dct4x4 ); /* calculate dct coeffs */ for( int i8x8 = 0; i8x8 < (chroma422?2:1); i8x8++ ) { if( h->mb.b_trellis ) { for( int i4x4 = 0; i4x4 < 4; i4x4++ ) { if( x264_quant_4x4_trellis( h, dct4x4[i8x8*4+i4x4], CQM_4IC+b_inter, i_qp, DCT_CHROMA_AC, !b_inter, 1, 0 ) ) { int idx = 16+ch*16+i8x8*8+i4x4; h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4[i8x8*4+i4x4] ); h->quantf.dequant_4x4( dct4x4[i8x8*4+i4x4], dequant_mf, i_qp ); if( i_decimate_score < 7 ) i_decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[idx] ); h->mb.cache.non_zero_count[x264_scan8[idx]] = 1; nz_ac = 1; } } } else { nz = h->quantf.quant_4x4x4( &dct4x4[i8x8*4], h->quant4_mf[CQM_4IC+b_inter][i_qp], h->quant4_bias[CQM_4IC+b_inter][i_qp] ); nz_ac |= nz; FOREACH_BIT( i4x4, 0, nz ) { int idx = 16+ch*16+i8x8*8+i4x4; h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4[i8x8*4+i4x4] ); h->quantf.dequant_4x4( dct4x4[i8x8*4+i4x4], dequant_mf, i_qp ); if( i_decimate_score < 7 ) i_decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[idx] ); h->mb.cache.non_zero_count[x264_scan8[idx]] = 1; } } } if( h->mb.b_trellis ) nz_dc = x264_quant_chroma_dc_trellis( h, dct_dc, i_qp+3*chroma422, !b_inter, CHROMA_DC+ch ); else { nz_dc = 0; for( int i = 0; i <= chroma422; i++ ) nz_dc |= h->quantf.quant_2x2_dc( &dct_dc[4*i], h->quant4_mf[CQM_4IC+b_inter][i_qp+3*chroma422][0] >> 1, h->quant4_bias[CQM_4IC+b_inter][i_qp+3*chroma422][0] << 1 ); } h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+ch]] = nz_dc; if( i_decimate_score < 7 || !nz_ac ) { /* Decimate the block */ M16( &h->mb.cache.non_zero_count[x264_scan8[16+16*ch]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[18+16*ch]] ) = 0; if( chroma422 ) { M16( &h->mb.cache.non_zero_count[x264_scan8[24+16*ch]] ) = 0; M16( &h->mb.cache.non_zero_count[x264_scan8[26+16*ch]] ) = 0; } if( !nz_dc ) /* Whole block is empty */ continue; if( !mb_optimize_chroma_dc( h, dct_dc, dequant_mf, i_qp+3*chroma422, chroma422 ) ) { h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+ch]] = 0; continue; } /* DC-only */ if( chroma422 ) { zigzag_scan_2x4_dc( h->dct.chroma_dc[ch], dct_dc ); h->quantf.idct_dequant_2x4_dconly( dct_dc, dequant_mf, i_qp+3 ); } else { zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct_dc ); idct_dequant_2x2_dconly( dct_dc, dequant_mf, i_qp ); } for( int i = 0; i <= chroma422; i++ ) h->dctf.add8x8_idct_dc( p_dst + 8*i*FDEC_STRIDE, &dct_dc[4*i] ); } else { h->mb.i_cbp_chroma = 1; if( nz_dc ) { if( chroma422 ) { zigzag_scan_2x4_dc( h->dct.chroma_dc[ch], dct_dc ); h->quantf.idct_dequant_2x4_dc( dct_dc, dct4x4, dequant_mf, i_qp+3 ); } else { zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct_dc ); idct_dequant_2x2_dc( dct_dc, dct4x4, dequant_mf, i_qp ); } } for( int i = 0; i <= chroma422; i++ ) h->dctf.add8x8_idct( p_dst + 8*i*FDEC_STRIDE, &dct4x4[4*i] ); } } /* 0 = none, 1 = DC only, 2 = DC+AC */ h->mb.i_cbp_chroma += (h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+0]] | h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+1]] | h->mb.i_cbp_chroma); } void x264_mb_encode_chroma( x264_t *h, int b_inter, int i_qp ) { if( CHROMA_FORMAT == CHROMA_420 ) mb_encode_chroma_internal( h, b_inter, i_qp, 0 ); else mb_encode_chroma_internal( h, b_inter, i_qp, 1 ); } static void macroblock_encode_skip( x264_t *h ) { M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[16+ 0]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[16+ 2]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[32+ 0]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[32+ 2]] ) = 0; if( CHROMA_FORMAT >= CHROMA_422 ) { M32( &h->mb.cache.non_zero_count[x264_scan8[16+ 8]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[16+10]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[32+ 8]] ) = 0; M32( &h->mb.cache.non_zero_count[x264_scan8[32+10]] ) = 0; } h->mb.i_cbp_luma = 0; h->mb.i_cbp_chroma = 0; h->mb.cbp[h->mb.i_mb_xy] = 0; } /***************************************************************************** * Intra prediction for predictive lossless mode. *****************************************************************************/ void x264_predict_lossless_chroma( x264_t *h, int i_mode ) { int height = 16 >> CHROMA_V_SHIFT; if( i_mode == I_PRED_CHROMA_V ) { h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1]-FENC_STRIDE, FENC_STRIDE, height ); h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2]-FENC_STRIDE, FENC_STRIDE, height ); memcpy( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[1]-FDEC_STRIDE, 8*SIZEOF_PIXEL ); memcpy( h->mb.pic.p_fdec[2], h->mb.pic.p_fdec[2]-FDEC_STRIDE, 8*SIZEOF_PIXEL ); } else if( i_mode == I_PRED_CHROMA_H ) { h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1]-1, FENC_STRIDE, height ); h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2]-1, FENC_STRIDE, height ); x264_copy_column8( h->mb.pic.p_fdec[1]+4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+4*FDEC_STRIDE-1 ); x264_copy_column8( h->mb.pic.p_fdec[2]+4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+4*FDEC_STRIDE-1 ); if( CHROMA_FORMAT == CHROMA_422 ) { x264_copy_column8( h->mb.pic.p_fdec[1]+12*FDEC_STRIDE, h->mb.pic.p_fdec[1]+12*FDEC_STRIDE-1 ); x264_copy_column8( h->mb.pic.p_fdec[2]+12*FDEC_STRIDE, h->mb.pic.p_fdec[2]+12*FDEC_STRIDE-1 ); } } else { h->predict_chroma[i_mode]( h->mb.pic.p_fdec[1] ); h->predict_chroma[i_mode]( h->mb.pic.p_fdec[2] ); } } void x264_predict_lossless_4x4( x264_t *h, pixel *p_dst, int p, int idx, int i_mode ) { int stride = h->fenc->i_stride[p] << MB_INTERLACED; pixel *p_src = h->mb.pic.p_fenc_plane[p] + block_idx_x[idx]*4 + block_idx_y[idx]*4 * stride; if( i_mode == I_PRED_4x4_V ) { h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-stride, stride, 4 ); memcpy( p_dst, p_dst-FDEC_STRIDE, 4*SIZEOF_PIXEL ); } else if( i_mode == I_PRED_4x4_H ) { h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-1, stride, 4 ); for( int i = 0; i < 4; i++ ) p_dst[i*FDEC_STRIDE] = p_dst[i*FDEC_STRIDE-1]; } else h->predict_4x4[i_mode]( p_dst ); } void x264_predict_lossless_8x8( x264_t *h, pixel *p_dst, int p, int idx, int i_mode, pixel edge[36] ) { int stride = h->fenc->i_stride[p] << MB_INTERLACED; pixel *p_src = h->mb.pic.p_fenc_plane[p] + (idx&1)*8 + (idx>>1)*8*stride; if( i_mode == I_PRED_8x8_V ) { h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-stride, stride, 8 ); memcpy( p_dst, &edge[16], 8*SIZEOF_PIXEL ); } else if( i_mode == I_PRED_8x8_H ) { h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-1, stride, 8 ); for( int i = 0; i < 8; i++ ) p_dst[i*FDEC_STRIDE] = edge[14-i]; } else h->predict_8x8[i_mode]( p_dst, edge ); } void x264_predict_lossless_16x16( x264_t *h, int p, int i_mode ) { int stride = h->fenc->i_stride[p] << MB_INTERLACED; pixel *p_dst = h->mb.pic.p_fdec[p]; if( i_mode == I_PRED_16x16_V ) { h->mc.copy[PIXEL_16x16]( p_dst, FDEC_STRIDE, h->mb.pic.p_fenc_plane[p]-stride, stride, 16 ); memcpy( p_dst, p_dst-FDEC_STRIDE, 16*SIZEOF_PIXEL ); } else if( i_mode == I_PRED_16x16_H ) { h->mc.copy_16x16_unaligned( p_dst, FDEC_STRIDE, h->mb.pic.p_fenc_plane[p]-1, stride, 16 ); for( int i = 0; i < 16; i++ ) p_dst[i*FDEC_STRIDE] = p_dst[i*FDEC_STRIDE-1]; } else h->predict_16x16[i_mode]( p_dst ); } /***************************************************************************** * x264_macroblock_encode: *****************************************************************************/ static ALWAYS_INLINE void macroblock_encode_internal( x264_t *h, int plane_count, int chroma ) { int i_qp = h->mb.i_qp; int b_decimate = h->mb.b_dct_decimate; int b_force_no_skip = 0; int nz; h->mb.i_cbp_luma = 0; for( int p = 0; p < plane_count; p++ ) h->mb.cache.non_zero_count[x264_scan8[LUMA_DC+p]] = 0; if( h->mb.i_type == I_PCM ) { /* if PCM