/***************************************************************************** * cabac.c: cabac bitstream writing ***************************************************************************** * Copyright (C) 2003-2022 x264 project * * Authors: Laurent Aimar * Loren Merritt * Fiona Glaser * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common/common.h" #include "macroblock.h" #ifndef RDO_SKIP_BS #define RDO_SKIP_BS 0 #endif static inline void cabac_mb_type_intra( x264_t *h, x264_cabac_t *cb, int i_mb_type, int ctx0, int ctx1, int ctx2, int ctx3, int ctx4, int ctx5 ) { if( i_mb_type == I_4x4 || i_mb_type == I_8x8 ) { x264_cabac_encode_decision_noup( cb, ctx0, 0 ); } #if !RDO_SKIP_BS else if( i_mb_type == I_PCM ) { x264_cabac_encode_decision_noup( cb, ctx0, 1 ); x264_cabac_encode_flush( h, cb ); } #endif else { int i_pred = x264_mb_pred_mode16x16_fix[h->mb.i_intra16x16_pred_mode]; x264_cabac_encode_decision_noup( cb, ctx0, 1 ); x264_cabac_encode_terminal( cb ); x264_cabac_encode_decision_noup( cb, ctx1, !!h->mb.i_cbp_luma ); if( h->mb.i_cbp_chroma == 0 ) x264_cabac_encode_decision_noup( cb, ctx2, 0 ); else { x264_cabac_encode_decision( cb, ctx2, 1 ); x264_cabac_encode_decision_noup( cb, ctx3, h->mb.i_cbp_chroma>>1 ); } x264_cabac_encode_decision( cb, ctx4, i_pred>>1 ); x264_cabac_encode_decision_noup( cb, ctx5, i_pred&1 ); } } #if !RDO_SKIP_BS static void cabac_field_decoding_flag( x264_t *h, x264_cabac_t *cb ) { int ctx = 0; ctx += h->mb.field_decoding_flag & !!h->mb.i_mb_x; ctx += (h->mb.i_mb_top_mbpair_xy >= 0 && h->mb.slice_table[h->mb.i_mb_top_mbpair_xy] == h->sh.i_first_mb && h->mb.field[h->mb.i_mb_top_mbpair_xy]); x264_cabac_encode_decision_noup( cb, 70 + ctx, MB_INTERLACED ); h->mb.field_decoding_flag = MB_INTERLACED; } #endif static void cabac_intra4x4_pred_mode( x264_cabac_t *cb, int i_pred, int i_mode ) { if( i_pred == i_mode ) x264_cabac_encode_decision( cb, 68, 1 ); else { x264_cabac_encode_decision( cb, 68, 0 ); if( i_mode > i_pred ) i_mode--; x264_cabac_encode_decision( cb, 69, (i_mode )&0x01 ); x264_cabac_encode_decision( cb, 69, (i_mode >> 1)&0x01 ); x264_cabac_encode_decision( cb, 69, (i_mode >> 2) ); } } static void cabac_intra_chroma_pred_mode( x264_t *h, x264_cabac_t *cb ) { int i_mode = x264_mb_chroma_pred_mode_fix[h->mb.i_chroma_pred_mode]; int ctx = 0; /* No need to test for I4x4 or I_16x16 as cache_save handle that */ if( (h->mb.i_neighbour & MB_LEFT) && h->mb.chroma_pred_mode[h->mb.i_mb_left_xy[0]] != 0 ) ctx++; if( (h->mb.i_neighbour & MB_TOP) && h->mb.chroma_pred_mode[h->mb.i_mb_top_xy] != 0 ) ctx++; x264_cabac_encode_decision_noup( cb, 64 + ctx, i_mode > 0 ); if( i_mode > 0 ) { x264_cabac_encode_decision( cb, 64 + 3, i_mode > 1 ); if( i_mode > 1 ) x264_cabac_encode_decision_noup( cb, 64 + 3, i_mode > 2 ); } } static void cabac_cbp_luma( x264_t *h, x264_cabac_t *cb ) { int cbp = h->mb.i_cbp_luma; int cbp_l = h->mb.cache.i_cbp_left; int cbp_t = h->mb.cache.i_cbp_top; x264_cabac_encode_decision ( cb, 76 - ((cbp_l >> 1) & 1) - ((cbp_t >> 1) & 2), (cbp >> 0) & 1 ); x264_cabac_encode_decision ( cb, 76 - ((cbp >> 0) & 1) - ((cbp_t >> 2) & 2), (cbp >> 1) & 1 ); x264_cabac_encode_decision ( cb, 76 - ((cbp_l >> 3) & 1) - ((cbp << 1) & 2), (cbp >> 2) & 1 ); x264_cabac_encode_decision_noup( cb, 76 - ((cbp >> 2) & 1) - ((cbp >> 0) & 2), (cbp >> 3) & 1 ); } static void cabac_cbp_chroma( x264_t *h, x264_cabac_t *cb ) { int cbp_a = h->mb.cache.i_cbp_left & 0x30; int cbp_b = h->mb.cache.i_cbp_top & 0x30; int ctx = 0; if( cbp_a && h->mb.cache.i_cbp_left != -1 ) ctx++; if( cbp_b && h->mb.cache.i_cbp_top != -1 ) ctx+=2; if( h->mb.i_cbp_chroma == 0 ) x264_cabac_encode_decision_noup( cb, 77 + ctx, 0 ); else { x264_cabac_encode_decision_noup( cb, 77 + ctx, 1 ); ctx = 4; if( cbp_a == 0x20 ) ctx++; if( cbp_b == 0x20 ) ctx += 2; x264_cabac_encode_decision_noup( cb, 77 + ctx, h->mb.i_cbp_chroma >> 1 ); } } static void cabac_qp_delta( x264_t *h, x264_cabac_t *cb ) { int i_dqp = h->mb.i_qp - h->mb.i_last_qp; int ctx; /* Avoid writing a delta quant if we have an empty i16x16 block, e.g. in a completely * flat background area. Don't do this if it would raise the quantizer, since that could * cause unexpected deblocking artifacts. */ if( h->mb.i_type == I_16x16 && !h->mb.cbp[h->mb.i_mb_xy] && h->mb.i_qp > h->mb.i_last_qp ) { #if !RDO_SKIP_BS h->mb.i_qp = h->mb.i_last_qp; #endif i_dqp = 0; } ctx = h->mb.i_last_dqp && (h->mb.type[h->mb.i_mb_prev_xy] == I_16x16 || (h->mb.cbp[h->mb.i_mb_prev_xy]&0x3f)); if( i_dqp != 0 ) { /* Faster than (i_dqp <= 0 ? (-2*i_dqp) : (2*i_dqp-1)). * If you so much as sneeze on these lines, gcc will compile