

The User Guide of Video Codec

Engine Library

Author CXC

Date Created 2011.3.29
Current Version 1.01

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 1

Version History:
Date Vesion Modify Contents

2011.3.29 1.00 Calder Create this document.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. II

Content
PREFACE ...I PREFACE ...I

GLOSSARY ...II GLOSSARY ...II

REFERENCE ..III REFERENCE ..III

PART A REQUIREMENT..1 PART A REQUIREMENT..1

A.1. Application Scene.. 1 A.1. Application Scene.. 1

A.2. Function Requirement .. 1 A.2. Function Requirement .. 1

A.3. Supplement .. 1 A.3. Supplement .. 1

PART B ARCHITECTURE ..1 PART B ARCHITECTURE ..1

B.1. Architecture of Libve .. 1 B.1. Architecture of Libve .. 1

B.2. Recommended Architecture of Drivers using Libve .. 2 B.2. Recommended Architecture of Drivers using Libve .. 2

B.3. Basic Execute Flows .. 3 B.3. Basic Execute Flows .. 3
B3.1. Open Libve ... 3 B3.1. Open Libve ... 3
B3.2. Close Libve... 3 B3.2. Close Libve... 3
B3.3. Decode Stream Frame... 4 B3.3. Decode Stream Frame... 4
B3.4. Reset Libve ... 5 B3.4. Reset Libve ... 5
B3.5. Request Pictures to Show and return Pictures .. 5 B3.5. Request Pictures to Show and return Pictures .. 5

PART C INTERFACE SPECIFICATION..6 PART C INTERFACE SPECIFICATION..6

C.1. Libve Output Interface Design... 6 C.1. Libve Output Interface Design... 6
libve_open ... 7 libve_open ... 7
libve_close... 8 libve_close... 8
libve_reset ... 9 libve_reset ... 9
libve_set_vbv... 9 libve_set_vbv... 9
libve_get_fbm.. 10 libve_get_fbm.. 10
libve_decode.. 10 libve_decode.. 10
libve_get_stream_info ..11 libve_get_stream_info ..11
libve_get_version .. 12 libve_get_version .. 12
libve_get_last_error... 12 libve_get_last_error... 12
libve_flush... 12 libve_flush... 12

C.2. Input Interface for Libve.. 14 C.2. Input Interface for Libve.. 14

Confidential 3 Copyright ○c All Winner Limited. All right reserved. III

C2.1. The VE controlling interface – IVE.. 14 C2.1. The VE controlling interface – IVE.. 14
C2.2. The Frame Buffer Manager interface – IFBM.. 17 C2.2. The Frame Buffer Manager interface – IFBM.. 17
C2.3. The OS interface – IOS... 20 C2.3. The OS interface – IOS... 20
C2.4. The VBV interface – IVBV .. 23 C2.4. The VBV interface – IVBV .. 23

ANNEX...26 ANNEX...26

D.1. A recommended design of the VBV module.. 26 D.1. A recommended design of the VBV module.. 26

D.2. A recommended design of the FBM module ... 27 D.2. A recommended design of the FBM module ... 27

D.3. Requirement for initializing stream information ... 28 D.3. Requirement for initializing stream information ... 28

D.4. Requirement on bitstream format ... 30 D.4. Requirement on bitstream format ... 30

D.5. Recommendation of memory size for decoders .. 31 D.5. Recommendation of memory size for decoders .. 31

Preface
 The Video Codec Engine is an embedded logic circuit in our Chip. This circuit consists of decoders such as
MPEG1/2/4, JPEG, H.263, H.264, AVS, VC-1, WMV7/8 and VP-6. It also contains an H.264 video encoder. So far
based on this engine, we have developed a library to decode video streams using the video codec engine, this library
is called ‘libve’.

The Libve is designed to work with different players on Linux or other operating systems. With this library, you
can play video streams, and easily implement some tricks such as jump play, fast forward, fast backward, rotate
videos, scaledown videos, get video preview. This document describes the user interface of Libve, and also introduce
an architecture of video decode driver base on the Libve.

To link and use the libve, you should get the ‘libve.a’ file and three C code header files, libve.h, libve_adapter.h
and libve_typedef.h.

To show how the libve works, we give a demo. This demo use the ‘VBV’ module described in ‘vbv.h’ and ‘vbv.c’
to receive video bitstream data and manage video bitstream frames. When libve_decode method is called, libve will
request bitstream frames from the ‘VBV’ module for decoding. This demo also use the ‘FBM’ module described in
‘fbm.h’ and ‘fbm.c’ to manage picture frames. Libve requests empty frame buffer from the ‘FBM’ module, decode one
picture to the buffer and then returns it to the ‘FBM’ module. The control flow of using ‘VBV’, ‘FBM’ modules and libve
to decode is described in a C code file ‘vdecoder.c’.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. I

Glossary
FBM Frame buffer manager, a program module which is responsible for frame buffer management.
ISR Interrupt service routine.

Interface A set of methods for a specific functionality.
OS Operating system, such as ‘MELIS’, ‘LINUS’ and ‘Android’.

PCR Program clock reference (a concept described in MPEG-2).
PTS Presentation time stamp, each video frame has a PTS to tell when it should be displayed.

VBV
Video bitstream verification (a concept described in MPEG-2), a program module which is
responsible for video bitstream management.

VE The video codec engine embedded in our chip.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. II

Reference

Confidential 3 Copyright ○c All Winner Limited. All right reserved. III

PART A RReeqquuiirreemmeenntt

AA..11.. AApppplliiccaattiioonn SScceennee

The Libve is expected to be used in several applications on MELIS or LINUX, based on our chips. Application on
these platforms may be CEDAR player, MPlayer, CEDAR-X player or Video Previewer. In these applications, a driver
uses libve to decode video stream and output pictures.

Before decoding, the driver opens the libve with configure information and video stream information. The driver
may have a thread to control the video decoding process. It gets bitstream frame from a VBV module and feed it to
the library. The libve will create one or two FBM to store pictures. When need picture to display, the driver can get a
FBM handle from the library and request pictures from the FBM. To quit the decoding process, the driver should close
the library. When some error happens or when the driver wants the library to clear its decoding status, the driver may
call the the library’s reset function.

AA..22.. FFuunnccttiioonn RReeqquuiirreemmeenntt

AA..33.. SSuupppplleemmeenntt

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 1

PART B AArrcchhiitteeccttuurree

BB..11.. AArrcchhiitteeccttuurree ooff LLiibbvvee

As showed in figure 1, the library is devided into two parts, the ‘top level control part’ and the ‘specific decoders’.
The top level control part is responsible of some common settings. It uses the decoder interface offered by specific
decoder modules to decode stream, and provides an interface for outside program to control the library. The specific
decoder level consists of H.264 decoder, MPEG-2 decoder, MPEG-4 decoder, VC-1 decoder and MJPEG decoder.
These decoders provide an interface for the top level control module. They only do the pure decoding work and take
no care of bitstream and frame buffer management. The two modules share some global configurations like VE
version, maximum VE speed and etc. Also some global methods are shared, mainly for register accessing, error
reporting and ve reset.

The library uses an Adapter module to make itself be Application independent. It use four interfacies offered by
the adapter to access resource which are application dependent. The IVE interface contains methods for VE
controlling, such as enable or disable clock for VE, reset VE, enable VE interrupt, etc. The IFBM interface contains
methods for controlling frame buffer manager, the library use this interface to request or release frame buffers for
decoding. The IVBV interface contains methods for video bitstream accessing, the library use this interface to request
or release video bitstream frames for decoding. The IOS interface contains methods which should be offered by the
OS, such as heap operations (malloc, palloc), memory operations (memset, memcpy), printing operations (printf), etc.
When a program wants to link the library, it should implement these three interfacies for the library.