is chosen, we need to store reconstructed frame data */ for( int p = 0; p < plane_count; p++ ) h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[p], FDEC_STRIDE, h->mb.pic.p_fenc[p], FENC_STRIDE, 16 ); if( chroma ) { int height = 16 >> CHROMA_V_SHIFT; h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1], FENC_STRIDE, height ); h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2], FENC_STRIDE, height ); } return; } if( !h->mb.b_allow_skip ) { b_force_no_skip = 1; if( IS_SKIP(h->mb.i_type) ) { if( h->mb.i_type == P_SKIP ) h->mb.i_type = P_L0; else if( h->mb.i_type == B_SKIP ) h->mb.i_type = B_DIRECT; } } if( h->mb.i_type == P_SKIP ) { /* don't do pskip motion compensation if it was already done in macroblock_analyse */ if( !h->mb.b_skip_mc ) { int mvx = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][0], h->mb.mv_min[0], h->mb.mv_max[0] ); int mvy = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][1], h->mb.mv_min[1], h->mb.mv_max[1] ); for( int p = 0; p < plane_count; p++ ) h->mc.mc_luma( h->mb.pic.p_fdec[p], FDEC_STRIDE, &h->mb.pic.p_fref[0][0][p*4], h->mb.pic.i_stride[p], mvx, mvy, 16, 16, &h->sh.weight[0][p] ); if( chroma ) { int v_shift = CHROMA_V_SHIFT; int height = 16 >> v_shift; /* Special case for mv0, which is (of course) very common in P-skip mode. */ if( mvx | mvy ) h->mc.mc_chroma( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], mvx, 2*mvy>>v_shift, 8, height ); else h->mc.load_deinterleave_chroma_fdec( h->mb.pic.p_fdec[1], h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], height ); if( h->sh.weight[0][1].weightfn ) h->sh.weight[0][1].weightfn[8>>2]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fdec[1], FDEC_STRIDE, &h->sh.weight[0][1], height ); if( h->sh.weight[0][2].weightfn ) h->sh.weight[0][2].weightfn[8>>2]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fdec[2], FDEC_STRIDE, &h->sh.weight[0][2], height ); } } macroblock_encode_skip( h ); return; } if( h->mb.i_type == B_SKIP ) { /* don't do bskip motion compensation if it was already done in macroblock_analyse */ if( !h->mb.b_skip_mc ) x264_mb_mc( h ); macroblock_encode_skip( h ); return; } if( h->mb.i_type == I_16x16 ) { h->mb.b_transform_8x8 = 0; for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) mb_encode_i16x16( h, p, i_qp ); } else if( h->mb.i_type == I_8x8 ) { h->mb.b_transform_8x8 = 1; /* If we already encoded 3 of the 4 i8x8 blocks, we don't have to do them again. */ if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i8x8_fdec_buf, 16, 16 ); M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i8x8_nnz_buf[0]; M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i8x8_nnz_buf[1]; M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i8x8_nnz_buf[2]; M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i8x8_nnz_buf[3]; h->mb.i_cbp_luma = h->mb.pic.i8x8_cbp; /* In RD mode, restore the now-overwritten DCT data. */ if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->dct.luma8x8, h->mb.pic.i8x8_dct_buf, sizeof(h->mb.pic.i8x8_dct_buf) ); } for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { for( int i = (p == 0 && h->mb.i_skip_intra) ? 3 : 0; i < 4; i++ ) { int i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[4*i]]; x264_mb_encode_i8x8( h, p, i, i_qp, i_mode, NULL, 1 ); } } } else if( h->mb.i_type == I_4x4 ) { h->mb.b_transform_8x8 = 0; /* If we already encoded 15 of the 16 i4x4 blocks, we don't have to do them again. */ if( h->mb.i_skip_intra ) { h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i4x4_fdec_buf, 16, 16 ); M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i4x4_nnz_buf[0]; M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i4x4_nnz_buf[1]; M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i4x4_nnz_buf[2]; M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i4x4_nnz_buf[3]; h->mb.i_cbp_luma = h->mb.pic.i4x4_cbp; /* In RD mode, restore the now-overwritten DCT data. */ if( h->mb.i_skip_intra == 2 ) h->mc.memcpy_aligned( h->dct.luma4x4, h->mb.pic.i4x4_dct_buf, sizeof(h->mb.pic.i4x4_dct_buf) ); } for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { for( int i = (p == 0 && h->mb.i_skip_intra) ? 