/***************************************************************************** * frame.c: frame handling ***************************************************************************** * Copyright (C) 2003-2022 x264 project * * Authors: Laurent Aimar * Loren Merritt * Fiona Glaser * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common.h" static int align_stride( int x, int align, int disalign ) { x = ALIGN( x, align ); if( !(x&(disalign-1)) ) x += align; return x; } static int align_plane_size( int x, int disalign ) { if( !(x&(disalign-1)) ) x += X264_MAX( 128, NATIVE_ALIGN ) / SIZEOF_PIXEL; return x; } static int frame_internal_csp( int external_csp ) { int csp = external_csp & X264_CSP_MASK; if( csp == X264_CSP_I400 ) return X264_CSP_I400; if( csp >= X264_CSP_I420 && csp < X264_CSP_I422 ) return X264_CSP_NV12; if( csp >= X264_CSP_I422 && csp < X264_CSP_I444 ) return X264_CSP_NV16; if( csp >= X264_CSP_I444 && csp <= X264_CSP_RGB ) return X264_CSP_I444; return X264_CSP_NONE; } static x264_frame_t *frame_new( x264_t *h, int b_fdec ) { x264_frame_t *frame; int i_csp = frame_internal_csp( h->param.i_csp ); int i_mb_count = h->mb.i_mb_count; int i_stride, i_width, i_lines, luma_plane_count; int i_padv = PADV << PARAM_INTERLACED; int align = NATIVE_ALIGN / SIZEOF_PIXEL; #if ARCH_X86 || ARCH_X86_64 if( h->param.cpu&X264_CPU_CACHELINE_64 || h->param.cpu&X264_CPU_AVX512 ) align = 64 / SIZEOF_PIXEL; else if( h->param.cpu&X264_CPU_CACHELINE_32 || h->param.cpu&X264_CPU_AVX ) align = 32 / SIZEOF_PIXEL; else align = 16 / SIZEOF_PIXEL; #endif #if ARCH_PPC int disalign = (1<<9) / SIZEOF_PIXEL; #else int disalign = (1<<10) / SIZEOF_PIXEL; #endif CHECKED_MALLOCZERO( frame, sizeof(x264_frame_t) ); PREALLOC_INIT /* allocate frame data (+64 for extra data for me) */ i_width = h->mb.i_mb_width*16; i_lines = h->mb.i_mb_height*16; i_stride = align_stride( i_width + PADH2, align, disalign ); if( i_csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16 ) { luma_plane_count = 1; frame->i_plane = 2; for( int i = 0; i < 2; i++ ) { frame->i_width[i] = i_width >> i; frame->i_lines[i] = i_lines >> (i && i_csp == X264_CSP_NV12); frame->i_stride[i] = i_stride; } } else if( i_csp == X264_CSP_I444 ) { luma_plane_count = 3; frame->i_plane = 3; for( int i = 0; i < 3; i++ ) { frame->i_width[i] = i_width; frame->i_lines[i] = i_lines; frame->i_stride[i] = i_stride; } } else if( i_csp == X264_CSP_I400 ) { luma_plane_count = 1; frame->i_plane = 1; frame->i_width[0] = i_width; frame->i_lines[0] = i_lines; frame->i_stride[0] = i_stride; } else goto fail; frame->i_csp = i_csp; frame->i_width_lowres = frame->i_width[0]/2; frame->i_lines_lowres = frame->i_lines[0]/2; frame->i_stride_lowres = align_stride( frame->i_width_lowres + PADH2, align, disalign<<1 ); for( int i = 0; i < h->param.i_bframe + 2; i++ ) for( int j = 0; j < h->param.i_bframe + 2; j++ ) PREALLOC( frame->i_row_satds[i][j], i_lines/16 * sizeof(int) ); frame->i_poc = -1; frame->i_type = X264_TYPE_AUTO; frame->i_qpplus1 = X264_QP_AUTO; frame->i_pts = -1; frame->i_frame = -1; frame->i_frame_num = -1; frame->i_lines_completed = -1; frame->b_fdec = b_fdec; frame->i_pic_struct = PIC_STRUCT_AUTO; frame->i_field_cnt = -1; frame->i_duration = frame->i_cpb_duration = frame->i_dpb_output_delay = frame->i_cpb_delay = 0; frame->i_coded_fields_lookahead = frame->i_cpb_delay_lookahead = -1; frame->orig = frame; if( i_csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16 ) { int chroma_padv = i_padv >> (i_csp == X264_CSP_NV12); int chroma_plane_size = (frame->i_stride[1] * (frame->i_lines[1] + 2*chroma_padv)); PREALLOC( frame->buffer[1], chroma_plane_size * SIZEOF_PIXEL ); if( PARAM_INTERLACED ) PREALLOC( frame->buffer_fld[1], chroma_plane_size * SIZEOF_PIXEL ); } /* all 4 luma planes allocated together, since the cacheline split code * requires them to be in-phase wrt cacheline alignment. */ for( int p = 0; p < luma_plane_count; p++ ) { int64_t luma_plane_size = align_plane_size( frame->i_stride[p] * (frame->i_lines[p] + 2*i_padv), disalign ); if( h->param.analyse.i_subpel_refine && b_fdec ) luma_plane_size *= 4; /* FIXME: Don't allocate both buffers in non-adaptive MBAFF. */ PREALLOC( frame->buffer[p], luma_plane_size * SIZEOF_PIXEL ); if( PARAM_INTERLACED ) PREALLOC( frame->buffer_fld[p], luma_plane_size * SIZEOF_PIXEL ); } frame->b_duplicate = 0; if( b_fdec ) /* fdec frame */ { PREALLOC( frame->mb_type, i_mb_count * sizeof(int8_t) ); PREALLOC( frame->mb_partition, i_mb_count * sizeof(uint8_t) ); PREALLOC( frame->mv[0], 2*16 * i_mb_count * sizeof(int16_t) ); PREALLOC( frame->mv16x16, 2*(i_mb_count+1) * sizeof(int16_t) ); PREALLOC( frame->ref[0], 4 * i_mb_count * sizeof(int8_t) ); if( h->param.i_bframe ) { PREALLOC( frame->mv[1], 2*16 * i_mb_count * sizeof(int16_t) ); PREALLOC( frame->ref[1], 4 * i_mb_count * sizeof(int8_t) ); } else { frame->mv[1] = NULL; frame->ref[1] = NULL; } PREALLOC( frame->i_row_bits, i_lines/16 * sizeof(int) ); PREALLOC( frame->f_row_qp, i_lines/16 * sizeof(float) ); PREALLOC( frame->f_row_qscale, i_lines/16 * sizeof(float) ); if( h->param.analyse.i_me_method >= X264_ME_ESA ) PREALLOC( frame->buffer[3], frame->i_stride[0] * (frame->i_lines[0] + 2*i_padv) * sizeof(uint16_t) << h->frames.b_have_sub8x8_esa ); if( PARAM_INTERLACED ) PREALLOC( frame->field, i_mb_count * sizeof(uint8_t) ); if( h->param.analyse.b_mb_info ) PREALLOC( frame->effective_qp, i_mb_count * sizeof(uint8_t) ); } else /* fenc frame */ { if( h->frames.b_have_lowres ) { int64_t luma_plane_size = align_plane_size( frame->i_stride_lowres * (frame->i_lines[0]/2 + 2*PADV), disalign ); PREALLOC( frame->buffer_lowres, 4 * luma_plane_size * SIZEOF_PIXEL ); for( int j = 0; j <= !!h->param.i_bframe; j++ ) for( int i = 0; i <= h->param.i_bframe; i++ ) { PREALLOC( frame->lowres_mvs[j][i], 2*h->mb.i_mb_count*sizeof(int16_t) ); PREALLOC( frame->lowres_mv_costs[j][i], h->mb.i_mb_count*sizeof(int) ); } PREALLOC( frame->i_propagate_cost, i_mb_count * sizeof(uint16_t) ); for( int j = 0; j <= h->param.i_bframe+1; j++ ) for( int i = 0; i <= h->param.i_bframe+1; i++ ) PREALLOC( frame->lowres_costs[j][i], i_mb_count * sizeof(uint16_t) ); /* mbtree asm can overread the input buffers, make sure we don't read outside of allocated memory. */ prealloc_size += NATIVE_ALIGN; } if( h->param.rc.i_aq_mode ) { PREALLOC( frame->f_qp_offset, h->mb.i_mb_count * sizeof(float) ); PREALLOC( frame->f_qp_offset_aq, h->mb.i_mb_count * sizeof(float) ); if( h->frames.b_have_lowres ) PREALLOC( frame->i_inv_qscale_factor, (h->mb.i_mb_count+3) * sizeof(uint16_t) ); } } PREALLOC_END( frame->base ); if( i_csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16 ) { int chroma_padv = i_padv >> (i_csp == X264_CSP_NV12); frame->plane[1] = frame->buffer[1] + frame->i_stride[1] * chroma_padv + PADH_ALIGN; if( PARAM_INTERLACED ) frame->plane_fld[1] = frame->buffer_fld[1] + frame->i_stride[1] * chroma_padv + PADH_ALIGN; } for( int p = 0; p < luma_plane_count; p++ ) { int64_t luma_plane_size = align_plane_size( frame->i_stride[p] * (frame->i_lines[p] + 2*i_padv), disalign ); if( h->param.analyse.i_subpel_refine && b_fdec ) { for( int i = 0; i < 4; i++ ) { frame->filtered[p][i] = frame->buffer[p] + i*luma_plane_size + frame->i_stride[p] * i_padv + PADH_ALIGN; if( PARAM_INTERLACED ) frame->filtered_fld[p][i] = frame->buffer_fld[p] + i*luma_plane_size + frame->i_stride[p] * i_padv + PADH_ALIGN; } frame->plane[p] = frame->filtered[p][0]; frame->plane_fld[p] = frame->filtered_fld[p][0]; } else { frame->filtered[p][0] = frame->plane[p] = frame->buffer[p] + frame->i_stride[p] * i_padv + PADH_ALIGN; if( PARAM_INTERLACED ) frame->filtered_fld[p][0] = frame->plane_fld[p] = frame->buffer_fld[p] + frame->i_stride[p] * i_padv + PADH_ALIGN; } } if( b_fdec ) { M32( frame->mv16x16[0] ) = 0; frame->mv16x16++; if( h->param.analyse.i_me_method >= X264_ME_ESA ) frame->integral = (uint16_t*)frame->buffer[3] + frame->i_stride[0] * i_padv + PADH_ALIGN; } else { if( h->frames.b_have_lowres ) { int64_t luma_plane_size = align_plane_size( frame->i_stride_lowres * (frame->i_lines[0]/2 + 2*PADV), disalign ); for( int i = 0; i < 4; i++ ) frame->lowres[i] = frame->buffer_lowres + frame->i_stride_lowres * PADV + PADH_ALIGN + i * luma_plane_size; for( int j = 0; j <= !!h->param.i_bframe; j++ ) for( int i = 0; i <= h->param.i_bframe; i++ ) memset( frame->lowres_mvs[j][i], 0, 2*h->mb.i_mb_count*sizeof(int16_t) ); frame->i_intra_cost = frame->lowres_costs[0][0]; memset( frame->i_intra_cost, -1, (i_mb_count+3) * sizeof(uint16_t) ); if( h->param.rc.i_aq_mode ) /* shouldn't really be initialized, just silences a valgrind false-positive in x264_mbtree_propagate_cost_sse2 */ memset( frame->i_inv_qscale_factor, 0, (h->mb.i_mb_count+3) * sizeof(uint16_t) ); } } if( x264_pthread_mutex_init( &frame->mutex, NULL ) ) goto fail; if( x264_pthread_cond_init( &frame->cv, NULL ) ) goto fail; #if HAVE_OPENCL frame->opencl.ocl = h->opencl.ocl; #endif return frame; fail: x264_free( frame ); return NULL; } void x264_frame_delete( x264_frame_t *frame ) { /* Duplicate frames are blank copies of real frames (including pointers), * so freeing those pointers would cause a double free later. */ if( !frame->b_duplicate ) { x264_free( frame->base ); if( frame->param && frame->param->param_free ) { x264_param_cleanup( frame->param ); frame->param->param_free( frame->param ); } if( frame->mb_info_free ) frame->mb_info_free( frame->mb_info ); if( frame->extra_sei.sei_free ) { for( int i = 0; i < frame->extra_sei.num_payloads; i++ ) frame->extra_sei.sei_free( frame->extra_sei.payloads[i].payload ); frame->extra_sei.sei_free( frame->extra_sei.payloads ); } x264_pthread_mutex_destroy( &frame->mutex ); x264_pthread_cond_destroy( &frame->cv ); #if HAVE_OPENCL x264_opencl_frame_delete( frame ); #endif } x264_free( frame ); } static int get_plane_ptr( x264_t *h, x264_picture_t *src, uint8_t **pix, int *stride, int plane, int xshift, int yshift ) { int width = h->param.i_width >> xshift; int height = h->param.i_height >> yshift; *pix = src->img.plane[plane]; *stride = src->img.i_stride[plane]; if( src->img.i_csp & X264_CSP_VFLIP ) { *pix += (height-1) * *stride; *stride = -*stride; } if( width > abs(*stride) ) { x264_log( h, X264_LOG_ERROR, "Input picture width (%d) is greater than stride (%d)\n", width, *stride ); return -1; } return 0; } #define get_plane_ptr(...) do { if( get_plane_ptr(__VA_ARGS__) < 0 ) return -1; } while( 0 ) int x264_frame_copy_picture( x264_t *h, x264_frame_t *dst, x264_picture_t *src ) { int i_csp = src->img.i_csp & X264_CSP_MASK; if( dst->i_csp != frame_internal_csp( i_csp ) ) { x264_log( h, X264_LOG_ERROR, "Invalid input colorspace\n" ); return -1; } #if HIGH_BIT_DEPTH if( !(src->img.i_csp & X264_CSP_HIGH_DEPTH) ) { x264_log( h, X264_LOG_ERROR, "This build of x264 requires high depth input. Rebuild to support 8-bit input.\n" ); return -1; } #else if( src->img.i_csp & X264_CSP_HIGH_DEPTH ) { x264_log( h, X264_LOG_ERROR, "This build of x264 requires 8-bit input. Rebuild to support high depth input.\n" ); return -1; } #endif if( BIT_DEPTH != 10 && i_csp == X264_CSP_V210 ) { x264_log( h, X264_LOG_ERROR, "v210 input is only compatible with bit-depth of 10 bits\n" ); return -1; } if( src->i_type < X264_TYPE_AUTO || src->i_type > X264_TYPE_KEYFRAME ) { x264_log( h, X264_LOG_WARNING, "forced frame type (%d) at %d is unknown\n", src->i_type, h->frames.i_input ); dst->i_forced_type = X264_TYPE_AUTO; } else dst->i_forced_type = src->i_type; dst->i_type = dst->i_forced_type; dst->i_qpplus1 = src->i_qpplus1; dst->i_pts = dst->i_reordered_pts = src->i_pts; dst->param = src->param; dst->i_pic_struct = src->i_pic_struct; dst->extra_sei = src->extra_sei; dst->opaque = src->opaque; dst->mb_info = h->param.analyse.b_mb_info ? src->prop.mb_info : NULL; dst->mb_info_free = h->param.analyse.b_mb_info ? src->prop.mb_info_free : NULL; uint8_t *pix[3]; int stride[3]; if( i_csp == X264_CSP_YUYV || i_csp == X264_CSP_UYVY ) { int p = i_csp == X264_CSP_UYVY; h->mc.plane_copy_deinterleave_yuyv( dst->plane[p], dst->i_stride[p], dst->plane[p^1], dst->i_stride[p^1], (pixel*)src->img.plane[0], src->img.i_stride[0], h->param.i_width, h->param.i_height ); } else if( i_csp == X264_CSP_V210 ) { stride[0] = src->img.i_stride[0]; pix[0] = src->img.plane[0]; h->mc.plane_copy_deinterleave_v210( dst->plane[0], dst->i_stride[0], dst->plane[1], dst->i_stride[1], (uint32_t *)pix[0], stride[0]/(int)sizeof(uint32_t), h->param.i_width, h->param.i_height ); } else if( i_csp >= X264_CSP_BGR ) { stride[0] = src->img.i_stride[0]; pix[0] = src->img.plane[0]; if( src->img.i_csp & X264_CSP_VFLIP ) { pix[0] += (h->param.i_height-1) * stride[0]; stride[0] = -stride[0]; } int b = i_csp==X264_CSP_RGB; h->mc.plane_copy_deinterleave_rgb( dst->plane[1+b], dst->i_stride[1+b], dst->plane[0], dst->i_stride[0], dst->plane[2-b], dst->i_stride[2-b], (pixel*)pix[0], stride[0]/SIZEOF_PIXEL, i_csp==X264_CSP_BGRA ? 