Top Control Level

H.264
Decoder

MPEG-2
Decoder

MPEG-4
Decoder

VC-1
Decoder

MJPEG
Decoder

Libve

Configuration/Shared Variables/Global Methods
Decoder Interface

IDecode_t

Libve Interface

Pure decoding logic

Common setting for all decoders

Interface for VE Controlling Interface for Frame Buffer Interface for OS Function
IVE IFBM IOS

Libve Adapter

Specific Decoders

Interface for VBV
IVBV

Figure 1

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 1

BB..22.. RReeccoommmmeennddeedd AArrcchhiitteeccttuurree ooff DDrriivveerrss uussiinngg LLiibbvvee

As showed in Figure 2, it is recommended that a driver engineer use three modules to implement a driver for
video decoding, the VBV module, the Libve module and the FBM module. The VBV module is a bitstream FIFO, which
is responsible of receiving stream data and providing stream frame. The FBM module is a frame buffer manager,
responsible of managing empty frame buffer and display queue. The library module provides decoding functions, and
is also responsible for picture reordering, picture rotation and picture scale down.

In this architecture, application can choose any implementation solution for the VBV or FBM module, without
concerning with the video decoding issue, as long as the FBM module maintains an IFBM interface for libve. As the
driver use an OS adapter module to make itself be OS independent, most of the code can be reused when porting the
driver between different operating systems. As all modules except the libve are hardware independent, the driver is
also easy to be porting between different chips. Just change the ‘libve.a’ file for specific chip version and compile the
driver again.

Libve Adapter

OS Adapter

IVE IOS IFBM

Control Level

FBM

Driver

LIBVE VBV

IVBV

Figure 2

Refer to the annex part for the recommended implementation of VBV and FBM module.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 2

BB..33.. BBaassiicc EExxeeccuuttee FFlloowwss

BB33..11.. OOppeenn LLiibbvvee

The library should be opened before being used to decode streams. User calls the method ‘libve_open’ with
configuration information and stream information to open the library. This action may trigger the library to initialize
the FBM module using IFBM interface. If the specific decoder does not know the picture size yet, the FBM
initialization may be left to later steps when decoding stream.

The specific decoder may allocate not only one FBM module. In case of scale down or rotation fuction is
selected, the specific decoder may allocate two FBM modules, one with less frames for storing original pictures, the
other with more frames for storing scaled or rotated pictures for displaying.

After ‘libve_open’ method is successfully returned, ‘libve_set_vbv’ method should be called before decoding
bitstream. The library use the vbv handle to access and return video bitstream frames.

Figure 3

BB33..22.. CClloossee LLiibbvvee

When user wants to quit, ‘libve_close’ method should be called to close the library. In this method, the bitstream
frames oqupied by the library are returned to the VBV module throuth the IVBV interface. Picture frame buffers are
also returned to the FBM module using IFBM interface. After that, the library will call the release method in IFBM
module to release the FBM.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 3

Figure 4

BB33..33.. DDeeccooddee SSttrreeaamm FFrraammee

The library’s user calls ‘libve_decode’ method to decode video pictures from bitstream. The library will request
bitstream frame from the IVBV interface, request picture frame buffer from the IFBM interfece. After decoded, the
bitstream frame is return to the VBV module through IVBV interface. Any time when a video picture is ready to
output, the library will call the IFBM’s return method or share method to output the video picture.

If the library request bitstream frame fails, ‘libve_decode’ method will return a code to tell no bitstream frame. If
the library request frame buffer fails, ‘libve_decode’ will return a code to tell no empty picture frame buffer. If one
frame is decoded, the ‘libve_decode’ will return a code to tell a common frame or a key frame is decoded.

Figure 5

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 4

BB33..44.. RReesseett LLiibbvvee

When some error happens or video decoding process need be restarted, user can use ‘libve_reset’ method to
reset the library. User can tell whether to put the pictures kept by the library to FBM’s display queue, or just return
them as invalid frames. The library also return bitstream frames kept inside to the VBV module. After reset, the
library still keeps the initialize setting for the video stream. User can continue to call the decode method, and the
specific decoder will choose a key frame to restart the decoding process.

Figure 6

BB33..55.. RReeqquueesstt PPiiccttuurreess ttoo SShhooww aanndd rreettuurrnn PPiiccttuurreess

When the user wants to get a frame for display, it should get a handle of the FBM instance first. In case of scale
down or rotation function is opened, the specific decoder may maintain two FBM instance, one for storing original
pictures and the other for storing scaled or rotated pictures. When requested to give a handle of a FBM instance, it
will give the one which is for display (the one storing scaled or rotated pictures).

Figure 7

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 5

PART C IInntteerrffaaccee SSppeecciiffiiccaattiioonn
This part describes methods the libve provides to its user, and methods provided to the libve (IVE, IFBM, IVBV

and IOS).
Secsion C.1 introduces methods which are implemented by the library and provided to its user. The library users

use this simple interface to decode video streams. Section C.2 describes three interfacies needed by the library for
memory operation, frame buffer accessing, bitstream frame accessing and hardware controlling. These interfacies are
designed to make the library be application independent.

CC..11.. LLiibbvvee OOuuttppuutt IInntteerrffaaccee DDeessiiggnn

The libve implements a simple interface for its user to decode video streams. This interface is declared in a
header file named ‘libve.h’. There are ten methods in this interface, as below:

Table-1 methods of libve output interface

Handle libve_open (vconfig_t* config, vstream_info_t* stream_info);

vresult_e libve_close (u8 flush_pictures, Handle ve);

vresult_e libve_reset (u8 flush_pictures, Handle ve);

vresult_e libve_set_vbv (Handle vbv, Handle ve);

Handle libve_get_fbm (Handle ve);

vresult_e libve_decode (u8 keyframe_only, u8 skip_bframe, u32 cur_time, Handle ve);

vresult_e libve_get_stream_info (vstream_info_t* vstream_info, Handle ve);

u8* libve_get_version (Handle ve);

u8* libve_get_last_error (Handle ve);

vresult_e libve_flush (u8 flush_pictures, Handle ve);

 Users call ‘libve_open’ to start the libve, pasing the configuration and video stream information. When Users
want to quit, ‘libve_close’ should be called to release resource and clear hardware status. Users can call ‘libve_reset’
to make the library restart the decoding process. ‘libve_decode’ is a method for decoding one frame of video stream
data, before this method is called, users should use ‘libve_set_vbv’ to tell the library the VBV loop buffer’s base
address and its size. As the FBM module is initialized and maintained by the decoder, user need to call
‘libve_get_fbm’ to get the handle of the FBM instance to get decoded frames. Stream information may not be known
by user before the stream is decoded, if so, the user can call ‘libve_get_stream_info’ to get information about the
decoded video stream. ‘libve_get_version’ tells the current version of the library being used, and ‘libve_get_last_error’
gives a texture error description about the last operation.
 Following we will describe each function of this interface.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 6

lliibbvvee__ooppeenn

‘libve_open’ is a method for library users to config and startup VE. When calling ‘libve_open’, users should pass
in two parameters to tell the configuration and stream information. The first parameter ‘config’ is a pointer to a variable
of vconfig_t structure type, as mentioned in table 3. Library users can config the library by this parameter. The second
parameter ‘stream_info’ is a pointer to a variable of vstream_info_t structure type, as mentioned in table 4. The library
uses this parameter to select a specific decoder and use it to startup the specific decoder.