this suboptimally. */ i_dqp *= 2; int val = 1 - i_dqp; if( val < 0 ) val = i_dqp; val--; /* dqp is interpreted modulo (QP_MAX_SPEC+1) */ if( val >= QP_MAX_SPEC && val != QP_MAX_SPEC+1 ) val = 2*QP_MAX_SPEC+1 - val; do { x264_cabac_encode_decision( cb, 60 + ctx, 1 ); ctx = 2+(ctx>>1); } while( --val ); } x264_cabac_encode_decision_noup( cb, 60 + ctx, 0 ); } #if !RDO_SKIP_BS void x264_cabac_mb_skip( x264_t *h, int b_skip ) { int ctx = h->mb.cache.i_neighbour_skip + 11; if( h->sh.i_type != SLICE_TYPE_P ) ctx += 13; x264_cabac_encode_decision( &h->cabac, ctx, b_skip ); } #endif static inline void cabac_subpartition_p( x264_cabac_t *cb, int i_sub ) { if( i_sub == D_L0_8x8 ) { x264_cabac_encode_decision( cb, 21, 1 ); return; } x264_cabac_encode_decision( cb, 21, 0 ); if( i_sub == D_L0_8x4 ) x264_cabac_encode_decision( cb, 22, 0 ); else { x264_cabac_encode_decision( cb, 22, 1 ); x264_cabac_encode_decision( cb, 23, i_sub == D_L0_4x8 ); } } static ALWAYS_INLINE void cabac_subpartition_b( x264_cabac_t *cb, int i_sub ) { if( i_sub == D_DIRECT_8x8 ) { x264_cabac_encode_decision( cb, 36, 0 ); return; } x264_cabac_encode_decision( cb, 36, 1 ); if( i_sub == D_BI_8x8 ) { x264_cabac_encode_decision( cb, 37, 1 ); x264_cabac_encode_decision( cb, 38, 0 ); x264_cabac_encode_decision( cb, 39, 0 ); x264_cabac_encode_decision( cb, 39, 0 ); return; } x264_cabac_encode_decision( cb, 37, 0 ); x264_cabac_encode_decision( cb, 39, i_sub == D_L1_8x8 ); } static ALWAYS_INLINE void cabac_transform_size( x264_t *h, x264_cabac_t *cb ) { int ctx = 399 + h->mb.cache.i_neighbour_transform_size; x264_cabac_encode_decision_noup( cb, ctx, h->mb.b_transform_8x8 ); } static ALWAYS_INLINE void cabac_ref_internal( x264_t *h, x264_cabac_t *cb, int i_list, int idx, int bframe ) { const int i8 = x264_scan8[idx]; const int i_refa = h->mb.cache.ref[i_list][i8 - 1]; const int i_refb = h->mb.cache.ref[i_list][i8 - 8]; int ctx = 0; if( i_refa > 0 && (!bframe || !h->mb.cache.skip[i8 - 1]) ) ctx++; if( i_refb > 0 && (!bframe || !h->mb.cache.skip[i8 - 8]) ) ctx += 2; for( int i_ref = h->mb.cache.ref[i_list][i8]; i_ref > 0; i_ref-- ) { x264_cabac_encode_decision( cb, 54 + ctx, 1 ); ctx = (ctx>>2)+4; } x264_cabac_encode_decision( cb, 54 + ctx, 0 ); } static NOINLINE void cabac_ref_p( x264_t *h, x264_cabac_t *cb, int idx ) { cabac_ref_internal( h, cb, 0, idx, 0 ); } static NOINLINE void cabac_ref_b( x264_t *h, x264_cabac_t *cb, int i_list, int idx ) { cabac_ref_internal( h, cb, i_list, idx, 1 ); } static ALWAYS_INLINE int cabac_mvd_cpn( x264_t *h, x264_cabac_t *cb, int i_list, int idx, int l, int mvd, int ctx ) { int ctxbase = l ? 47 : 40; if( mvd == 0 ) { x264_cabac_encode_decision( cb, ctxbase + ctx, 0 ); return 0; } int i_abs = abs( mvd ); x264_cabac_encode_decision( cb, ctxbase + ctx, 1 ); #if RDO_SKIP_BS if( i_abs <= 3 ) { for( int i = 1; i < i_abs; i++ ) x264_cabac_encode_decision( cb, ctxbase + i + 2, 1 ); x264_cabac_encode_decision( cb, ctxbase + i_abs + 2, 0 ); x264_cabac_encode_bypass( cb, mvd >> 31 ); } else { x264_cabac_encode_decision( cb, ctxbase + 3, 1 ); x264_cabac_encode_decision( cb, ctxbase + 4, 1 ); x264_cabac_encode_decision( cb, ctxbase + 5, 1 ); if( i_abs < 9 ) { cb->f8_bits_encoded += x264_cabac_size_unary[i_abs - 3][cb->state[ctxbase+6]]; cb->state[ctxbase+6] = x264_cabac_transition_unary[i_abs - 3][cb->state[ctxbase+6]]; } else { cb->f8_bits_encoded += cabac_size_5ones[cb->state[ctxbase+6]]; cb->state[ctxbase+6] = cabac_transition_5ones[cb->state[ctxbase+6]]; x264_cabac_encode_ue_bypass( cb, 3, i_abs - 9 ); } } #else static const uint8_t ctxes[8] = { 3,4,5,6,6,6,6,6 }; if( i_abs < 9 ) { for( int i = 1; i < i_abs; i++ ) x264_cabac_encode_decision( cb, ctxbase + ctxes[i-1], 1 ); x264_cabac_encode_decision( cb, ctxbase + ctxes[i_abs-1], 0 ); } else { for( int i = 1; i < 9; i++ ) x264_cabac_encode_decision( cb, ctxbase + ctxes[i-1], 1 ); x264_cabac_encode_ue_bypass( cb, 3, i_abs - 9 ); } x264_cabac_encode_bypass( cb, mvd >> 31 ); #endif /* Since we don't need to keep track of MVDs larger than 66, just cap the value. * This lets us store MVDs as 8-bit values instead of 16-bit. */ return X264_MIN( i_abs, 66 ); } static NOINLINE uint16_t cabac_mvd( x264_t *h, x264_cabac_t *cb, int i_list, int idx, int width ) { ALIGNED_4( int16_t mvp[2] ); int mdx, mdy; /* Calculate mvd */ x264_mb_predict_mv( h, i_list, idx, width, mvp ); mdx = h->mb.cache.mv[i_list][x264_scan8[idx]][0] - mvp[0]; mdy = h->mb.cache.mv[i_list][x264_scan8[idx]][1] - mvp[1]; uint16_t amvd = x264_cabac_mvd_sum(h->mb.cache.mvd[i_list][x264_scan8[idx] - 1], h->mb.cache.mvd[i_list][x264_scan8[idx] - 8]); /* encode */ mdx = cabac_mvd_cpn( h, cb, i_list, idx, 0, mdx, amvd&0xFF ); mdy = cabac_mvd_cpn( h, cb, i_list, idx, 1, mdy, amvd>>8 ); return pack8to16(mdx,mdy); } #define cabac_mvd(h,cb,i_list,idx,width,height)\ do\ {\ uint16_t mvd = cabac_mvd(h,cb,i_list,idx,width);\ x264_macroblock_cache_mvd( h, block_idx_x[idx], block_idx_y[idx], width, height, i_list, mvd );\ } while( 0 ) static inline void cabac_8x8_mvd( x264_t *h, x264_cabac_t *cb, int i ) { switch( h->mb.i_sub_partition[i] ) { case D_L0_8x8: cabac_mvd( h, cb, 0, 4*i, 2, 2 ); break; case D_L0_8x4: cabac_mvd( h, cb, 0, 4*i+0, 2, 1 ); cabac_mvd( h, cb, 0, 4*i+2, 2, 1 ); break; case D_L0_4x8: cabac_mvd( h, cb, 0, 4*i+0, 1, 2 ); cabac_mvd( h, cb, 0, 4*i+1, 1, 2 ); break; case D_L0_4x4: cabac_mvd( h, cb, 0, 4*i+0, 1, 1 ); cabac_mvd( h, cb, 0, 4*i+1, 1, 1 ); cabac_mvd( h, cb, 0, 4*i+2, 1, 1 ); cabac_mvd( h, cb, 0, 4*i+3, 1, 1 ); break; default: assert(0); } } static ALWAYS_INLINE void cabac_mb_header_i( x264_t *h, x264_cabac_t *cb, int i_mb_type, int slice_type, int chroma ) { if( slice_type == SLICE_TYPE_I ) { int ctx = 0; if( (h->mb.i_neighbour & MB_LEFT) && h->mb.i_mb_type_left[0] != I_4x4 ) ctx++; if( (h->mb.i_neighbour & MB_TOP) && h->mb.i_mb_type_top != I_4x4 ) ctx++; cabac_mb_type_intra( h, cb, i_mb_type, 3+ctx, 3+3, 3+4, 3+5, 3+6, 3+7 ); } else if( slice_type == SLICE_TYPE_P ) { /* prefix */ x264_cabac_encode_decision_noup( cb, 14, 1 ); /* suffix */ cabac_mb_type_intra( h, cb, i_mb_type, 17+0, 17+1, 17+2, 17+2, 17+3, 17+3 ); } else if( slice_type == SLICE_TYPE_B ) { /* prefix */ x264_cabac_encode_decision_noup( cb, 27+3, 1 ); x264_cabac_encode_decision_noup( cb, 27+4, 1 ); x264_cabac_encode_decision( cb, 27+5, 1 ); x264_cabac_encode_decision( cb, 27+5, 0 ); x264_cabac_encode_decision( cb, 27+5, 1 ); /* suffix */ cabac_mb_type_intra( h, cb, i_mb_type, 32+0, 32+1, 32+2, 32+2, 32+3, 32+3 ); } if( i_mb_type == I_PCM ) return; if( i_mb_type != I_16x16 ) { if( h->pps->b_transform_8x8_mode ) cabac_transform_size( h, cb ); int di = h->mb.b_transform_8x8 ? 4 : 1; for( int i = 0; i < 16; i += di ) { const int i_pred = x264_mb_predict_intra4x4_mode( h, i ); const int i_mode = x264_mb_pred_mode4x4_fix( h->mb.cache.intra4x4_pred_mode[x264_scan8[i]] ); cabac_intra4x4_pred_mode( cb, i_pred, i_mode ); } } if( chroma ) cabac_intra_chroma_pred_mode( h, cb ); } static ALWAYS_INLINE void cabac_mb_header_p( x264_t *h, x264_cabac_t *cb, int i_mb_type, int chroma ) { if( i_mb_type == P_L0 ) { x264_cabac_encode_decision_noup( cb, 14, 0 ); if( h->mb.i_partition == D_16x16 ) { x264_cabac_encode_decision_noup( cb, 15, 0 ); x264_cabac_encode_decision_noup( cb, 16, 0 ); if( h->mb.pic.i_fref[0] > 1 ) cabac_ref_p( h, cb, 0 ); cabac_mvd( h, cb, 0, 0, 4, 4 ); } else if( h->mb.i_partition == D_16x8 ) { x264_cabac_encode_decision_noup( cb, 15, 1 ); x264_cabac_encode_decision_noup( cb, 17, 1 ); if( h->mb.pic.i_fref[0] > 1 ) { cabac_ref_p( h, cb, 0 ); cabac_ref_p( h, cb, 8 ); } cabac_mvd( h, cb, 0, 0, 4, 2 ); cabac_mvd( h, cb, 0, 8, 4, 2 ); } else //if( h->mb.i_partition == D_8x16 ) { x264_cabac_encode_decision_noup( cb, 15, 1 ); x264_cabac_encode_decision_noup( cb, 17, 0 ); if( h->mb.pic.i_fref[0] > 1 ) { cabac_ref_p( h, cb, 0 ); cabac_ref_p( h, cb, 4 ); } cabac_mvd( h, cb, 0, 0, 2, 4 ); cabac_mvd( h, cb, 0, 4, 2, 4 ); } } else if( i_mb_type == P_8x8 ) { x264_cabac_encode_decision_noup( cb, 14, 0 ); x264_cabac_encode_decision_noup( cb, 15, 0 ); x264_cabac_encode_decision_noup( cb, 16, 1 ); /* sub mb type */ for( int i = 0; i < 4; i++ ) cabac_subpartition_p( cb, h->mb.i_sub_partition[i] ); /* ref 0 */ if( h->mb.pic.i_fref[0] > 1 ) { cabac_ref_p( h, cb, 0 ); cabac_ref_p( h, cb, 4 ); cabac_ref_p( h, cb, 8 ); cabac_ref_p( h, cb, 12 ); } for( int i = 0; i < 4; i++ ) cabac_8x8_mvd( h, cb, i ); } else /* intra */ cabac_mb_header_i( h, cb, i_mb_type, SLICE_TYPE_P, chroma ); } static ALWAYS_INLINE void cabac_mb_header_b( x264_t *h, x264_cabac_t *cb, int i_mb_type, int chroma ) { int ctx = 0; if( (h->mb.i_neighbour & MB_LEFT) && h->mb.i_mb_type_left[0] != B_SKIP && h->mb.i_mb_type_left[0] != B_DIRECT ) ctx++; if( (h->mb.i_neighbour & MB_TOP) && h->mb.i_mb_type_top != B_SKIP && h->mb.i_mb_type_top != B_DIRECT ) ctx++; if( i_mb_type == B_DIRECT ) { x264_cabac_encode_decision_noup( cb, 27+ctx, 0 ); return; } x264_cabac_encode_decision_noup( cb, 27+ctx, 1 ); if( i_mb_type == B_8x8 ) { x264_cabac_encode_decision_noup( cb, 27+3, 1 ); x264_cabac_encode_decision_noup( cb, 27+4, 1 ); x264_cabac_encode_decision( cb, 27+5, 1 ); x264_cabac_encode_decision( cb, 27+5, 1 ); x264_cabac_encode_decision_noup( cb, 27+5, 1 ); /* sub mb type */ for( int i = 0; i < 4; i++ ) cabac_subpartition_b( cb, h->mb.i_sub_partition[i] ); /* ref */ if( h->mb.pic.i_fref[0] > 1 ) for( int i = 0; i < 4; i++ ) if( x264_mb_partition_listX_table[0][ h->mb.i_sub_partition[i] ] ) cabac_ref_b( h, cb, 0, 4*i ); if( h->mb.pic.i_fref[1] > 1 ) for( int i = 0; i < 4; i++ ) if( x264_mb_partition_listX_table[1][ h->mb.i_sub_partition[i] ] ) cabac_ref_b( h, cb, 1, 4*i ); for( int i = 0; i < 4; i++ ) if( x264_mb_partition_listX_table[0][ h->mb.i_sub_partition[i] ] ) cabac_mvd( h, cb, 0, 4*i, 2, 2 ); for( int i = 0; i < 4; i++ ) if( x264_mb_partition_listX_table[1][ h->mb.i_sub_partition[i] ] ) cabac_mvd( h, cb, 1, 4*i, 2, 2 ); } else if( i_mb_type >= B_L0_L0 && i_mb_type <= B_BI_BI ) { /* All B modes */ static const uint8_t i_mb_bits[9*3] = { 0x31, 0x29, 0x4, /* L0 L0 */ 0x35, 0x2d, 0, /* L0 L1 */ 0x43, 0x63, 0, /* L0 BI */ 0x3d, 0x2f, 0, /* L1 L0 */ 0x39, 0x25, 0x6, /* L1 L1 */ 0x53, 0x73, 0, /* L1 BI */ 0x4b, 0x6b, 0, /* BI L0 */ 0x5b, 0x7b, 0, /* BI L1 */ 0x47, 0x67, 0x21 /* BI BI */ }; const int idx = (i_mb_type - B_L0_L0) * 3 + (h->mb.i_partition - D_16x8); int bits = i_mb_bits[idx]; x264_cabac_encode_decision_noup( cb, 27+3, bits&1 ); x264_cabac_encode_decision( cb, 27+5-(bits&1), (bits>>1)&1 ); bits >>= 2; if( bits != 1 ) { x264_cabac_encode_decision( cb, 27+5, bits&1 ); bits >>= 1; x264_cabac_encode_decision( cb, 27+5, bits&1 ); bits >>= 1; x264_cabac_encode_decision( cb, 27+5, bits&1 ); bits >>= 1; if( bits != 1 ) x264_cabac_encode_decision_noup( cb, 27+5, bits&1 ); } const uint8_t (*b_list)[2] = x264_mb_type_list_table[i_mb_type]; if( h->mb.pic.i_fref[0] > 1 ) { if( b_list[0][0] ) cabac_ref_b( h, cb, 0, 0 ); if( b_list[0][1] && h->mb.i_partition != D_16x16 ) cabac_ref_b( h, cb, 0, 8 >> (h->mb.i_partition == D_8x16) ); } if( h->mb.pic.i_fref[1] > 1 ) { if( b_list[1][0] ) cabac_ref_b( h, cb, 1, 0 ); if( b_list[1][1] && h->mb.i_partition != D_16x16 ) cabac_ref_b( h, cb, 1, 8 >> (h->mb.i_partition == D_8x16) ); } for( int i_list = 0; i_list < 2; i_list++ ) { if( h->mb.i_partition == D_16x16 ) { if( b_list[i_list][0] ) cabac_mvd( h, cb, i_list, 0, 4, 4 ); } else if( h->mb.i_partition == D_16x8 ) { if( b_list[i_list][0] ) cabac_mvd( h, cb, i_list, 0, 4, 2 ); if( b_list[i_list][1] ) cabac_mvd( h, cb, i_list, 8, 4, 2 ); } else //if( h->mb.i_partition == D_8x16 ) { if( b_list[i_list][0] ) cabac_mvd( h, cb, i_list, 0, 2, 4 ); if( b_list[i_list][1] ) cabac_mvd( h, cb, i_list, 4, 2, 4 ); } } } else /* intra */ cabac_mb_header_i( h, cb, i_mb_type, SLICE_TYPE_B, chroma ); } static ALWAYS_INLINE int cabac_cbf_ctxidxinc( x264_t *h, int i_cat, int i_idx, int b_intra, int b_dc ) { static const uint16_t base_ctx[14] = {85,89,93,97,101,1012,460,464,468,1016,472,476,480,1020}; if( b_dc ) { i_idx -= LUMA_DC; if( i_cat == DCT_CHROMA_DC ) { int i_nza = h->mb.cache.i_cbp_left != -1 ? (h->mb.cache.i_cbp_left >> (8 + i_idx)) & 1 : b_intra; int i_nzb = h->mb.cache.i_cbp_top != -1 ? (h->mb.cache.i_cbp_top >> (8 + i_idx)) & 1 : b_intra; return base_ctx[i_cat] + 2*i_nzb + i_nza; } else { int i_nza = (h->mb.cache.i_cbp_left >> (8 + i_idx)) & 1; int i_nzb = (h->mb.cache.i_cbp_top >> (8 + i_idx)) & 1; return base_ctx[i_cat] + 2*i_nzb + i_nza; } } else { int i_nza = h->mb.cache.non_zero_count[x264_scan8[i_idx] - 1]; int i_nzb = h->mb.cache.non_zero_count[x264_scan8[i_idx] - 8]; if( x264_constant_p(b_intra) && !b_intra ) return base_ctx[i_cat] + ((2*i_nzb + i_nza)&0x7f); else { i_nza &= 0x7f + (b_intra << 7); i_nzb &= 0x7f + (b_intra << 7); return base_ctx[i_cat] + 2*!!i_nzb + !!i_nza; } } } // node ctx: 0..3: abslevel1 (with abslevelgt1 == 0). // 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter). /* map node ctx => cabac ctx for level=1 */ static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 }; /* map node ctx => cabac ctx for level>1 */ static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 }; /* 4:2:2 chroma dc uses a slightly different state machine for some reason, also note that * 4:2:0 chroma dc doesn't use the last state so it has identical output with both arrays. */ static const uint8_t coeff_abs_levelgt1_ctx_chroma_dc[8] = { 5, 5, 5, 5, 6, 7, 8, 8 }; static const uint8_t coeff_abs_level_transition[2][8] = { /* update node ctx after coding a level=1 */ { 1, 2, 3, 3, 4, 5, 6, 7 }, /* update node ctx after coding a level>1 */ { 4, 4, 4, 4, 5, 6, 7, 7 } }; #if !RDO_SKIP_BS static ALWAYS_INLINE void cabac_block_residual_internal( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l, int chroma422dc ) { int ctx_sig = x264_significant_coeff_flag_offset[MB_INTERLACED][ctx_block_cat]; int ctx_last = x264_last_coeff_flag_offset[MB_INTERLACED][ctx_block_cat]; int ctx_level = x264_coeff_abs_level_m1_offset[ctx_block_cat]; int coeff_idx = -1, node_ctx = 0; int last = h->quantf.coeff_last[ctx_block_cat]( l ); const uint8_t *levelgt1_ctx = chroma422dc ? coeff_abs_levelgt1_ctx_chroma_dc : coeff_abs_levelgt1_ctx; dctcoef coeffs[64]; #define WRITE_SIGMAP( sig_off, last_off )\ {\ int i = 0;\ while( 1 )\ {\ if( l[i] )\ {\ coeffs[++coeff_idx] = l[i];\ x264_cabac_encode_decision( cb, ctx_sig + sig_off, 1 );\ if( i == last )\ {\ x264_cabac_encode_decision( cb, ctx_last + last_off, 1 );\ break;\ }\ else\ x264_cabac_encode_decision( cb, ctx_last + last_off, 0 );\ }\ else\ x264_cabac_encode_decision( cb, ctx_sig + sig_off, 0 );\ if( ++i == count_m1 )\ {\ coeffs[++coeff_idx] = l[i];\ break;\ }\ }\ } if( chroma422dc ) { int count_m1 = 7; WRITE_SIGMAP( x264_coeff_flag_offset_chroma_422_dc[i], x264_coeff_flag_offset_chroma_422_dc[i] ) } else { int count_m1 = x264_count_cat_m1[ctx_block_cat]; if( count_m1 == 63 ) { const uint8_t *sig_offset = x264_significant_coeff_flag_offset_8x8[MB_INTERLACED]; WRITE_SIGMAP( sig_offset[i], x264_last_coeff_flag_offset_8x8[i] ) } else WRITE_SIGMAP( i, i ) } do { /* write coeff_abs - 1 */ int coeff = coeffs[coeff_idx]; int abs_coeff = abs(coeff); int coeff_sign = coeff >> 31; int ctx = coeff_abs_level1_ctx[node_ctx] + ctx_level; if( abs_coeff > 1 ) { x264_cabac_encode_decision( cb, ctx, 1 ); ctx = levelgt1_ctx[node_ctx] + ctx_level; for( int i = X264_MIN( abs_coeff, 15 ) - 2; i > 0; i-- ) x264_cabac_encode_decision( cb, ctx, 1 ); if( abs_coeff < 15 ) x264_cabac_encode_decision( cb, ctx, 0 ); else x264_cabac_encode_ue_bypass( cb, 0, abs_coeff - 15 ); node_ctx = coeff_abs_level_transition[1][node_ctx]; } else { x264_cabac_encode_decision( cb, ctx, 0 ); node_ctx = coeff_abs_level_transition[0][node_ctx]; } x264_cabac_encode_bypass( cb, coeff_sign ); } while( --coeff_idx >= 0 ); } void x264_cabac_block_residual_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { cabac_block_residual_internal( h, cb, ctx_block_cat, l, 0 ); } static ALWAYS_INLINE void cabac_block_residual( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { #if ARCH_X86_64 && HAVE_MMX h->bsf.cabac_block_residual_internal( l, MB_INTERLACED, ctx_block_cat, cb ); #else x264_cabac_block_residual_c( h, cb, ctx_block_cat, l ); #endif } static void cabac_block_residual_422_dc( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { /* Template a version specifically for chroma 4:2:2 DC in order to avoid * slowing down everything else due to the added complexity. */ cabac_block_residual_internal( h, cb, DCT_CHROMA_DC, l, 1 ); } #define cabac_block_residual_8x8( h, cb, cat, l ) cabac_block_residual( h, cb, cat, l ) #else /* Faster RDO by merging sigmap and level coding. Note that for 8x8dct and chroma 4:2:2 dc this is * slightly incorrect because the sigmap is not reversible (contexts are repeated). However, there * is nearly no quality penalty for this (~0.001db) and the speed boost (~30%) is worth it. */ static ALWAYS_INLINE void cabac_block_residual_internal( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l, int b_8x8, int chroma422dc ) { const uint8_t *sig_offset = x264_significant_coeff_flag_offset_8x8[MB_INTERLACED]; int ctx_sig = x264_significant_coeff_flag_offset[MB_INTERLACED][ctx_block_cat]; int ctx_last = x264_last_coeff_flag_offset[MB_INTERLACED][ctx_block_cat]; int ctx_level = x264_coeff_abs_level_m1_offset[ctx_block_cat]; int last = h->quantf.coeff_last[ctx_block_cat]( l ); int coeff_abs = abs(l[last]); int ctx = coeff_abs_level1_ctx[0] + ctx_level; int node_ctx; const uint8_t *levelgt1_ctx = chroma422dc ? coeff_abs_levelgt1_ctx_chroma_dc : coeff_abs_levelgt1_ctx; if( last != (b_8x8 ? 63 : chroma422dc ? 7 : x264_count_cat_m1[ctx_block_cat]) ) { x264_cabac_encode_decision( cb, ctx_sig + (b_8x8 ? sig_offset[last] : chroma422dc ? x264_coeff_flag_offset_chroma_422_dc[last] : last), 1 ); x264_cabac_encode_decision( cb, ctx_last + (b_8x8 ? x264_last_coeff_flag_offset_8x8[last] : chroma422dc ? x264_coeff_flag_offset_chroma_422_dc[last] : last), 1 ); } if( coeff_abs > 1 ) { x264_cabac_encode_decision( cb, ctx, 1 ); ctx = levelgt1_ctx[0] + ctx_level; if( coeff_abs < 15 ) { cb->f8_bits_encoded += x264_cabac_size_unary[coeff_abs-1][cb->state[ctx]]; cb->state[ctx] = x264_cabac_transition_unary[coeff_abs-1][cb->state[ctx]]; } else { cb->f8_bits_encoded += x264_cabac_size_unary[14][cb->state[ctx]]; cb->state[ctx] = x264_cabac_transition_unary[14][cb->state[ctx]]; x264_cabac_encode_ue_bypass( cb, 0, coeff_abs - 15 ); } node_ctx = coeff_abs_level_transition[1][0]; } else { x264_cabac_encode_decision( cb, ctx, 0 ); node_ctx = coeff_abs_level_transition[0][0]; x264_cabac_encode_bypass( cb, 0 ); // sign } for( int i = last-1; i >= 0; i-- ) { if( l[i] ) { coeff_abs = abs(l[i]); x264_cabac_encode_decision( cb, ctx_sig + (b_8x8 ? sig_offset[i] : chroma422dc ? x264_coeff_flag_offset_chroma_422_dc[i] : i), 1 ); x264_cabac_encode_decision( cb, ctx_last + (b_8x8 ? x264_last_coeff_flag_offset_8x8[i] : chroma422dc ? x264_coeff_flag_offset_chroma_422_dc[i] : i), 0 ); ctx = coeff_abs_level1_ctx[node_ctx] + ctx_level; if( coeff_abs > 1 ) { x264_cabac_encode_decision( cb, ctx, 1 ); ctx = levelgt1_ctx[node_ctx] + ctx_level; if( coeff_abs < 15 ) { cb->f8_bits_encoded += x264_cabac_size_unary[coeff_abs-1][cb->state[ctx]]; cb->state[ctx] = x264_cabac_transition_unary[coeff_abs-1][cb->state[ctx]]; } else { cb->f8_bits_encoded += x264_cabac_size_unary[14][cb->state[ctx]]; cb->state[ctx] = x264_cabac_transition_unary[14][cb->state[ctx]]; x264_cabac_encode_ue_bypass( cb, 0, coeff_abs - 15 ); } node_ctx = coeff_abs_level_transition[1][node_ctx]; } else { x264_cabac_encode_decision( cb, ctx, 0 ); node_ctx = coeff_abs_level_transition[0][node_ctx]; x264_cabac_encode_bypass( cb, 0 ); } } else x264_cabac_encode_decision( cb, ctx_sig + (b_8x8 ? sig_offset[i] : chroma422dc ? x264_coeff_flag_offset_chroma_422_dc[i] : i), 0 ); } } void x264_cabac_block_residual_8x8_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { cabac_block_residual_internal( h, cb, ctx_block_cat, l, 1, 0 ); } void x264_cabac_block_residual_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { cabac_block_residual_internal( h, cb, ctx_block_cat, l, 0, 0 ); } static ALWAYS_INLINE void cabac_block_residual_8x8( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { #if ARCH_X86_64 && HAVE_MMX h->bsf.cabac_block_residual_8x8_rd_internal( l, MB_INTERLACED, ctx_block_cat, cb ); #else x264_cabac_block_residual_8x8_rd_c( h, cb, ctx_block_cat, l ); #endif } static ALWAYS_INLINE void cabac_block_residual( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { #if ARCH_X86_64 && HAVE_MMX h->bsf.cabac_block_residual_rd_internal( l, MB_INTERLACED, ctx_block_cat, cb ); #else x264_cabac_block_residual_rd_c( h, cb, ctx_block_cat, l ); #endif } static void cabac_block_residual_422_dc( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l ) { cabac_block_residual_internal( h, cb, DCT_CHROMA_DC, l, 0, 1 ); } #endif #define cabac_block_residual_cbf_internal( h, cb, ctx_block_cat, i_idx, l, b_intra, b_dc, name )\ do\ {\ int ctxidxinc = cabac_cbf_ctxidxinc( h, ctx_block_cat, i_idx, b_intra, b_dc );\ if( h->mb.cache.non_zero_count[x264_scan8[i_idx]] )\ {\ x264_cabac_encode_decision( cb, ctxidxinc, 1 );\ cabac_block_residual##name( h, cb, ctx_block_cat, l );\ }\ else\ x264_cabac_encode_decision( cb, ctxidxinc, 0 );\ } while( 0 ) #define cabac_block_residual_dc_cbf( h, cb, ctx_block_cat, i_idx, l, b_intra )\ cabac_block_residual_cbf_internal( h, cb, ctx_block_cat, i_idx, l, b_intra, 1, ) #define cabac_block_residual_cbf( h, cb, ctx_block_cat, i_idx, l, b_intra )\ cabac_block_residual_cbf_internal( h, cb, ctx_block_cat, i_idx, l, b_intra, 0, ) #define cabac_block_residual_8x8_cbf( h, cb, ctx_block_cat, i_idx, l, b_intra )\ cabac_block_residual_cbf_internal( h, cb, ctx_block_cat, i_idx, l, b_intra, 0, _8x8 ) #define cabac_block_residual_422_dc_cbf( h, cb, ch, b_intra )\ cabac_block_residual_cbf_internal( h, cb, DCT_CHROMA_DC, CHROMA_DC+(ch), h->dct.chroma_dc[ch], b_intra, 1, _422_dc ) static ALWAYS_INLINE void macroblock_write_cabac_internal( x264_t *h, x264_cabac_t *cb, int plane_count, int chroma ) { const int i_mb_type = h->mb.i_type; #if !RDO_SKIP_BS const int i_mb_pos_start = x264_cabac_pos( cb ); int i_mb_pos_tex; if( SLICE_MBAFF && (!(h->mb.i_mb_y & 1) || IS_SKIP(h->mb.type[h->mb.i_mb_xy - h->mb.i_mb_stride])) ) { cabac_field_decoding_flag( h, cb ); } #endif if( h->sh.i_type == SLICE_TYPE_P ) cabac_mb_header_p( h, cb, i_mb_type, chroma ); else if( h->sh.i_type == SLICE_TYPE_B ) cabac_mb_header_b( h, cb, i_mb_type, chroma ); else //if( h->sh.i_type == SLICE_TYPE_I ) cabac_mb_header_i( h, cb, i_mb_type, SLICE_TYPE_I, chroma ); #if !RDO_SKIP_BS i_mb_pos_tex = x264_cabac_pos( cb ); h->stat.frame.i_mv_bits += i_mb_pos_tex - i_mb_pos_start; if( i_mb_type == I_PCM ) { bs_t s; bs_init( &s, cb->p, cb->p_end - cb->p ); for( int p = 0; p < plane_count; p++ ) for( int i = 0; i < 256; i++ ) bs_write( &s, BIT_DEPTH, h->mb.pic.p_fenc[p][i] ); if( chroma ) for( int ch = 1; ch < 3; ch++ ) for( int i = 0; i < 16>>CHROMA_V_SHIFT; i++ ) for( int j = 0; j < 8; j++ ) bs_write( &s, BIT_DEPTH, h->mb.pic.p_fenc[ch][i*FENC_STRIDE+j] ); bs_flush( &s ); cb->p = s.p; x264_cabac_encode_init_core( cb ); h->stat.frame.i_tex_bits += x264_cabac_pos( cb ) - i_mb_pos_tex; return; } #endif if( i_mb_type != I_16x16 ) { cabac_cbp_luma( h, cb ); if( chroma ) cabac_cbp_chroma( h, cb ); } if( x264_mb_transform_8x8_allowed( h ) && h->mb.i_cbp_luma ) { cabac_transform_size( h, cb ); } if( h->mb.i_cbp_luma || (chroma && h->mb.i_cbp_chroma) || i_mb_type == I_16x16 ) { const int b_intra = IS_INTRA( i_mb_type ); cabac_qp_delta( h, cb ); /* write residual */ if( i_mb_type == I_16x16 ) { /* DC Luma */ for( int p = 0; p < plane_count; p++ ) { cabac_block_residual_dc_cbf( h, cb, ctx_cat_plane[DCT_LUMA_DC][p], LUMA_DC+p, h->dct.luma16x16_dc[p], 1 ); /* AC Luma */ if( h->mb.i_cbp_luma ) for( int i = p*16; i < p*16+16; i++ ) cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_AC][p], i, h->dct.luma4x4[i]+1, 1 ); } } else if( h->mb.b_transform_8x8 ) { if( plane_count == 3 ) { ALIGNED_4( uint8_t nnzbak[3][8] ); /* Stupid nnz munging in the case that neighbors don't have * 8x8 transform enabled. */ #define BACKUP( dst, src, res )\ dst = src;\ src = res; #define RESTORE( dst, src, res )\ src = dst; #define MUNGE_8x8_NNZ( MUNGE )\ if( (h->mb.i_neighbour & MB_LEFT) && !h->mb.mb_transform_size[h->mb.i_mb_left_xy[0]] && !(h->mb.cbp[h->mb.i_mb_left_xy[0]] & 0x1000) )\ {\ MUNGE( nnzbak[0][0], h->mb.cache.non_zero_count[x264_scan8[16*0+ 0] - 1], 0x00 )\ MUNGE( nnzbak[0][1], h->mb.cache.non_zero_count[x264_scan8[16*0+ 2] - 1], 0x00 )\ MUNGE( nnzbak[1][0], h->mb.cache.non_zero_count[x264_scan8[16*1+ 0] - 1], 0x00 )\ MUNGE( nnzbak[1][1], h->mb.cache.non_zero_count[x264_scan8[16*1+ 2] - 1], 0x00 )\ MUNGE( nnzbak[2][0], h->mb.cache.non_zero_count[x264_scan8[16*2+ 0] - 1], 0x00 )\ MUNGE( nnzbak[2][1], h->mb.cache.non_zero_count[x264_scan8[16*2+ 2] - 1], 0x00 )\ }\ if( (h->mb.i_neighbour & MB_LEFT) && !h->mb.mb_transform_size[h->mb.i_mb_left_xy[1]] && !(h->mb.cbp[h->mb.i_mb_left_xy[1]] & 0x1000) )\ {\ MUNGE( nnzbak[0][2], h->mb.cache.non_zero_count[x264_scan8[16*0+ 8] - 1], 0x00 )\ MUNGE( nnzbak[0][3], h->mb.cache.non_zero_count[x264_scan8[16*0+10] - 1], 0x00 )\ MUNGE( nnzbak[1][2], h->mb.cache.non_zero_count[x264_scan8[16*1+ 8] - 1], 0x00 )\ MUNGE( nnzbak[1][3], h->mb.cache.non_zero_count[x264_scan8[16*1+10] - 1], 0x00 )\ MUNGE( nnzbak[2][2], h->mb.cache.non_zero_count[x264_scan8[16*2+ 8] - 1], 0x00 )\ MUNGE( nnzbak[2][3], h->mb.cache.non_zero_count[x264_scan8[16*2+10] - 1], 0x00 )\ }\ if( (h->mb.i_neighbour & MB_TOP) && !h->mb.mb_transform_size[h->mb.i_mb_top_xy] && !(h->mb.cbp[h->mb.i_mb_top_xy] & 0x1000) )\ {\ MUNGE( M32( &nnzbak[0][4] ), M32( &h->mb.cache.non_zero_count[x264_scan8[16*0] - 8] ), 0x00000000U )\ MUNGE( M32( &nnzbak[1][4] ), M32( &h->mb.cache.non_zero_count[x264_scan8[16*1] - 8] ), 0x00000000U )\ MUNGE( M32( &nnzbak[2][4] ), M32( &h->mb.cache.non_zero_count[x264_scan8[16*2] - 8] ), 0x00000000U )\ } MUNGE_8x8_NNZ( BACKUP ) for( int p = 0; p < 3; p++ ) FOREACH_BIT( i, 0, h->mb.i_cbp_luma ) cabac_block_residual_8x8_cbf( h, cb, ctx_cat_plane[DCT_LUMA_8x8][p], i*4+p*16, h->dct.luma8x8[i+p*4], b_intra ); MUNGE_8x8_NNZ( RESTORE ) } else { FOREACH_BIT( i, 0, h->mb.i_cbp_luma ) cabac_block_residual_8x8( h, cb, DCT_LUMA_8x8, h->dct.luma8x8[i] ); } } else { for( int p = 0; p < plane_count; p++ ) FOREACH_BIT( i8x8, 0, h->mb.i_cbp_luma ) for( int i = 0; i < 4; i++ ) cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_4x4][p], i+i8x8*4+p*16, h->dct.luma4x4[i+i8x8*4+p*16], b_intra ); } if( chroma && h->mb.i_cbp_chroma ) /* Chroma DC residual present */ { if( CHROMA_FORMAT == CHROMA_422 ) { cabac_block_residual_422_dc_cbf( h, cb, 0, b_intra ); cabac_block_residual_422_dc_cbf( h, cb, 1, b_intra ); } else { cabac_block_residual_dc_cbf( h, cb, DCT_CHROMA_DC, CHROMA_DC+0, h->dct.chroma_dc[0], b_intra ); cabac_block_residual_dc_cbf( h, cb, DCT_CHROMA_DC, CHROMA_DC+1, h->dct.chroma_dc[1], b_intra ); } if( h->mb.i_cbp_chroma == 2 ) /* Chroma AC residual present */ { int step = 8 << CHROMA_V_SHIFT; for( int i = 16; i < 3*16; i += step ) for( int j = i; j < i+4; j++ ) cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, j, h->dct.luma4x4[j]+1, b_intra ); } } } #if !RDO_SKIP_BS h->stat.frame.i_tex_bits += x264_cabac_pos( cb ) - i_mb_pos_tex; #endif } void x264_macroblock_write_cabac( x264_t *h, x264_cabac_t *cb ) { if( CHROMA444 ) macroblock_write_cabac_internal( h, cb, 3, 0 ); else if( CHROMA_FORMAT ) macroblock_write_cabac_internal( h, cb, 1, 1 ); else macroblock_write_cabac_internal( h, cb, 1, 0 ); } #if RDO_SKIP_BS /***************************************************************************** * RD only; doesn't generate a valid bitstream * doesn't write cbp or chroma dc (I don't know how much this matters) * doesn't write ref (never varies between calls, so no point in doing so) * only writes subpartition for p8x8, needed for sub-8x8 mode decision RDO * works on all partition sizes except 16x16 *****************************************************************************/ static void partition_size_cabac( x264_t *h, x264_cabac_t *cb, int i8, int i_pixel ) { const int i_mb_type = h->mb.i_type; int b_8x16 = h->mb.i_partition == D_8x16; int plane_count = CHROMA444 ? 