15 : 0; i < 16; i++ ) { pixel *p_dst = &h->mb.pic.p_fdec[p][block_idx_xy_fdec[i]]; int i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]; if( (h->mb.i_neighbour4[i] & (MB_TOPRIGHT|MB_TOP)) == MB_TOP ) /* emulate missing topright samples */ MPIXEL_X4( &p_dst[4-FDEC_STRIDE] ) = PIXEL_SPLAT_X4( p_dst[3-FDEC_STRIDE] ); x264_mb_encode_i4x4( h, p, i, i_qp, i_mode, 1 ); } } } else /* Inter MB */ { int i_decimate_mb = 0; /* Don't repeat motion compensation if it was already done in non-RD transform analysis */ if( !h->mb.b_skip_mc ) x264_mb_mc( h ); if( h->mb.b_lossless ) { if( h->mb.b_transform_8x8 ) for( int p = 0; p < plane_count; p++ ) for( int i8x8 = 0; i8x8 < 4; i8x8++ ) { int x = i8x8&1; int y = i8x8>>1; nz = h->zigzagf.sub_8x8( h->dct.luma8x8[p*4+i8x8], h->mb.pic.p_fenc[p] + 8*x + 8*y*FENC_STRIDE, h->mb.pic.p_fdec[p] + 8*x + 8*y*FDEC_STRIDE ); STORE_8x8_NNZ( p, i8x8, nz ); h->mb.i_cbp_luma |= nz << i8x8; } else for( int p = 0; p < plane_count; p++ ) for( int i4x4 = 0; i4x4 < 16; i4x4++ ) { nz = h->zigzagf.sub_4x4( h->dct.luma4x4[p*16+i4x4], h->mb.pic.p_fenc[p]+block_idx_xy_fenc[i4x4], h->mb.pic.p_fdec[p]+block_idx_xy_fdec[i4x4] ); h->mb.cache.non_zero_count[x264_scan8[p*16+i4x4]] = nz; h->mb.i_cbp_luma |= nz << (i4x4>>2); } } else if( h->mb.b_transform_8x8 ) { ALIGNED_ARRAY_64( dctcoef, dct8x8,[4],[64] ); b_decimate &= !h->mb.b_trellis || !h->param.b_cabac; // 8x8 trellis is inherently optimal decimation for CABAC for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_8PC : CQM_8PY; CLEAR_16x16_NNZ( p ); h->dctf.sub16x16_dct8( dct8x8, h->mb.pic.p_fenc[p], h->mb.pic.p_fdec[p] ); h->nr_count[1+!!p*2] += h->mb.b_noise_reduction * 4; int plane_cbp = 0; for( int idx = 0; idx < 4; idx++ ) { nz = x264_quant_8x8( h, dct8x8[idx], i_qp, ctx_cat_plane[DCT_LUMA_8x8][p], 0, p, idx ); if( nz ) { h->zigzagf.scan_8x8( h->dct.luma8x8[p*4+idx], dct8x8[idx] ); if( b_decimate ) { int i_decimate_8x8 = h->quantf.decimate_score64( h->dct.luma8x8[p*4+idx] ); i_decimate_mb += i_decimate_8x8; if( i_decimate_8x8 >= 4 ) plane_cbp |= 1<= 6 || !b_decimate ) { h->mb.i_cbp_luma |= plane_cbp; FOREACH_BIT( idx, 0, plane_cbp ) { h->quantf.dequant_8x8( dct8x8[idx], h->dequant8_mf[quant_cat], i_qp ); h->dctf.add8x8_idct8( &h->mb.pic.p_fdec[p][8*(idx&1) + 8*(idx>>1)*FDEC_STRIDE], dct8x8[idx] ); STORE_8x8_NNZ( p, idx, 1 ); } } } } else { ALIGNED_ARRAY_64( dctcoef, dct4x4,[16],[16] ); for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_4PC : CQM_4PY; CLEAR_16x16_NNZ( p ); h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[p], h->mb.pic.p_fdec[p] ); if( h->mb.b_noise_reduction ) { h->nr_count[0+!!p*2] += 16; for( int idx = 0; idx < 16; idx++ ) h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0+!!p*2], h->nr_offset[0+!!p*2], 16 ); } int plane_cbp = 0; for( int i8x8 = 0; i8x8 < 4; i8x8++ ) { int i_decimate_8x8 = b_decimate ? 0 : 6; int nnz8x8 = 0; if( h->mb.b_trellis ) { for( int i4x4 = 0; i4x4 < 4; i4x4++ ) { int idx = i8x8*4+i4x4; if( x264_quant_4x4_trellis( h, dct4x4[idx], quant_cat, i_qp, ctx_cat_plane[DCT_LUMA_4x4][p], 0, !!p, p*16+idx ) ) { h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+idx], dct4x4[idx] ); h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[quant_cat], i_qp ); if( i_decimate_8x8 < 6 ) i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[p*16+idx] ); h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = 1; nnz8x8 = 1; } } } else { nnz8x8 = nz = h->quantf.quant_4x4x4( &dct4x4[i8x8*4], h->quant4_mf[quant_cat][i_qp], h->quant4_bias[quant_cat][i_qp] ); if( nz ) { FOREACH_BIT( idx, i8x8*4, nz ) { h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+idx], dct4x4[idx] ); h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[quant_cat], i_qp ); if( i_decimate_8x8 < 6 ) i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[p*16+idx] ); h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = 1; } } } if( nnz8x8 ) { i_decimate_mb += i_decimate_8x8; if( i_decimate_8x8 < 4 ) STORE_8x8_NNZ( p, i8x8, 0 ); else plane_cbp |= 1<mb.i_cbp_luma |= plane_cbp; FOREACH_BIT( i8x8, 0, plane_cbp ) { h->dctf.add8x8_idct( &h->mb.pic.p_fdec[p][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] ); } } } } } /* encode chroma */ if( chroma ) { if( IS_INTRA( h->mb.i_type ) ) { int i_mode = h->mb.i_chroma_pred_mode; if( h->mb.b_lossless ) x264_predict_lossless_chroma( h, i_mode ); else { h->predict_chroma[i_mode]( h->mb.pic.p_fdec[1] ); h->predict_chroma[i_mode]( h->mb.pic.p_fdec[2] ); } } /* encode the 8x8 blocks */ x264_mb_encode_chroma( h, !IS_INTRA( h->mb.i_type ), h->mb.i_chroma_qp ); } else h->mb.i_cbp_chroma = 0; /* store cbp */ int cbp = h->mb.i_cbp_chroma << 4 | h->mb.i_cbp_luma; if( h->param.b_cabac ) cbp |= h->mb.cache.non_zero_count[x264_scan8[LUMA_DC ]] << 8 | h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+0]] << 9 | h->mb.cache.non_zero_count[x264_scan8[CHROMA_DC+1]] << 10; h->mb.cbp[h->mb.i_mb_xy] = cbp; /* Check for P_SKIP * XXX: in the me perhaps we should take x264_mb_predict_mv_pskip into account * (if multiple mv give same result)*/ if( !b_force_no_skip ) { if( h->mb.i_type == P_L0 && h->mb.i_partition == D_16x16 && !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) && M32( h->mb.cache.mv[0][x264_scan8[0]] ) == M32( h->mb.cache.pskip_mv ) && h->mb.cache.ref[0][x264_scan8[0]] == 0 ) { h->mb.i_type = P_SKIP; } /* Check for B_SKIP */ if( h->mb.i_type == B_DIRECT && !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) ) { h->mb.i_type = B_SKIP; } } } void x264_macroblock_encode( x264_t *h ) { if( CHROMA444 ) macroblock_encode_internal( h, 3, 0 ); else if( CHROMA_FORMAT ) macroblock_encode_internal( h, 1, 1 ); else macroblock_encode_internal( h, 1, 0 ); } /***************************************************************************** * x264_macroblock_probe_skip: * Check if the current MB could be encoded as a [PB]_SKIP *****************************************************************************/ static ALWAYS_INLINE int macroblock_probe_skip_internal( x264_t *h, int b_bidir, int plane_count, int chroma ) { ALIGNED_ARRAY_64( dctcoef, dct4x4,[8],[16] ); ALIGNED_ARRAY_64( dctcoef, dctscan,[16] ); ALIGNED_4( int16_t mvp[2] ); int i_qp = h->mb.i_qp; for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_4PC : CQM_4PY; if( !b_bidir ) { /* Get the MV */ mvp[0] = x264_clip3( h->mb.cache.pskip_mv[0], h->mb.mv_min[0], h->mb.mv_max[0] ); mvp[1] = x264_clip3( h->mb.cache.pskip_mv[1], h->mb.mv_min[1], h->mb.mv_max[1] ); /* Motion compensation */ h->mc.mc_luma( h->mb.pic.p_fdec[p], FDEC_STRIDE, &h->mb.pic.p_fref[0][0][p*4], h->mb.pic.i_stride[p], mvp[0], mvp[1], 16, 16, &h->sh.weight[0][p] ); } for( int i8x8 = 0, i_decimate_mb = 0; i8x8 < 4; i8x8++ ) { int fenc_offset = (i8x8&1) * 8 + (i8x8>>1) * FENC_STRIDE * 8; int fdec_offset = (i8x8&1) * 8 + (i8x8>>1) * FDEC_STRIDE * 8; h->dctf.sub8x8_dct( dct4x4, h->mb.pic.p_fenc[p] + fenc_offset, h->mb.pic.p_fdec[p] + fdec_offset ); if( h->mb.b_noise_reduction ) for( int i4x4 = 0; i4x4 < 4; i4x4++ ) h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[0+!!p*2], h->nr_offset[0+!!p*2], 16 ); int nz = h->quantf.quant_4x4x4( dct4x4, h->quant4_mf[quant_cat][i_qp], h->quant4_bias[quant_cat][i_qp] ); FOREACH_BIT( idx, 0, nz ) { h->zigzagf.scan_4x4( dctscan, dct4x4[idx] ); i_decimate_mb += h->quantf.decimate_score16( dctscan ); if( i_decimate_mb >= 6 ) return 0; } } } if( chroma == CHROMA_420 || chroma == CHROMA_422 ) { i_qp = h->mb.i_chroma_qp; int