When opening a specific decoder, the FBM module will be initialized if picture size is available by the decoder. If
picture size is unknown, decoder will initialize the FBM module in ‘libve_decode’ method when picture size is decoded
from bitstream.

In this method, the VE interrupt is enabled.

Table-2 libve_open

Name libve_open

Prototype Handle libe_open (vconfig_t* config, vstream_info_t* stream_info);

Function Start up the library.

Return A handle of the VE device.

vconfig_t* config, the configuration for the library, to set the maximum supported picture size, scale down
ratio, rotation angle.

Input

vstream_info_t* stream_info, to tell the video stream information such as stream format, picture size, frame
rate, etc. The ‘stream_info’ may contain some private data for a specific decoder.

Input

Precondictions

Success Guarantee
 Configuration and stream information are backuped by specific decoder;
 VE interrupt is enable;
 VE clock is opened;

Failed End Condition

 Parameter invalid, either config or stream_info is a NULL pointer;
 Stream unsupported, maybe picture size exceeds or codec format is not supported in current version;
 Memory allocation failed when opening specific decoder;
 Failed when specific decoder initializes the FBM module;
 Private data required by the specific decoder is not valid (see the Annex part D.3).

Specific decoder may require some private data for initialization, see annex D.3 to understand the
requirements of specific decoders for stream_info.

Special Requirements

Table-3 definition of structure vconfig_t

typedef struct VLIB_CONFIG_INFO{

u32 max_video_width; //* Maximum supported video picture width;

u32 max_video_height; //* Maximum supported video picture height;

u32 max_output_width; //* Maximum supported output picture width, if exceed, decoder force VE to scale down;

u32 max_output_height; //* Maximum supported output picture height, if exceed, decoder force VE to scale down;

u8 scale_down_enable; //* Whether use hardware scale down function to decode small pictures;

u8 horizontal_scale_ratio; //* Specifies the horizon scale ratio, 0: 1/1; 1: 1/2; 2: 1/4; 3: 1/8;

u8 vertical_scale_ratio; //* Specifies the vertical scale ratio, 0: 1/1; 1: 1/2; 2: 1/4; 3: 1/8;

u8 rotate_enable; //* Whether use the hardware rotate function to decode rotated pictures;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 7

u8 rotate_angle; //* Clockwise rotate angle, 0: no ratate, 1: 90 degree; 2: 180; 3: 270; 4: horizon flip; 5: vertical
flip;

u8 use_maf; //* Whether use MAF to help deinterlace;

u32 max_memory_available; //* The library should not allocate memory more than this size, see the recommended value
//* for different format in Annex D.5, if max_memory_available == 0, the library will allocate as
//* mush memory space as it needs.

}vconfig_t;

Table-4 definition of structure vconfig_t

typedef struct VIDEO_STREAM _INFO{

stream_format_e format; //* codec such as H.264, MPEG-2, etc. stream_format_e is defined in file ‘libve_typedef.h’.

stream_sub_format_e sub_format; //* codec sub-format, stream_sub_format_e is defined in file ‘libve_typedef.h’.

container_format_e container_format; //* container format, such as AVI, RMVB, container_format_e is defined in file ‘libve_typedef.h’.

u32 video_width; //* video picture width, if unknown please set it to 0.

u32 video_height; //* video picture height, if unknown please set it to 0.

u32 frame_rate; //* frame rate, multiplied by 1000, ex. 29.970 frames per second then frame_rate = 29970.

u32 frame_duration; //* how long a video picture should be show, in unit of micro-second. (us)

u32 aspect_ratio; //* pixel width to pixel height ratio, multiplied by 1000.

u32 init_data_len; //* data length of the private data for initializing a specific decoder.

u8* init_data; //* private initial data, a specific decoder may need it to startup.

}vstream_info_t;

lliibbvvee__cclloossee

‘libve_close’ is method for the library users to close VE and release resource. User can tell whether to put the
pictures kept by the specific decoder to FBM as valid or invalid frames. Before quiting to the caller, this method will
release the FBM module through a method given by the IFBM interface.

In this method, the VE interrupt is disabled.
Table-5 ve_close

Name libve_close

Prototype vresult_e libve_close (u8 flush_pictures, Handle ve);

Function Close the library.

Return
 VRESULT_OK: success.
 VRESULT_ERR_LIBRARY_NOT_OPEN: the CSP is not opened yet.

vresult_e is defined in header file ‘libve.h’

Input u8 flush_pictures: put the pictures kept by specific decoder to FBM’s display queue or as invalid pictures.

Input Handle ve: handle of the VE device returned from the ve_open method.

Precondictions ‘libve_open’ has been successfully called.

Success Guarantee

 All resource requested by the library is released;
 FBM modules are released;
 VE interrupt is disabled;
 To save power, VE clock is disabled.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 8

Failed End Condition ‘libve_open’ has not been successfully called yet.

Special Requirements

lliibbvvee__rreesseett

‘libve_reset’ is a method for the library users to reset the VE. It will cause the specific decoder to clear its
decoding status, flush pictures. After reset, all bitstream frames requested from the VBV will be discarded until a key
bitstream frame is decoded.

Users can choose whether to put the frames kept by the specific decoder as valid frames for displaying, or as
invalid frames returning to the FBM’s empty buffer queue.

Table-6 libve_reset

Name libve_reset

Prototype vresult_e libve_reset (u8 flush_pictures, Handle ve);

Function Reset the library.

Return
 VRESULT_OK: success.
 VRESULT_ERR_LIBRARY_NOT_OPEN: the CSP is not opened yet.

vresult_e is defined in header file ‘libve.h’

Input u8 flush_pictures: put the pictures kept by specific decoder to FBM’s display queue or as invalid pictures.

Input Handle ve: handle of the VE device returned from the libve_open method.

Precondictions ‘libve_open’ has been successfully called.

Success Guarantee
 Stream information is still kept by the specific decoder;
 Pictures kept by the specific decoder are all returned to the FBM;
 Bitstream frames kept by the library are returned to the VBV.

Failed End Condition ‘libve_open’ has not been successfully called yet.

Special Requirements

lliibbvvee__sseett__vvbbvv

Before decoding stream, the library user should call ‘libve_set_vbv’ to tell the VBV handle. The library use this
information get bitstream frame and return bitstream frames, and calculate the bitstream offset of every decoded
stream frame.

Table-7 libve_set_vbv

Name libve_set_vbv

Prototype vresult_e libe_set_vbv (Handle vbv, Handle ve);

Function Set VBV’s bitstream buffer base address and buffer size to the library.

Return
 VRESULT_OK: success.
 VRESULT_ERR_LIBRARY_NOT_OPEN: the library is not opened yet.

vresult_e is defined in header file ‘libve.h’

Input Handle vbv: handle of the vbv module.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 9

Input Handle ve: handle of the VE device returned from the libve_open method.

Precondictions ‘libve_open’ has been successfully called.

Success Guarantee

Failed End Condition ‘libve_open’ has not been successfully called yet.

Special Requirements

lliibbvvee__ggeett__ffbbmm

The library user needs a handle of the FBM instance when it request frames to display. As the FBM module is
maintained by the specific decoder, the user should get the FBM handle from the library, using ‘libve_get_fbm’ method.
If the FBM module is not initialized yet, ‘libve_get_fbm’ returns a NULL handle. If not only one FBM instance is
initialized, the specific decoder should return the one which is storing pictures for display.