4 : 3, h->param.i_width, h->param.i_height ); } else { int v_shift = CHROMA_V_SHIFT; get_plane_ptr( h, src, &pix[0], &stride[0], 0, 0, 0 ); h->mc.plane_copy( dst->plane[0], dst->i_stride[0], (pixel*)pix[0], stride[0]/SIZEOF_PIXEL, h->param.i_width, h->param.i_height ); if( i_csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16 ) { get_plane_ptr( h, src, &pix[1], &stride[1], 1, 0, v_shift ); h->mc.plane_copy( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/SIZEOF_PIXEL, h->param.i_width, h->param.i_height>>v_shift ); } else if( i_csp == X264_CSP_NV21 ) { get_plane_ptr( h, src, &pix[1], &stride[1], 1, 0, v_shift ); h->mc.plane_copy_swap( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/SIZEOF_PIXEL, h->param.i_width>>1, h->param.i_height>>v_shift ); } else if( i_csp == X264_CSP_I420 || i_csp == X264_CSP_I422 || i_csp == X264_CSP_YV12 || i_csp == X264_CSP_YV16 ) { int uv_swap = i_csp == X264_CSP_YV12 || i_csp == X264_CSP_YV16; get_plane_ptr( h, src, &pix[1], &stride[1], uv_swap ? 2 : 1, 1, v_shift ); get_plane_ptr( h, src, &pix[2], &stride[2], uv_swap ? 1 : 2, 1, v_shift ); h->mc.plane_copy_interleave( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/SIZEOF_PIXEL, (pixel*)pix[2], stride[2]/SIZEOF_PIXEL, h->param.i_width>>1, h->param.i_height>>v_shift ); } else if( i_csp == X264_CSP_I444 || i_csp == X264_CSP_YV24 ) { get_plane_ptr( h, src, &pix[1], &stride[1], i_csp==X264_CSP_I444 ? 1 : 2, 0, 0 ); get_plane_ptr( h, src, &pix[2], &stride[2], i_csp==X264_CSP_I444 ? 2 : 1, 0, 0 ); h->mc.plane_copy( dst->plane[1], dst->i_stride[1], (pixel*)pix[1], stride[1]/SIZEOF_PIXEL, h->param.i_width, h->param.i_height ); h->mc.plane_copy( dst->plane[2], dst->i_stride[2], (pixel*)pix[2], stride[2]/SIZEOF_PIXEL, h->param.i_width, h->param.i_height ); } } return 0; } static ALWAYS_INLINE void pixel_memset( pixel *dst, pixel *src, int len, int size ) { uint8_t *dstp = (uint8_t*)dst; uint32_t v1 = *src; uint32_t v2 = size == 1 ? v1 + (v1 << 8) : M16( src ); uint32_t v4 = size <= 2 ? v2 + (v2 << 16) : M32( src ); int i = 0; len *= size; /* Align the input pointer if it isn't already */ if( (intptr_t)dstp & (WORD_SIZE - 1) ) { if( size <= 2 && ((intptr_t)dstp & 3) ) { if( size == 1 && ((intptr_t)dstp & 1) ) dstp[i++] = v1; if( (intptr_t)dstp & 2 ) { M16( dstp+i ) = v2; i += 2; } } if( WORD_SIZE == 8 && (intptr_t)dstp & 4 ) { M32( dstp+i ) = v4; i += 4; } } /* Main copy loop */ if( WORD_SIZE == 8 ) { uint64_t v8 = v4 + ((uint64_t)v4<<32); for( ; i < len - 7; i+=8 ) M64( dstp+i ) = v8; } for( ; i < len - 3; i+=4 ) M32( dstp+i ) = v4; /* Finish up the last few bytes */ if( size <= 2 ) { if( i < len - 1 ) { M16( dstp+i ) = v2; i += 2; } if( size == 1 && i != len ) dstp[i] = v1; } } static ALWAYS_INLINE void plane_expand_border( pixel *pix, int i_stride, int i_width, int i_height, int i_padh, int i_padv, int b_pad_top, int b_pad_bottom, int b_chroma ) { #define PPIXEL(x, y) ( pix + (x) + (y)*i_stride ) for( int y = 0; y < i_height; y++ ) { /* left band */ pixel_memset( PPIXEL(-i_padh, y), PPIXEL(0, y), i_padh>>b_chroma, SIZEOF_PIXEL<>b_chroma, SIZEOF_PIXEL<mb.i_mb_height - (1 << SLICE_MBAFF); int b_start = mb_y == h->i_threadslice_start; int b_end = mb_y == h->i_threadslice_end - (1 << SLICE_MBAFF); if( mb_y & SLICE_MBAFF ) return; for( int i = 0; i < frame->i_plane; i++ ) { int h_shift = i && CHROMA_H_SHIFT; int v_shift = i && CHROMA_V_SHIFT; int stride = frame->i_stride[i]; int width = 16*h->mb.i_mb_width; int height = (pad_bot ? 