chroma422 = chroma == CHROMA_422; int thresh = chroma422 ? (x264_lambda2_tab[i_qp] + 16) >> 5 : (x264_lambda2_tab[i_qp] + 32) >> 6; int ssd; ALIGNED_ARRAY_16( dctcoef, dct_dc,[8] ); if( !b_bidir ) { /* Special case for mv0, which is (of course) very common in P-skip mode. */ if( M32( mvp ) ) h->mc.mc_chroma( h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], mvp[0], mvp[1] * (1<mc.load_deinterleave_chroma_fdec( h->mb.pic.p_fdec[1], h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], chroma422?16:8 ); } for( int ch = 0; ch < 2; ch++ ) { pixel *p_src = h->mb.pic.p_fenc[1+ch]; pixel *p_dst = h->mb.pic.p_fdec[1+ch]; if( !b_bidir && h->sh.weight[0][1+ch].weightfn ) h->sh.weight[0][1+ch].weightfn[8>>2]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE, h->mb.pic.p_fdec[1+ch], FDEC_STRIDE, &h->sh.weight[0][1+ch], chroma422?16:8 ); /* there is almost never a termination during chroma, but we can't avoid the check entirely */ /* so instead we check SSD and skip the actual check if the score is low enough. */ ssd = h->pixf.ssd[chroma422?PIXEL_8x16:PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src, FENC_STRIDE ); if( ssd < thresh ) continue; /* The vast majority of chroma checks will terminate during the DC check or the higher * threshold check, so we can save time by doing a DC-only DCT. */ if( h->mb.b_noise_reduction ) { for( int i = 0; i <= chroma422; i++ ) h->dctf.sub8x8_dct( &dct4x4[4*i], p_src + 8*i*FENC_STRIDE, p_dst + 8*i*FDEC_STRIDE ); for( int i4x4 = 0; i4x4 < (chroma422?8:4); i4x4++ ) { h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[2], h->nr_offset[2], 16 ); dct_dc[i4x4] = dct4x4[i4x4][0]; dct4x4[i4x4][0] = 0; } } else { if( chroma422 ) h->dctf.sub8x16_dct_dc( dct_dc, p_src, p_dst ); else h->dctf.sub8x8_dct_dc( dct_dc, p_src, p_dst ); } for( int i = 0; i <= chroma422; i++ ) if( h->quantf.quant_2x2_dc( &dct_dc[4*i], h->quant4_mf[CQM_4PC][i_qp+3*chroma422][0] >> 1, h->quant4_bias[CQM_4PC][i_qp+3*chroma422][0] << 1 ) ) return 0; /* If there wasn't a termination in DC, we can check against a much higher threshold. */ if( ssd < thresh*4 ) continue; if( !h->mb.b_noise_reduction ) for( int i = 0; i <= chroma422; i++ ) { h->dctf.sub8x8_dct( &dct4x4[4*i], p_src + 8*i*FENC_STRIDE, p_dst + 8*i*FDEC_STRIDE ); dct4x4[i*4+0][0] = 0; dct4x4[i*4+1][0] = 0; dct4x4[i*4+2][0] = 0; dct4x4[i*4+3][0] = 0; } /* calculate dct coeffs */ for( int i8x8 = 0, i_decimate_mb = 0; i8x8 < (chroma422?2:1); i8x8++ ) { int nz = h->quantf.quant_4x4x4( &dct4x4[i8x8*4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ); FOREACH_BIT( idx, i8x8*4, nz ) { h->zigzagf.scan_4x4( dctscan, dct4x4[idx] ); i_decimate_mb += h->quantf.decimate_score15( dctscan ); if( i_decimate_mb >= 7 ) return 0; } } } } h->mb.b_skip_mc = 1; return 1; } int x264_macroblock_probe_skip( x264_t *h, int b_bidir ) { if( CHROMA_FORMAT == CHROMA_420 ) return macroblock_probe_skip_internal( h, b_bidir, 1, CHROMA_420 ); else if( CHROMA_FORMAT == CHROMA_422 ) return macroblock_probe_skip_internal( h, b_bidir, 1, CHROMA_422 ); else if( CHROMA_FORMAT == CHROMA_444 ) return macroblock_probe_skip_internal( h, b_bidir, 3, CHROMA_444 ); else return macroblock_probe_skip_internal( h, b_bidir, 1, CHROMA_400 ); } /**************************************************************************** * DCT-domain noise reduction / adaptive deadzone * from libavcodec ****************************************************************************/ void x264_noise_reduction_update( x264_t *h ) { h->nr_offset = h->nr_offset_denoise; h->nr_residual_sum = h->nr_residual_sum_buf[0]; h->nr_count = h->nr_count_buf[0]; for( int cat = 0; cat < 3 + CHROMA444; cat++ ) { int dct8x8 = cat&1; int size = dct8x8 ? 