Table-8 libve_get_fbm

Name libve_get_fbm

Prototype Handle libve_get_fbm (Handle ve);

Function Get a handle of the FBM instance, in which pictures for display are stored.

Return
 Not NULL Handle: handle of the FBM instance.
 NULL Handle: FBM module is not initialized yet.

Input Handle ve: handle of the VE device returned from the ve_open method.

Precondictions FBM module has been initialized.

Success Guarantee

Basic Flow

Failed End Condition FBM module has not been initialized yet.

Special Requirements

lliibbvvee__ddeeccooddee

‘libve_decode’ is a method used to decode bitstream. The library gets one bitstream frame from the VBV module
and decodes it. User can chooses to decode key frames only. If so, this method will discard stream data of P/B frames.
User can also choose to discard overtime frames. In this case this method will compare the PTS of B frame and
current time (passed in by user) to check whether to discard the stream data.

In this method, the specific decoder may request empty frame buffer from FBM module. If requests buffer failed,
the library will return a fail code to tell there is no empty frame buffers.

If any frame decoded, the specific decoder should return a code to tell key frame or common frame decoded. If
there is any frame can be displayed, the specific decoder should return or share it with the FBM module.

Table-9 libve_decode

Name libve_decode_stream

Prototype vresult_e libve_decode (u8 keyframe_only, u8 skip_bframe, u32 cur_time, Handle ve);

Function Decode one bitstream frame.

Return
VRESULT_OK: decode stream success but no frame decoded;
VRESULT_FRAME_DECODED: one common frame decoded;
VRESULT_KEYFRAME_DECODED: one key frame decoded;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 10

VRESULT_ERR_FAIL: decode stream fail;
VRESULT_ERR_INVALID_STREAM: some error data in the stream, decode fail;
VRESULT_ERR_NO_MEMORY: allocate memory fail in this method;
VRESULT_ERR_NO_FRAMEBUFFER: request empty frame buffer fail in this method;
VRESULT_ERR_UNSUPPORTED: stream format is unsupported by this version of library;
VRESULT_ERR_LIBRARY_NOT_OPEN: ‘libve_open’ has not been successfully called yet.

Input u8 keyframe_only: tell the library to decode key frame only;

Input u8 skip_bframe: tell the library to skip B frame if it is overtime;

Input u32 cur_time: current time, used to compare with PTS when decoding B frame;

Input Handle ve: handle of the VE device returned from the libve_open method.

Precondictions
‘libve_open’ has been successfully called;
The VBV module has video bitstream frames;
The FBM module has empty frame buffers;

Success Guarantee
 Any frame ready for display is return to or shared with FBM;
 If valid PTS is available, PTS should be set to each frame, if not available, PTS must be set to 0xffffffff;
 PCR value is passed from the bitstream frame to the output picture;

Failed End Condition

 Parameter invalid, either stream or ve is NULL;
 Stream unsupported, maybe picture size exceeds or codec profile is not supported in current version;
 Memory allocation failed;
 Failed to get empty frame buffer

Each specific decoder has some requirement on the bitstream frame format, see the annex part D.4 to know
what format should be followed for each decoder.

Special Requirements

lliibbvvee__ggeett__ssttrreeaamm__iinnffoo

Sometimes the stream information like picture size is stored in stream data, and is not available to the library
user until decoded by the specific decoder. In this case, the library user can call ‘libve_get_stream_info’ get the stream
information.

Table-10 libve_get_stream_info

Name libve_get_stream_info

Prototype vresult_e libve_get_stream_info (vstream_info_t* vstream_info, Handle ve);

Function Get stream information from the CSP.

Return

 VRESULT_OK: success.
 VRESULT_ERR_INVALID_PARAM: either vstream_info or ve is NULL pointer;
 VRESULT_ERR_LIBRARY_NOT_OPEN: the CSP is not opened yet.

vresult_e is defined in header file ‘libve.h’

Input vstream_info_t* vstream_info: space to store video stream information.

Input Handle ve: handle of the VE device returned from the ve_open method.

Precondictions ‘libve_open’ has been successfully called.

Success Guarantee The library store the informations in vstream_info, unknown things are set to zero;

Failed End Condition
 Parameter invalid, either vstream_info or ve is a NULL pointer;
 ‘ve_open’ has not been successfully called yet;

Special Requirements

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 11

lliibbvvee__ggeett__vveerrssiioonn

‘libve_get_version’ returns a texture string describing the library’s version information, like "Allwinner
uni-v-vecoder version 1000". The digits “1000” describe software version.

Table-11 libve_get_version

Name libve_get_version

Prototype u8* libve_get_version (Handle ve);

Function Get version string of the VE library.

Return A texture string in ASCII coding, describing the library’s version information.

Input Handle ve: handle of the VE device returned from the ve_open method.

Precondictions

Success Guarantee

Basic Flow

Failed End Condition Always success.

Special Requirements

lliibbvvee__ggeett__llaasstt__eerrrroorr

If library operations return a fail result, the user can use ‘libve_get_last_error’ to get a texture string to know what
is wrong.

Table-12 libve_get_last_error

Name libve_get_version

Prototype u8* ve_get_last_error (Handle ve);

Function Get error description.

Return A texture string in ASCII coding, describing some information about the last error.

Input Handle ve: handle of the VE device returned from the ve_open method.

Precondictions

Success Guarantee

Basic Flow

Failed End Condition Always success.

Special Requirements

lliibbvvee__fflluusshh

‘libve_flush’ is a method for the library users to flush decoded pictures to FBM. It will cause the specific decoder
to flush pictures. After flush, all bitstream frames requested from the VBV will be discarded until a key bitstream frame
is decoded.

Users can choose whether to put the frames kept by the specific decoder as valid frames for displaying, or as
invalid frames returning to the FBM’s empty buffer queue.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 12

Table-13 libve_flush

Name libve_flush

Prototype void libve_flush (u8 flush_pictures, Handle ve);

Function Flush all decoded pictures to FBM module.

Return No.

Input u8 flush_pictures: put the pictures kept by specific decoder to FBM’s display queue or as invalid pictures.

Input Handle ve: handle of the VE device returned from the libve_open method.

Precondictions ‘libve_open’ has been successfully called;

Success Guarantee

Basic Flow

Failed End Condition

Special Requirements

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 13

CC..22.. IInnppuutt IInntteerrffaaccee ffoorr LLiibbvvee

As showed in Figure 1, the libve library is build upon an adapter level to make itself be application independent.
In this adapter level, four interfacies have to be implemented to support the library. The first interface is named ‘IVE’. It
is designed for operations of Video Engine controlling issue. The second interface is named ‘IFBM’. It is for the library
to access frame buffers. The third interface is named ‘IOS’. It is designed to be respondsible of OS based functions
such as heap memory allocation. The last interface is ‘IVBV’. It is designed to be respondsible of video bitstream
frame accessing. These interfacies are defined in the header file ‘libve_adapter.h’.

Below we discuss the prototype of these interfacies. The implementation of these interfacies is left to the library
user.

CC22..11.. TThhee VVEE ccoonnttrroolllliinngg iinntteerrffaaccee –– IIVVEE

The interface IVE is a set of methods responsible for VE controlling, such as open or close pll to VE module,
enable or disable VE interrupt, and reset VE hardware module. The prototype of IVE is defined as below.