16*(h->mb.i_mb_height - mb_y) >> SLICE_MBAFF : 16) >> v_shift; int padh = PADH; int padv = PADV >> v_shift; // buffer: 2 chroma, 3 luma (rounded to 4) because deblocking goes beyond the top of the mb if( b_end && !b_start ) height += 4 >> (v_shift + SLICE_MBAFF); pixel *pix; int starty = 16*mb_y - 4*!b_start; if( SLICE_MBAFF ) { // border samples for each field are extended separately pix = frame->plane_fld[i] + (starty*stride >> v_shift); plane_expand_border( pix, stride*2, width, height, padh, padv, pad_top, pad_bot, h_shift ); plane_expand_border( pix+stride, stride*2, width, height, padh, padv, pad_top, pad_bot, h_shift ); height = (pad_bot ? 16*(h->mb.i_mb_height - mb_y) : 32) >> v_shift; if( b_end && !b_start ) height += 4 >> v_shift; pix = frame->plane[i] + (starty*stride >> v_shift); plane_expand_border( pix, stride, width, height, padh, padv, pad_top, pad_bot, h_shift ); } else { pix = frame->plane[i] + (starty*stride >> v_shift); plane_expand_border( pix, stride, width, height, padh, padv, pad_top, pad_bot, h_shift ); } } } void x264_frame_expand_border_filtered( x264_t *h, x264_frame_t *frame, int mb_y, int b_end ) { /* during filtering, 8 extra pixels were filtered on each edge, * but up to 3 of the horizontal ones may be wrong. we want to expand border from the last filtered pixel */ int b_start = !mb_y; int width = 16*h->mb.i_mb_width + 8; int height = b_end ? (16*(h->mb.i_mb_height - mb_y) >> SLICE_MBAFF) + 16 : 16; int padh = PADH - 4; int padv = PADV - 8; for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) for( int i = 1; i < 4; i++ ) { int stride = frame->i_stride[p]; // buffer: 8 luma, to match the hpel filter pixel *pix; if( SLICE_MBAFF ) { pix = frame->filtered_fld[p][i] + (16*mb_y - 16) * stride - 4; plane_expand_border( pix, stride*2, width, height, padh, padv, b_start, b_end, 0 ); plane_expand_border( pix+stride, stride*2, width, height, padh, padv, b_start, b_end, 0 ); } pix = frame->filtered[p][i] + (16*mb_y - 8) * stride - 4; plane_expand_border( pix, stride, width, height << SLICE_MBAFF, padh, padv, b_start, b_end, 0 ); } } void x264_frame_expand_border_lowres( x264_frame_t *frame ) { for( int i = 0; i < 4; i++ ) plane_expand_border( frame->lowres[i], frame->i_stride_lowres, frame->i_width_lowres, frame->i_lines_lowres, PADH, PADV, 1, 1, 0 ); } void x264_frame_expand_border_chroma( x264_t *h, x264_frame_t *frame, int plane ) { int v_shift = CHROMA_V_SHIFT; plane_expand_border( frame->plane[plane], frame->i_stride[plane], 16*h->mb.i_mb_width, 16*h->mb.i_mb_height>>v_shift, PADH, PADV>>v_shift, 1, 1, CHROMA_H_SHIFT ); } void x264_frame_expand_border_mod16( x264_t *h, x264_frame_t *frame ) { for( int i = 0; i < frame->i_plane; i++ ) { int i_width = h->param.i_width; int h_shift = i && CHROMA_H_SHIFT; int v_shift = i && CHROMA_V_SHIFT; int i_height = h->param.i_height >> v_shift; int i_padx = (h->mb.i_mb_width * 16 - h->param.i_width); int i_pady = (h->mb.i_mb_height * 16 - h->param.i_height) >> v_shift; if( i_padx ) { for( int y = 0; y < i_height; y++ ) pixel_memset( &frame->plane[i][y*frame->i_stride[i] + i_width], &frame->plane[i][y*frame->i_stride[i] + i_width - 1-h_shift], i_padx>>h_shift, SIZEOF_PIXEL<plane[i][y*frame->i_stride[i]], &frame->plane[i][(i_height-(~y&PARAM_INTERLACED)-1)*frame->i_stride[i]], (i_width + i_padx) * SIZEOF_PIXEL ); } } } void x264_expand_border_mbpair( x264_t *h, int mb_x, int mb_y ) { for( int i = 0; i < h->fenc->i_plane; i++ ) { int v_shift = i && CHROMA_V_SHIFT; int stride = h->fenc->i_stride[i]; int height = h->param.i_height >> v_shift; int pady = (h->mb.i_mb_height * 16 - h->param.i_height) >> v_shift; pixel *fenc = h->fenc->plane[i] + 16*mb_x; for( int y = height; y < height + pady; y++ ) memcpy( fenc + y*stride, fenc + (height-1)*stride, 16*SIZEOF_PIXEL ); } } /* threading */ void x264_frame_cond_broadcast( x264_frame_t *frame, int i_lines_completed ) { x264_pthread_mutex_lock( &frame->mutex ); frame->i_lines_completed = i_lines_completed; x264_pthread_cond_broadcast( &frame->cv ); x264_pthread_mutex_unlock( &frame->mutex ); } int x264_frame_cond_wait( x264_frame_t *frame, int i_lines_completed ) { int completed; x264_pthread_mutex_lock( &frame->mutex ); while( (completed = frame->i_lines_completed) < i_lines_completed && i_lines_completed >= 0 ) x264_pthread_cond_wait( &frame->cv, &frame->mutex ); x264_pthread_mutex_unlock( &frame->mutex ); return completed; } void x264_threadslice_cond_broadcast( x264_t *h, int pass ) { x264_pthread_mutex_lock( &h->mutex ); h->i_threadslice_pass = pass; if( pass > 0 ) x264_pthread_cond_broadcast( &h->cv ); x264_pthread_mutex_unlock( &h->mutex ); } void x264_threadslice_cond_wait( x264_t *h, int pass ) { x264_pthread_mutex_lock( &h->mutex ); while( h->i_threadslice_pass < pass ) x264_pthread_cond_wait( &h->cv, &h->mutex ); x264_pthread_mutex_unlock( &h->mutex ); } int x264_frame_new_slice( x264_t *h, x264_frame_t *frame ) { if( h->param.i_slice_count_max ) { int slice_count; if( h->param.b_sliced_threads ) slice_count = x264_pthread_fetch_and_add( &frame->i_slice_count, 1, &frame->mutex ); else slice_count = frame->i_slice_count++; if( slice_count >= h->param.i_slice_count_max ) return -1; } return 0; } /* list operators */ void x264_frame_push( x264_frame_t **list, x264_frame_t *frame ) { int i = 0; while( list[i] ) i++; list[i] = frame; } x264_frame_t *x264_frame_pop( x264_frame_t **list ) { x264_frame_t *frame; int i = 0; assert( list[0] ); while( list[i+1] ) i++; frame = list[i]; list[i] = NULL; return frame; } void x264_frame_unshift( x264_frame_t **list, x264_frame_t *frame ) { int i = 0; while( list[i] ) i++; while( i-- ) list[i+1] = list[i]; list[0] = frame; } x264_frame_t *x264_frame_shift( x264_frame_t **list ) { x264_frame_t *frame = list[0]; int i; for( i = 0; list[i]; i++ ) list[i] = list[i+1]; assert(frame); return frame; } void x264_frame_push_unused( x264_t *h, x264_frame_t *frame ) { assert( frame->i_reference_count > 0 ); frame->i_reference_count--; if( frame->i_reference_count == 0 ) x264_frame_push( h->frames.unused[frame->b_fdec], frame ); } x264_frame_t *x264_frame_pop_unused( x264_t *h, int b_fdec ) { x264_frame_t *frame; if( h->frames.unused[b_fdec][0] ) frame = x264_frame_pop( h->frames.unused[b_fdec] ); else frame = frame_new( h, b_fdec ); if( !frame ) return NULL; frame->b_last_minigop_bframe = 0; frame->i_reference_count = 1; frame->b_intra_calculated = 0; frame->b_scenecut = 1; frame->b_keyframe = 0; frame->b_corrupt = 0; frame->i_slice_count = h->param.b_sliced_threads ? h->param.i_threads : 1; memset( frame->weight, 0, sizeof(frame->weight) ); memset( frame->f_weighted_cost_delta, 0, sizeof(frame->f_weighted_cost_delta) ); return frame; } void x264_frame_push_blank_unused( x264_t *h, x264_frame_t *frame ) { assert( frame->i_reference_count > 0 ); frame->i_reference_count--; if( frame->i_reference_count == 0 ) x264_frame_push( h->frames.blank_unused, frame ); } x264_frame_t *x264_frame_pop_blank_unused( x264_t *h ) { x264_frame_t *frame; if( h->frames.blank_unused[0] ) frame = x264_frame_pop( h->frames.blank_unused ); else frame = x264_malloc( sizeof(x264_frame_t) ); if( !frame ) return NULL; frame->b_duplicate = 1; frame->i_reference_count = 1; return frame; } void x264_weight_scale_plane( x264_t *h, pixel *dst, intptr_t i_dst_stride, pixel *src, intptr_t i_src_stride, int i_width, int i_height, x264_weight_t *w ) { /* Weight horizontal strips of height 16. This was found to be the optimal height * in terms of the cache loads. */ while( i_height > 0 ) { int x; for( x = 0; x < i_width-8; x += 16 ) w->weightfn[16>>2]( dst+x, i_dst_stride, src+x, i_src_stride, w, X264_MIN( i_height, 16 ) ); if( x < i_width ) w->weightfn[ 8>>2]( dst+x, i_dst_stride, src+x, i_src_stride, w, X264_MIN( i_height, 16 ) ); i_height -= 16; dst += 16 * i_dst_stride; src += 16 * i_src_stride; } } void x264_frame_delete_list( x264_frame_t **list ) { int i = 0; if( !list ) return; while( list[i] ) x264_frame_delete( list[i++] ); x264_free( list ); } int x264_sync_frame_list_init( x264_sync_frame_list_t *slist, int max_size ) { if( max_size < 0 ) return -1; slist->i_max_size = max_size; slist->i_size = 0; CHECKED_MALLOCZERO( slist->list, (max_size+1) * sizeof(x264_frame_t*) ); if( x264_pthread_mutex_init( &slist->mutex, NULL ) || x264_pthread_cond_init( &slist->cv_fill, NULL ) || x264_pthread_cond_init( &slist->cv_empty, NULL ) ) return -1; return 0; fail: return -1; } void x264_sync_frame_list_delete( x264_sync_frame_list_t *slist ) { x264_pthread_mutex_destroy( &slist->mutex ); x264_pthread_cond_destroy( &slist->cv_fill ); x264_pthread_cond_destroy( &slist->cv_empty ); x264_frame_delete_list( slist->list ); } void x264_sync_frame_list_push( x264_sync_frame_list_t *slist, x264_frame_t *frame ) { x264_pthread_mutex_lock( &slist->mutex ); while( slist->i_size == slist->i_max_size ) x264_pthread_cond_wait( &slist->cv_empty, &slist->mutex ); slist->list[ slist->i_size++ ] = frame; x264_pthread_mutex_unlock( &slist->mutex ); x264_pthread_cond_broadcast( &slist->cv_fill ); } x264_frame_t *x264_sync_frame_list_pop( x264_sync_frame_list_t *slist ) { x264_frame_t *frame; x264_pthread_mutex_lock( &slist->mutex ); while( !slist->i_size ) x264_pthread_cond_wait( &slist->cv_fill, &slist->mutex ); frame = slist->list[ --slist->i_size ]; slist->list[ slist->i_size ] = NULL; x264_pthread_cond_broadcast( &slist->cv_empty ); x264_pthread_mutex_unlock( &slist->mutex ); return frame; }