3 : 1; if( i_mb_type == P_8x8 ) { cabac_8x8_mvd( h, cb, i8 ); cabac_subpartition_p( cb, h->mb.i_sub_partition[i8] ); } else if( i_mb_type == P_L0 ) cabac_mvd( h, cb, 0, 4*i8, 4>>b_8x16, 2< B_DIRECT && i_mb_type < B_8x8 ) { if( x264_mb_type_list_table[ i_mb_type ][0][!!i8] ) cabac_mvd( h, cb, 0, 4*i8, 4>>b_8x16, 2<>b_8x16, 2<mb.i_sub_partition[i8] ] ) cabac_mvd( h, cb, 0, 4*i8, 2, 2 ); if( x264_mb_partition_listX_table[1][ h->mb.i_sub_partition[i8] ] ) cabac_mvd( h, cb, 1, 4*i8, 2, 2 ); } for( int j = (i_pixel < PIXEL_8x8); j >= 0; j-- ) { if( h->mb.i_cbp_luma & (1 << i8) ) { if( h->mb.b_transform_8x8 ) { if( CHROMA444 ) for( int p = 0; p < 3; p++ ) cabac_block_residual_8x8_cbf( h, cb, ctx_cat_plane[DCT_LUMA_8x8][p], i8*4+p*16, h->dct.luma8x8[i8+p*4], 0 ); else cabac_block_residual_8x8( h, cb, DCT_LUMA_8x8, h->dct.luma8x8[i8] ); } else for( int p = 0; p < plane_count; p++ ) for( int i4 = 0; i4 < 4; i4++ ) cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_4x4][p], i4+i8*4+p*16, h->dct.luma4x4[i4+i8*4+p*16], 0 ); } if( h->mb.i_cbp_chroma ) { if( CHROMA_FORMAT == CHROMA_422 ) { int offset = (5*i8) & 0x09; cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 16+offset, h->dct.luma4x4[16+offset]+1, 0 ); cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 18+offset, h->dct.luma4x4[18+offset]+1, 0 ); cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 32+offset, h->dct.luma4x4[32+offset]+1, 0 ); cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 34+offset, h->dct.luma4x4[34+offset]+1, 0 ); } else { cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 16+i8, h->dct.luma4x4[16+i8]+1, 0 ); cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, 32+i8, h->dct.luma4x4[32+i8]+1, 0 ); } } i8 += x264_pixel_size[i_pixel].h >> 3; } } static void subpartition_size_cabac( x264_t *h, x264_cabac_t *cb, int i4, int i_pixel ) { int b_8x4 = i_pixel == PIXEL_8x4; int plane_count = CHROMA444 ? 3 : 1; if( i_pixel == PIXEL_4x4 ) cabac_mvd( h, cb, 0, i4, 1, 1 ); else cabac_mvd( h, cb, 0, i4, 1+b_8x4, 2-b_8x4 ); for( int p = 0; p < plane_count; p++ ) { cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_4x4][p], p*16+i4, h->dct.luma4x4[p*16+i4], 0 ); if( i_pixel != PIXEL_4x4 ) cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_4x4][p], p*16+i4+2-b_8x4, h->dct.luma4x4[p*16+i4+2-b_8x4], 0 ); } } static void partition_i8x8_size_cabac( x264_t *h, x264_cabac_t *cb, int i8, int i_mode ) { const int i_pred = x264_mb_predict_intra4x4_mode( h, 4*i8 ); i_mode = x264_mb_pred_mode4x4_fix( i_mode ); cabac_intra4x4_pred_mode( cb, i_pred, i_mode ); cabac_cbp_luma( h, cb ); if( h->mb.i_cbp_luma & (1 << i8) ) { if( CHROMA444 ) for( int p = 0; p < 3; p++ ) cabac_block_residual_8x8_cbf( h, cb, ctx_cat_plane[DCT_LUMA_8x8][p], i8*4+p*16, h->dct.luma8x8[i8+p*4], 1 ); else cabac_block_residual_8x8( h, cb, DCT_LUMA_8x8, h->dct.luma8x8[i8] ); } } static void partition_i4x4_size_cabac( x264_t *h, x264_cabac_t *cb, int i4, int i_mode ) { const int i_pred = x264_mb_predict_intra4x4_mode( h, i4 ); int plane_count = CHROMA444 ? 3 : 1; i_mode = x264_mb_pred_mode4x4_fix( i_mode ); cabac_intra4x4_pred_mode( cb, i_pred, i_mode ); for( int p = 0; p < plane_count; p++ ) cabac_block_residual_cbf( h, cb, ctx_cat_plane[DCT_LUMA_4x4][p], i4+p*16, h->dct.luma4x4[i4+p*16], 1 ); } static void chroma_size_cabac( x264_t *h, x264_cabac_t *cb ) { cabac_intra_chroma_pred_mode( h, cb ); cabac_cbp_chroma( h, cb ); if( h->mb.i_cbp_chroma ) { if( CHROMA_FORMAT == CHROMA_422 ) { cabac_block_residual_422_dc_cbf( h, cb, 0, 1 ); cabac_block_residual_422_dc_cbf( h, cb, 1, 1 ); } else { cabac_block_residual_dc_cbf( h, cb, DCT_CHROMA_DC, CHROMA_DC+0, h->dct.chroma_dc[0], 1 ); cabac_block_residual_dc_cbf( h, cb, DCT_CHROMA_DC, CHROMA_DC+1, h->dct.chroma_dc[1], 1 ); } if( h->mb.i_cbp_chroma == 2 ) { int step = 8 << CHROMA_V_SHIFT; for( int i = 16; i < 3*16; i += step ) for( int j = i; j < i+4; j++ ) cabac_block_residual_cbf( h, cb, DCT_CHROMA_AC, j, h->dct.luma4x4[j]+1, 1 ); } } } #endif