In our Linux platform, the operations on VE controlling (such as opening pll for VE, enable the interrupt, getting
VE’s register base address) are implemented in the VE device driver (cedar_dev.ko, comprised in the Linux BSP). So
when implementing the ‘IVE’ interface, you may need to use the VE device driver.

Table-14 definition of IVEControl_t

typedef struct VE_CONTROL_INTERFACE{

VE_RESET_HARDWARE ve_reset_hardware; //* method to reset VE hardware;

VE_ENABLE_CLOCK ve_enable_clock; //* method to enable or disable pll to VE hardware module;

VE_ENABLE_INTR ve_enable_intr; //* method to enable or disable VE interrupt;

VE_WAIT_INTR ve_wait_intr; //* method to wait VE interrupt coming;

VE_GET_REG_BASE_ADDR ve_get_reg_base_addr; //* method to get the base address of VE registers;

VE_GET_MEMTYPE ve_get_memtype; //* method to get DRAM type, such as DDR-2 16bits, DDR-1 32bits, etc;

}IVEControl_t;

vvee__rreesseett__hhaarrddwwaarree

The library use ‘ve_reset_hardware’ to reset the VE hardware module. In our Linux BSP, the VE’s device driver
(cedar_dev.ko) implements the reset operation. You can use the ‘IOCTL_RESET_VE’ IO command of the driver to
implement ‘ve_reset_hardware’ method. Refer to the header file ‘sun3i_cedar.h’ to learn how to use the VE device
driver.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 14

Table-15 ve_reset_hardware

Name ve_reset_hardware

Prototype void ve_reset_hardware (void);

Function Reset the VE hardware module.

Return No

Input No

vvee__eennaabbllee__cclloocckk

The library use ‘ve_enable_clock’ to enable or disable clock to VE hardware module and set the clock speed. In
our Linux BSP, the VE’s device driver (cedar_dev.ko) implements the VE’s enable/disable control operation. Look up
the ‘IOCTL_ENABLE_VE’, ‘IOCTL_SET_VE_FREQ’ and ‘IOCTL_DISABLE_VE’ IO command in the header file
‘sun3i_cedar.h’.

Table-16 ve_enable_clock

Name ve_enable_clock

void ve_enable_clock (u8 enable , u32 speed); Prototype

Function Enable or disable the VE clock and set clock speed.

Return No

Input u8 enable: ‘0’ means disable VE clock, ‘1’ means enable VE clock;

Input u32 speed: clock speed in unit of Hz.

vvee__eennaabbllee__iinnttrr

The library use ‘ve_enable_intr’ to enable or disable VE interrupt. When VE interrupt is enabled, an interrupt
service routine should be register to system to serve the interrupt. In this interrupt routine, you just clear the specific
decoder’s interrupt enable bits and return.

In our Linux BSP for F20, the interrupt serve routine has been implemented inside the VE’s device driver
(cedar_dev.ko). This ISR clear the VE’s interrupt enable bits to disable the interrupt, and leave the VE’s status bits to
be handled by Libve. The VE interrupt is enabled when the device driver ‘cedar_dev.ko’ is installed. So you may
implement nothing for this method.

Table-17 ve_enable_intr

Name ve_enable_intr

Prototype void ve_enable_intr (u8 enable);

Function Enable or disable the VE interrupt.

Return No

Input u8 enable: ‘0’ means disable VE interrupt, ‘1’ means enable VE interrupt;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 15

vvee__wwaaiitt__iinnttrr

The library use ‘ve_wait_intr’ to wait for VE interrupt coming. This method should suspend the thread until a VE
interrupt comes. In our Linux BSP, the VE’s interrupt is handled by the device driver ‘cedar_dev.ko’. You should use
the IO command ‘IOCTL_WAIT_VE’ of this driver to wait for VE’s interrupt. This IO command suspends the thread
until a VE interrupt is handled.

Table-18 ve_wait_intr

Name ve_wait_intr

Prototype s32 ve_wait_intr (void);

Function Pend for VE interrupt coming.

Return ‘0’ means a VE interrupt comes, ‘-1’ means wait time out but VE interrupt still not comes.

Input No

vvee__ggeett__rreegg__bbaassee__aaddddrr

The library use ‘ve_get_reg_base_addr’ to get the virtual base address of the VE registers. In our Linux BSP,
you should map the VE’s register address space from the ‘cedar_dev.ko’ device driver. Like below:

fd = open("/dev/cedar_dev", O_RDWR);
ioctl(fd, IOCTL_GET_ENV_INFO, (unsigned long)& env_info);
env_info.address_macc = (unsigned int)mmap(NULL, 2048, PROT_READ | PROT_WRITE, MAP_SHARED, fd, env_info.address_macc);
ve_reg_base = env_info.address_macc;

Table-19 ve_get_reg_base_addr

Name ve_get_reg_base_addr

Prototype u32 ve_get_reg_base_addr (void);

Function Get the virtual base address of VE registers.

Return Base address of VE registers.

Input No

vvee__ggeett__mmeemmttyyppee

The library use ‘ve_get_memtype’ to get the DRAM type. VE hardware needs to know this information to select
the DRAM accessing method. The memory type is defined in header file ‘libve_typedef.h’. Currently six types are
defined. They are MEMTYPE_DDR1_16BITS, MEMTYPE_DDR1_32BITS, MEMTYPE_DDR2_16BITS,
MEMTYPE_DDR2_32BITS, MEMTYPE_DDR3_16BITS and MEMTYPE_DDR3_32BITS.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 16

Table-20 ve_get_memtype

Name ve_get_memtype

Prototype memtype_e ve_get_memtype (void);

Function Get the DRAM type, VE hardware module use this information to choose a DRAM accessing method.

Return

 MEMTYPE_DDR1_16BITS: DDR-1 DRAM with 16 bits bus width;
 MEMTYPE_DDR1_32BITS: DDR-1 DRAM with 32 bits bus width;
 MEMTYPE_DDR2_16BITS: DDR-2 DRAM with 16 bits bus width;
 MEMTYPE_DDR2_32BITS: DDR-2 DRAM with 32 bits bus width.
 MEMTYPE_DDR3_16BITS: DDR-3 DRAM with 16 bits bus width.
 MEMTYPE_DDR3_32BITS: DDR-3 DRAM with 32 bits bus width.

Input No

CC22..22.. TThhee FFrraammee BBuuffffeerr MMaannaaggeerr iinntteerrffaaccee –– IIFFBBMM

The interface IFBM is a set of methods responsible for frame buffer accessing. The prototype of IFBM is defined
as below:

Table-21 definition of IFBM_t

typedef struct FRAME_BUFFER_MANAGE_INTERFACE{

FBM_INIT fbm_init; //* method to create a FBM instance;

FBM_RELEASE fbm_release; //* method to release a FBM instance;

FBM_REQUEST_FRAME fbm_request_frame; //* method to request an empty frame from a FBM instance;

FBM_RETURN_FRAME fbm_return_frame; //* method to return a frame to a FBM instance;

FBM_SHARE_FRAME fbm_share_frame; //* method to share a frame with a FBM instance;

}IFBM_t;

ffbbmm__iinniitt

The specific decoder uses this method to initialize a FBM instance. If scale down or rotate function is opened,
two FBM instance will be initialized, one for storing original picture and the other for storing scaled or rotated picture.

Table-22 fbm_init

Name fbm_init

Prototype Handle fbm_init(u32 num_frames, u32 frame_width, u32 frame_height, pixel_format_e format);

Function Initialize a FBM instance for storing pictures.