64 : 16; const uint32_t *weight = dct8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab; if( h->nr_count[cat] > (dct8x8 ? (1<<16) : (1<<18)) ) { for( int i = 0; i < size; i++ ) h->nr_residual_sum[cat][i] >>= 1; h->nr_count[cat] >>= 1; } for( int i = 0; i < size; i++ ) h->nr_offset[cat][i] = ((uint64_t)h->param.analyse.i_noise_reduction * h->nr_count[cat] + h->nr_residual_sum[cat][i]/2) / ((uint64_t)h->nr_residual_sum[cat][i] * weight[i]/256 + 1); /* Don't denoise DC coefficients */ h->nr_offset[cat][0] = 0; } } /***************************************************************************** * RD only; 4 calls to this do not make up for one macroblock_encode. * doesn't transform chroma dc. *****************************************************************************/ static ALWAYS_INLINE void macroblock_encode_p8x8_internal( x264_t *h, int i8, int plane_count, int chroma ) { int b_decimate = h->mb.b_dct_decimate; int i_qp = h->mb.i_qp; int x = i8&1; int y = i8>>1; int nz; int chroma422 = chroma == CHROMA_422; h->mb.i_cbp_chroma = 0; h->mb.i_cbp_luma &= ~(1 << i8); if( !h->mb.b_skip_mc ) x264_mb_mc_8x8( h, i8 ); if( h->mb.b_lossless ) { for( int p = 0; p < plane_count; p++ ) { pixel *p_fenc = h->mb.pic.p_fenc[p] + 8*x + 8*y*FENC_STRIDE; pixel *p_fdec = h->mb.pic.p_fdec[p] + 8*x + 8*y*FDEC_STRIDE; int nnz8x8 = 0; if( h->mb.b_transform_8x8 ) { nnz8x8 = h->zigzagf.sub_8x8( h->dct.luma8x8[4*p+i8], p_fenc, p_fdec ); STORE_8x8_NNZ( p, i8, nnz8x8 ); } else { for( int i4 = i8*4; i4 < i8*4+4; i4++ ) { nz = h->zigzagf.sub_4x4( h->dct.luma4x4[16*p+i4], h->mb.pic.p_fenc[p]+block_idx_xy_fenc[i4], h->mb.pic.p_fdec[p]+block_idx_xy_fdec[i4] ); h->mb.cache.non_zero_count[x264_scan8[16*p+i4]] = nz; nnz8x8 |= nz; } } h->mb.i_cbp_luma |= nnz8x8 << i8; } if( chroma == CHROMA_420 || chroma == CHROMA_422 ) { for( int ch = 0; ch < 2; ch++ ) { dctcoef dc; pixel *p_fenc = h->mb.pic.p_fenc[1+ch] + 4*x + (chroma422?8:4)*y*FENC_STRIDE; pixel *p_fdec = h->mb.pic.p_fdec[1+ch] + 4*x + (chroma422?8:4)*y*FDEC_STRIDE; for( int i4x4 = 0; i4x4 <= chroma422; i4x4++ ) { int offset = chroma422 ? 8*y + 2*i4x4 + x : i8; nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+offset+ch*16], p_fenc+4*i4x4*FENC_STRIDE, p_fdec+4*i4x4*FDEC_STRIDE, &dc ); h->mb.cache.non_zero_count[x264_scan8[16+offset+ch*16]] = nz; } } h->mb.i_cbp_chroma = 0x02; } } else { if( h->mb.b_transform_8x8 ) { for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_8PC : CQM_8PY; pixel *p_fenc = h->mb.pic.p_fenc[p] + 8*x + 8*y*FENC_STRIDE; pixel *p_fdec = h->mb.pic.p_fdec[p] + 8*x + 8*y*FDEC_STRIDE; ALIGNED_ARRAY_64( dctcoef, dct8x8,[64] ); h->dctf.sub8x8_dct8( dct8x8, p_fenc, p_fdec ); int nnz8x8 = x264_quant_8x8( h, dct8x8, i_qp, ctx_cat_plane[DCT_LUMA_8x8][p], 0, p, i8 ); if( nnz8x8 ) { h->zigzagf.scan_8x8( h->dct.luma8x8[4*p+i8], dct8x8 ); if( b_decimate && !h->mb.b_trellis ) nnz8x8 = 4 <= h->quantf.decimate_score64( h->dct.luma8x8[4*p+i8] ); if( nnz8x8 ) { h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[quant_cat], i_qp ); h->dctf.add8x8_idct8( p_fdec, dct8x8 ); STORE_8x8_NNZ( p, i8, 1 ); h->mb.i_cbp_luma |= 1 << i8; } else STORE_8x8_NNZ( p, i8, 0 ); } else STORE_8x8_NNZ( p, i8, 0 ); } } else { for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_4PC : CQM_4PY; pixel *p_fenc = h->mb.pic.p_fenc[p] + 8*x + 8*y*FENC_STRIDE; pixel *p_fdec = h->mb.pic.p_fdec[p] + 8*x + 8*y*FDEC_STRIDE; int i_decimate_8x8 = b_decimate ? 0 : 4; ALIGNED_ARRAY_64( dctcoef, dct4x4,[4],[16] ); int nnz8x8 = 0; h->dctf.sub8x8_dct( dct4x4, p_fenc, p_fdec ); STORE_8x8_NNZ( p, i8, 0 ); if( h->mb.b_noise_reduction ) for( int idx = 0; idx < 4; idx++ ) h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0+!!p*2], h->nr_offset[0+!!p*2], 16 ); if( h->mb.b_trellis ) { for( int i4x4 = 0; i4x4 < 4; i4x4++ ) { if( x264_quant_4x4_trellis( h, dct4x4[i4x4], quant_cat, i_qp, ctx_cat_plane[DCT_LUMA_4x4][p], 0, !!p, i8*4+i4x4+p*16 ) ) { h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+i8*4+i4x4], dct4x4[i4x4] ); h->quantf.dequant_4x4( dct4x4[i4x4], h->dequant4_mf[quant_cat], i_qp ); if( i_decimate_8x8 < 4 ) i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[p*16+i8*4+i4x4] ); h->mb.cache.non_zero_count[x264_scan8[p*16+i8*4+i4x4]] = 1; nnz8x8 = 1; } } } else { nnz8x8 = nz = h->quantf.quant_4x4x4( dct4x4, h->quant4_mf[quant_cat][i_qp], h->quant4_bias[quant_cat][i_qp] ); if( nz ) { FOREACH_BIT( i4x4, 0, nz ) { h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+i8*4+i4x4], dct4x4[i4x4] ); h->quantf.dequant_4x4( dct4x4[i4x4], h->dequant4_mf[quant_cat], i_qp ); if( i_decimate_8x8 < 4 ) i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[p*16+i8*4+i4x4] ); h->mb.cache.non_zero_count[x264_scan8[p*16+i8*4+i4x4]] = 1; } } } if( nnz8x8 ) { /* decimate this 8x8 block */ if( i_decimate_8x8 < 4 ) STORE_8x8_NNZ( p, i8, 0 ); else { h->dctf.add8x8_idct( p_fdec, dct4x4 ); h->mb.i_cbp_luma |= 1 << i8; } } } } if( chroma == CHROMA_420 || chroma == CHROMA_422 ) { i_qp = h->mb.i_chroma_qp; for( int ch = 0; ch < 2; ch++ ) { ALIGNED_ARRAY_64( dctcoef, dct4x4,[2],[16] ); pixel *p_fenc = h->mb.pic.p_fenc[1+ch] + 4*x + (chroma422?8:4)*y*FENC_STRIDE; pixel *p_fdec = h->mb.pic.p_fdec[1+ch] + 4*x + (chroma422?8:4)*y*FDEC_STRIDE; for( int i4x4 = 0; i4x4 <= chroma422; i4x4++ ) { h->dctf.sub4x4_dct( dct4x4[i4x4], p_fenc + 4*i4x4*FENC_STRIDE, p_fdec + 4*i4x4*FDEC_STRIDE ); if( h->mb.b_noise_reduction ) h->quantf.denoise_dct( dct4x4[i4x4], h->nr_residual_sum[2], h->nr_offset[2], 16 ); dct4x4[i4x4][0] = 0; if( h->mb.b_trellis ) nz = x264_quant_4x4_trellis( h, dct4x4[i4x4], CQM_4PC, i_qp, DCT_CHROMA_AC, 0, 1, 0 ); else nz = h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ); int offset = chroma422 ? ((5*i8) & 0x09) + 2*i4x4 : i8; h->mb.cache.non_zero_count[x264_scan8[16+offset+ch*16]] = nz; if( nz ) { h->zigzagf.scan_4x4( h->dct.luma4x4[16+offset+ch*16], dct4x4[i4x4] ); h->quantf.dequant_4x4( dct4x4[i4x4], h->dequant4_mf[CQM_4PC], i_qp ); h->dctf.add4x4_idct( p_fdec + 4*i4x4*FDEC_STRIDE, dct4x4[i4x4] ); } } } h->mb.i_cbp_chroma = 0x02; } } } void x264_macroblock_encode_p8x8( x264_t *h, int i8 ) { if( CHROMA_FORMAT == CHROMA_420 ) macroblock_encode_p8x8_internal( h, i8, 1, CHROMA_420 ); else if( CHROMA_FORMAT == CHROMA_422 ) macroblock_encode_p8x8_internal( h, i8, 1, CHROMA_422 ); else if( CHROMA_FORMAT == CHROMA_444 ) macroblock_encode_p8x8_internal( h, i8, 3, CHROMA_444 ); else macroblock_encode_p8x8_internal( h, i8, 1, CHROMA_400 ); } /***************************************************************************** * RD only, luma only (for 4:2:0) *****************************************************************************/ static ALWAYS_INLINE void macroblock_encode_p4x4_internal( x264_t *h, int i4, int plane_count ) { int i_qp = h->mb.i_qp; for( int p = 0; p < plane_count; p++, i_qp = h->mb.i_chroma_qp ) { int quant_cat = p ? CQM_4PC : CQM_4PY; pixel *p_fenc = &h->mb.pic.p_fenc[p][block_idx_xy_fenc[i4]]; pixel *p_fdec = &h->mb.pic.p_fdec[p][block_idx_xy_fdec[i4]]; int nz; /* Don't need motion compensation as this function is only used in qpel-RD, which caches pixel data. */ if( h->mb.b_lossless ) { nz = h->zigzagf.sub_4x4( h->dct.luma4x4[p*16+i4], p_fenc, p_fdec ); h->mb.cache.non_zero_count[x264_scan8[p*16+i4]] = nz; } else { ALIGNED_ARRAY_64( dctcoef, dct4x4,[16] ); h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec ); nz = x264_quant_4x4( h, dct4x4, i_qp, ctx_cat_plane[DCT_LUMA_4x4][p], 0, p, i4 ); h->mb.cache.non_zero_count[x264_scan8[p*16+i4]] = nz; if( nz ) { h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+i4], dct4x4 ); h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[quant_cat], i_qp ); h->dctf.add4x4_idct( p_fdec, dct4x4 ); } } } } void x264_macroblock_encode_p4x4( x264_t *h, int i8 ) { if( CHROMA444 ) macroblock_encode_p4x4_internal( h, i8, 3 ); else macroblock_encode_p4x4_internal( h, i8, 1 ); }