Return
 NULL: failed;
 Not NULL Handle: Handle of a FBM instance;

Input num_frames: how many frame buffers to allocate;

Input frame_width: the stored picture’s width;

Input frame_height: the stored picture’s height;

Input format: pixel format of the stored picture, such as ARGB or YUV420, etc;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 17

ffbbmm__rreelleeaassee

The specific decoder uses this method to release FBM instance. When the decoder quit, this method will be
called to release frame buffers.

Table-23 fbm_release

Name fbm_release

Prototype void fbm_release(Handle fbm);

Function Release an instance of FBM module.

Return No

Input fbm: the handle of a FBM instance that was returned by fbm_init() methed;

ffbbmm__rreeqquueesstt__ffrraammee

The specific decoder uses this method to request an empty frame buffer for decoding.
Table-24 fbm_request_frame

Name fbm_request_frame

Prototype vpicture_t* fbm_request_frame(Handle fbm);

Function The specific decoder request an empty frame buffer from the FBM module.

Return
 NULL: failed to get an empty frame buffer;
 Not NULL pointer: Handle of an empty frame buffer;

Input fbm: the handle of a FBM instance that was returned by fbm_init() methed;

ffbbmm__rreettuurrnn__ffrraammee

The specific decoder uses this method to return a frame that is no longer needed.
Table-25 fbm_return_frame

Name fbm_request_frame

Prototype void fbm_return_frame(vpicture_t* frame, u8 valid, Handle fbm);

Function The specific decoder returns a frame to the FBM module.

Return No.

Input frame: the frame to return;

Input valid: whether the returned frame is valid for display;

Input fbm: the handle of a FBM instance that was returned by fbm_init() methed;

 The vpicture_t structure is defined in header file ‘libve_typedef.h’ as below:

Table-26 definition of vpicture_t

typedef struct VIDEO_PICTURE{

u32 id; //* index of the frame, set by the FBM module itself, other program should not change it;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 18

u32 width; //* the width of valid picture content, set by the specific decoder;

u32 height; //* the height of valid picture content, set by the specific decoder;

u8 rotate_angle;
//* how this picture has been rotated, 0: no ratate, 1: 90 degree; 2: 180; 3: 270; 4: horizon
//* flip; 5: vertical flip;

u8 horizontal_scale_ratio;
//* what ratio this picture has been scaled down at horizontal direction, 0: 1/1, 1: 1/2,
//* 2: 1/4, 3: 1/8;

u8 vertical_scale_ratio;
//* what ratio this picture has been scaled down at vertical direction, 0: 1/1, 1: 1/2,
//* 2: 1/4, 3: 1/8;

u32 store_width;
//* the stored picture’s width in memory, may be a little bigger than ‘width’ as it have to be
//* a multiple of ‘32’;

u32 store_height;
//* the stored picture’s height in memory, may be a little bigger than ‘height’ as it have
//* to be a multiple of ‘32’;

u32 frame_rate; //* frame rate of the video stream, the video render module may need this field;

u32 aspect_ratio; //* aspect ration of this picture, it must be set by the specific decoder;

u8 is_progressive; //* whether this picture is interlace structure or progressive structure;

u8 top_field_first; //* if this picture is interlace structure, whether to display the top field first;

u8 repeat_top_field; //* if this picture is interlace structure, whether to repeat the top field when display;

u8 repeat_bottom_field; //* if this picture is interlace structure, whether to repeat the bottom field when display;

pixel_format_e pixel_format; //* the pixel format of this picture, such as ARGB or YUV420, etc;

u32 pts;
//* the presentation time of this picture, must be set by the specific decoder. If unknown,
//* set it to be 0xffffffff;

u8* y; //* the content address of Y component in YUV format or R component in RGB format;

u8* u; //* the content address of U component in YUV format or G component in RGB format;

u8* v; //* the content address of V component in YUV format or B component in RGB format;

u8* alpha; //* the alpha data address when this picture is in ARGB format;

}vpicture_t;

 Before a picture is returned as a valid picture, the specific decoder has to set some field of the picture. These
fields includes: width, height, aspect_ratio, is_progressive, top_field_first, repeat_top_field, repeat_bottom_field,
pixel_format, pts, y, u, v and alpha.

ffbbmm__sshhaarree__ffrraammee

The specific decoder uses this method to share a picture with the FBM module. When a picture is ready to
display but the specific decoder still need it to be a reference picture for decoding, this picture should be shared
between the specific decoder and the FBM module.

Table-27 fbm_share_frame

Name fbm_share_frame

Prototype void fbm_return_frame(vpicture_t* frame, Handle fbm);

Function The specific decoder shares a frame with the FBM module.

Return No.

Input frame: the frame to share;

Input fbm: the handle of a FBM instance that was returned by fbm_init() methed;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 19

CC22..33.. TThhee OOSS iinntteerrffaaccee –– IIOOSS

The interface IOS is a set of methods responsible for OS dependent functions that the library needs to use. The
prototype of IOS is defined as below:

Table-31 definition of IOS_t

typedef struct FRAME_BUFFER_MANAGE_INTERFACE{

MEM_ALLOC mem_alloc; //* method to allocate buffer from heap;

MEM_FREE mem_free; //* method to release buffer to heap;

MEM_PALLOC mem_palloc; //* method to allocate physically continue buffer from heap;

MEM_PFREE mem_pfree; //* method to release buffer allocated by mem_palloc;

MEM_SET mem_set; //* method to set memory;

MEM_CPY mem_cpy; //* method to copy memory;

MEM_FLUSH_CACHE mem_flush_cache; //* method to flush cache content to memory;

MEM_GET_PHY_ADDR mem_get_phy_addr; //* method to change a virtual memory address to a get physical address;

SYS_PRINT sys_print //* method to printf string;

SYS_SLEEP sys_sleep; //* method to let a task itself sleep for some time;

}IOS_t;

mmeemm__aalllloocc

This method is used to allocate memory buffer, and it should work as the ‘malloc’ method defined in “ANCI C”
standard.

Table-28 mem_alloc

Name mem_alloc

Prototype void* mem_alloc(u32 size);

Function Allocate memory buffer.

Return Buffer address.

Input size: buffer size in unit of byte;

mmeemm__ffrreeee

This method is used to free memory buffer that was allocated by ‘mem_alloc’. It works as the ‘free’ method
defined in “ANCI C” standard.

Table-29 mem_free

Name mem_free

Prototype void mem_free(void* p);

Function Free memory buffer.

Return No.

Input p: address of the buffer to free;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 20

mmeemm__ppaalllloocc

In many systems, MMU may be used to remap scattered memory space as one continuous block of memory for
CPU. This is called logic continue. For other hardware modules such as VE, memory space that is realy continuous is
need. ‘mem_palloc’ is a method used to allocate physically continuous memory buffer.

Table-30 mem_palloc

Name mem_palloc

Prototype void* mem_palloc(u32 size, u32 align);

Function Allocate physically continuous memory buffer.

Return Address of the buffer.

Input size: buffer size in unit of bytes;

Input align: requirement of the buffer’s start address align, in unit of bytes;

mmeemm__ppffrreeee

This method is used to free memory buffer that was allocated by ‘mem_palloc’.

Table-31 mem_pfree

Name mem_pfree

Prototype void mem_pfree(void* p);

Function Free memory buffer allocated by ‘mem_palloc’.

Return No.

Input p: address of the buffer to free;

mmeemm__sseett

This method works as the ‘memset’ function defined in ‘ANCI C’ standard.

Table-32 mem_set

Name mem_set

Prototype void mem_set(void* mem, u32 value, u32 size);

Function Set every byte of a buffer to be ‘value’.

Return No.

Input mem: address of the buffer to set;

Input value: byte value to set;

Input size: number of bytes in the buffer to set;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 21

mmeemm__ccppyy

This method works as the ‘memcpy’ function defined in ‘ANCI C’ standard.

Table-33 mem_cpy

Name mem_cpy

Prototype void mem_cpy(void* dst, void* src, u32 size);

Function Copy content from buffer ‘src’ to buffer ‘dst’.

Return No.

Input dst: address of the destinate buffer;

Input src: address of the content source;

Input size: how many bytes to copy from ‘src’ to ‘dst’;

mmeemm__fflluusshh__ccaatthhee

This method is used to flush content from CPU’s cathe to DRAM, so other hardware modules can use this
content.

Table-34 mem_flush_cathe

Name mem_flush_cathe

Prototype void mem_flush_cathe(void* mem, u32 size);

Function Flush content from cathe to DRAM.

Return No.

Input mem: address of the cached memory;

Input size: how many bytes to flush;

mmeemm__ggeett__pphhyy__aaddddrr

This method is used to transform a virtual memory address to a physical address that hardware modules can
use. A physical memory address may be mapped by the MMU to a virtual memory address, but hardware modules
may access memory without using the MMU, so physical address is need.

Table-35 mem_get_phy_addr

Name mem_get_phy_addr

Prototype u32 mem_get_phy_addr (u32 virtual_addr);

Function Convert a virtual memory address to a physical address that hardware modules can use.

Return The physical memory address.

Input virtual_addr: the virtual memory address to convert;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 22

ssyyss__pprriinntt

‘sys_print’ is a method that the library uses to print strings. Its implement is up to different application. Its
prototype is defined as below:

Table-36 sys_print

Name sys_print

Prototype s32 sys_print(u8* format, …);

Function Printing string, act as the ‘printf’ function defined in ‘ANCI C’ standard.

Return 0 if success and -1 if failed.

Input format: the format string, such as “pinrt a number %d and a string %s”;

Input …: other parameters depend on ‘format’.

ssyyss__sslleeeepp

‘sys_sleep’ is a method to make a thread sleep for some time.

Table-37 sys_sleep

Name sys_sleep

Prototype Void sys_sleep(u32 ms);

Function A thread calls this method to sleep for some time.

Return No.

Input ms: milliseconds sleep;

CC22..44.. TThhee VVBBVV iinntteerrffaaccee –– IIVVBBVV

The VBV is a module to manage bitstream frames. It maintains a loop buffer to receive bitstream data from a file
parser, and share this loop buffer with VE to decode bitstream.

The IVBV interface is a set of methods for Libve to access video bitstream frames. The prototype of IVBV is
defined below.

Table-38 definition of IVBV_t

typedef struct BITSTREAM_FRAME_MANAGE_INTERFACE{

VBV_REQUEST_BITSTREAM_FRAME vbv_request_bitstream_frame; //* decode request one bitstream frame from VBV;

VBV_RETURN_BITSTREAM_FRAME vbv_return_bitstream_frame; //* decode didn’t decode the stream yet, return it to the VBV;

VBV_FLUSH_BITSTREAM_FRAME vbv_flush_bitstream_frame; //* decoder has decode the stream, tell the VBV to flush it;

VBV_GET_BASE_ADDR vbv_get_base_addr; //* get the vbv loop buffer start address;

VBV_GET_SIZE vbv_get_size; //* get the vbv loop buffer size in unit of byte;

}IVBV_t;

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 23

vvbbvv__rreeqquueesstt__bbiittssttrreeaamm__ffrraammee

 The libve use this method to get one bitstream frame for decoding. This happens when libve_decode method is
called. For some decoders like MPEG2, H264 and VC-1, libve may request more than one bitstream frames.

Table-39 vbv_request_bitstream_frame

Name vbv_request_bitstream_frame

Prototype vstream_data_t* vbv_request_bitstream_frame(Handle vbv);

Function Request one bitstream frame from the VBV module.

Return Pointer to a Bitstream frame, NULL if fail.

Input Handle vbv: handle of the vbv module, libve get this handle when ‘libve_set_vbv’ is called.

vvbbvv__rreettuurrnn__bbiittssttrreeaamm__ffrraammee

 When one bitstream frame is requested by libve but not decoded yet, it will be return to the VBV module for next
request. This may happens in the situation that one bitstream frame is requested by libve get no empty picture frame
buffer for decoding. The VBV module should keep this bitstream frame again and pass it to the decoder at next
request operation.

Table-40 vbv_return_bitstream_frame

Name vbv_return_bitstream_frame

Prototype void* vbv_return_bitstream_frame(vstream_data_t* stream, Handle vbv);

Function Return bitstream frame to the VBV module.

Return No.

Input vstream_data_t* stream: pointer to a Bitstream frame;

Input Handle vbv: handle of the vbv module, libve get this handle when ‘libve_set_vbv’ is called.

vvbbvv__fflluusshh__bbiittssttrreeaamm__ffrraammee

 After one bitstream is decoded by libve, it should be flush frome the VBV module to release memory space for
the new coming bitstream frames. Libve use this method to tell the VBV module that one bitstream frame is finished
and should be flush out.

Table-41 vbv_flush_bitstream_frame

Name vbv_flush_bitstream_frame

Prototype void* vbv_flush_bitstream_frame(vstream_data_t* stream, Handle vbv);

Function Flush bitstream frame out from the VBV module.

Return No.

Input vstream_data_t* stream: pointer to a Bitstream frame;

Input Handle vbv: handle of the vbv module, libve get this handle when ‘libve_set_vbv’ is called.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 24

vvbbvv__ggeett__bbaassee__aaddddrr

 As libve shares a loop buffer with the VBV module for bitstream data, it needs to know the buffer’s start address
and the buffer’s size. That because one bitstream frame data may cross the loop buffer’s end and loop back to the
start.

Table-42 vbv_get_base_addr

Name vbv_get_base_addr

Prototype u8* vbv_get_base_addr(Handle vbv);

Function Get the VBV module’s loop buffer base address.

Return The VBV module’s loop buffer base address;

Input Handle vbv: handle of the vbv module, libve get this handle when ‘libve_set_vbv’ is called.

vvbbvv__ggeett__ssiizzee

As libve shares a loop buffer with the VBV module for bitstream data, it needs to know the buffer’s start address
and the buffer’s size. That because one bitstream frame data may cross the loop buffer’s end and loop back to the
start.

Table-43 vbv_get_size

Name vbv_get_size

Prototype u32 vbv_get_size (Handle vbv);

Function Get the VBV module’s loop buffer size

Return The VBV module’s loop buffer size;

Input Handle vbv: handle of the vbv module, libve get this handle when ‘libve_set_vbv’ is called.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 25

AAnnnneexx

DD..11.. AA rreeccoommmmeennddeedd ddeessiiggnn ooff tthhee VVBBVV mmoodduullee

 The architecture of VBV module is etails about the implementation, please

The VBV module is designed to mange video bitstream frame data stored in a loop buffer. There are mainly two
threads operating on the loop buffer, the data pasing thread and the decode thread. The data parsing thread write
video stream frames into the loop buffer. It request buffer from the VBV module, write video stream data into the buffer
and then tell the VBV module that it has update the buffer with video data. The decoding thread decodes video
bitstream data and output pictures. It request bitstream frame from the VBV module, decode the data and then tell the
VBV module to flush the bitstream frame to release buffer.

In our VBV module, the data parsing thread uses the ‘vbv_request_buffer’ method to request buffer from the
VBV module. When one bitstream frame is ready, the data parsing thread uses the ‘vbv_add_stream’ method to add
one frame of bitstream to the VBV module. The decoding thread uses the ‘vbv_request_stream_frame’ method to
request bitstream frame for decoding. If one bitstream frame is decoded, the decoding thread calls the
‘vbv_flush_bitstream_frame’ method to flush it to release buffer. If one bitstream frame is not decoded, the decoding
thread may call the ‘vbv_return_bitstream_frame’ method to return it to the VBV module.

Figure 8 Architecture of VBV module

described in the figure above. For d
refer to the source code ‘vbv.h’ and ‘vbv.c’.

Loop Buffer

valid_size 8* read_addr u8* write_addr

u8* vbv_buf
u8* vbv_buf_end

max_size

frame_fifo

frame_fifo.read_index frame_fifo.write_index

frame_num
max_frame_num

stream_queue

decoder using

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 26

DD..22.. AA rreeccoommmmeennddeedd ddeessiiggnn ooff tthhee FFBBMM mmoodduullee

The architecture of FBM module is etails of implementation, please refer to
the s

The FBM module is a module for picture frame buffer managing. There are mainly two threads operating on the
FBM module, the decoding thread and the video render thread. The decoding thread requests empty frame buffer
from the FBM module, decodes picture data to the buffer. If one picture frame can be send to displayed, the decoder
thread will return or share (in case that the decoder still need the frame as a reference frame) the frame buffer to the
FBM module. The render thread requests pictures from the FBM module, displays the picture and then returns it to the
FBM module.

In our FBM module, the decoding thread uses ‘fbm_decoder_request_frame’ method to request empty frame
buffer. When one picture is decoded and the decoder does not need this picture anymore, the decoder calls
‘fbm_decoder_return_frame’ to return the picture to the FBM module. If the decoded picture should be display but the
decoder still need the picture as a reference frame, the ‘fbm_decoder_share_frame’ method will be called by the
decoder to share this frame.

frames [max_frame_num]

empty_queue display_queue

decoder using

Figure 9 Architecture of FBM module

described in the figure above. For d
ource code ‘fbm.h’ and ‘fbm.c’.

render using
frame status

decoder using &
display discard

decoder using &
display using

decoder using

display using

empty

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 27

DD..33.. RReeqquuiirreemmeenntt ffoorr iinniittiiaalliizziinngg ssttrreeaamm iinnffoorrmmaattiioonn

When opening libve, the stream information should be passed in to ‘libve_open’ method. The structure of stream
information is defined as below:

Table-44 definition of structure vconfig_t

typedef struct VIDEO_STREAM _INFO{

stream_format_e format; //* codec such as H.264, MPEG-2, etc. stream_format_e is defined in file ‘libve_typedef.h’.

stream_sub_format_e sub_format; //* codec sub-format, stream_sub_format_e is defined in file ‘libve_typedef.h’.

container_format_e container_format; //* container format, such as AVI, RMVB, container_format_e is defined in file ‘libve_typedef.h’.

u32 video_width; //* video picture width, if unknown please set it to 0.

u32 video_height; //* video picture height, if unknown please set it to 0.

u32 frame_rate; //* frame rate, multiplied by 1000, ex. 29.970 frames per second then frame_rate = 29970.

u32 frame_duration; //* how long a video picture should be show, in unit of micro-second. (us)

u32 aspect_ratio; //* pixel width to pixel height ratio, multiplied by 1000.

u32 init_data_len; //* data length of the private data for initializing a specific decoder.

u8* init_data; //* private initial data, a specific decoder may need it to startup.

}vstream_info_t;

The ‘format’ field is used to decide which specific decoder in VE to use. It should be set with one enumeration

value of stream_format_e defined in ‘libve_typedef.h’, such as STREAM_FORMAT_MPEG2.
The ‘sub_format’ field is important for MPEG4 decoder. In MPEG4 decoder, we implement several standards

such as XVID, DIVX3, DIVX4, DIVX5, H263, VP6 and so on. This field should be set with one enumeration value of
stream_sub_format_e.

The ‘container_format’ is used to identify in which file format is the video stream packeted. Just set it to one
enumeration value of container_format_e defined in ‘libve_typedef.h’ according to the file type.

The ‘video_width’ and ‘video_height’ field are the source video picture size. For some file format, these fields
may not be known at the beginning. In this case, set them to zero and let the decoder to find this information.

The ‘frame_rate’ field means how many pictures should be displayed in one second. This field will be passed
through to the video render with every picture frame. Sometimes this field is also used to guess video picture
presentation time when PTS is invalid.

The ‘aspect_ratio’ field means the ratio of the video source’s pixel width and pixel height. If this field can not be
parsed from the file, just set it to 1000. The decoder will handle this information and passes it through to the video
render.

The ‘init_data’ field contains some private data for some decoder. Below we introduce what the init_data is for
each decoder.

1. MPEG4:
//* TODO.

2. H264:

//* TODO.

3. MPEG1/2:
//* TODO.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 28

4. VC-1:
//* TODO.

5. AVS:

//* TODO.

6. MJPEG:
//* TODO.

7. VP8:

//* TODO.

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 29

DD..44.. RReeqquuiirreemmeenntt oonn bbiittssttrreeaamm ffoorrmmaatt

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 30

DD..55.. RReeccoommmmeennddaattiioonn ooff mmeemmoorryy ssiizzee ffoorr ddeeccooddeerrss

Confidential 3 Copyright ○c All Winner Limited. All right reserved. 31

	PART A Requirement
	A.1. Application Scene
	A.2. Function Requirement
	A.3. Supplement

	PART B Architecture
	B.1. Architecture of Libve
	B.2. Recommended Architecture of Drivers using Libve
	B.3. Basic Execute Flows
	B3.1. Open Libve
	B3.2. Close Libve
	B3.3. Decode Stream Frame
	B3.4. Reset Libve
	B3.5. Request Pictures to Show and return Pictures

	PART C Interface Specification
	C.1. Libve Output Interface Design
	libve_open
	libve_close
	libve_reset
	libve_set_vbv
	libve_get_fbm
	libve_decode
	libve_get_stream_info
	libve_get_version
	libve_get_last_error
	libve_flush

	C.2. Input Interface for Libve
	C2.1. The VE controlling interface – IVE
	ve_reset_hardware
	ve_enable_clock
	ve_enable_intr
	ve_wait_intr
	ve_get_reg_base_addr
	ve_get_memtype

	C2.2. The Frame Buffer Manager interface – IFBM
	fbm_init
	fbm_release
	fbm_request_frame
	fbm_return_frame
	fbm_share_frame

	C2.3. The OS interface – IOS
	mem_alloc
	mem_free
	mem_palloc
	mem_pfree
	mem_set
	mem_cpy
	mem_flush_cathe
	mem_get_phy_addr
	sys_print
	sys_sleep

	C2.4. The VBV interface – IVBV
	vbv_request_bitstream_frame
	vbv_return_bitstream_frame
	vbv_flush_bitstream_frame
	vbv_get_base_addr
	vbv_get_size

	 Annex
	D.1. A recommended design of the VBV module
	D.2. A recommended design of the FBM module
	D.3. Requirement for initializing stream information
	D.4. Requirement on bitstream format
	D.5. Recommendation of memory size for decoders

