N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:201x

Programming languages — C

ABSTRACT

(Cover sheet to be provided by ISO Secretariat.)

This International Standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to promote
portability, reliability, maintainability, and efficient execution of C language programs on
a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language
execution library. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language
programmers as well as implementors of C language translation systems, the document
itself is not designed to serve as a tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

Changes from the previous draft (N1539) are indicated by “diff marks™ in the right
margin: deleted text is marked with *“+”’, new or changed text with ““|”

Abstract i

ISO/IEC 9899:201x

Committee Draft — April 12, 2011

N1570

N1570

Contents
Foreword

Introduction

1.

Scope

2. Normative references

3. Terms, definitions, and symbols
4,
5.

Conformance

Environment

5.1 Conceptual models .
5.1.1 Translation envwonment
5.1.2 Execution environments

5.2 Environmental considerations
5.2.1 Character sets
5.2.2 Character display semantlcs
5.2.3 Signals and interrupts
5.2.4 Environmental limits

Language

6.1 Notation

6.2 Concepts Coe
6.2.1 Scopes of |dent|f|ers
6.2.2 Linkages of identifiers
6.2.3 Name spaces of identifiers
6.2.4 Storage durations of objects
6.2.5 Types
6.2.6 Representations of types

6.2.7 Compatible type and composite type

6.2.8 Alignment of objects
6.3 Conversions ..
6.3.1 Arithmetic operands
6.3.2 Other operands
6.4 Lexical elements
6.4.1 Keywords
6.4.2 ldentifiers . .
6.4.3 Universal character names
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators
6.4.7 Header names
6.4.8 Preprocessing numbers
6.49 Comments

Contents

Committee Draft — April 12, 2011

ISO/IEC 9899:201x

Xiii

Xvii

10
10
10
12
22
22
24
25
25

35
35
35
35
36
37
38
39
44
47
48
50
50
54
57
58
59
61
62
70
72
73
74
75

ISO/IEC 9899:201x

6.5

6.6
6.7

6.8

6.9

6.10

Expressions Coe

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

Primary expressions

Postfix operators

Unary operators

Cast operators .
Multiplicative operators
Additive operators

Bitwise shift operators
Relational operators

Equality operators

Bitwise AND operator
Bitwise exclusive OR operator
Bitwise inclusive OR operator
Logical AND operator
Logical OR operator
Conditional operator
Assignment operators
Comma operator

Constant expressions
Declarations

6.7.1 Storage-class specifiers
6.7.2 Type specifiers

6.7.3 Type qualifiers

6.7.4 Function specifiers
6.7.5 Alignment specifier
6.7.6 Declarators

6.7.7 Type names

6.7.8 Type definitions

6.7.9 Initialization

6.7.10 Static assertions

Statements and blocks

6.8.1 Labeled statements

6.8.2 Compound statement .
6.8.3 Expression and null statements
6.8.4 Selection statements

6.8.5 Iteration statements

6.8.6 Jump statements

External definitions

6.9.1
6.9.2

Function definitions
External object definitions

Preprocessing directives

Committee Draft — April 12, 2011

6.10.1 Conditional inclusion
6.10.2 Source file inclusion
6.10.3 Macro replacement

N1570

76
78
79
88
91
92
92
94
95
96
97
98
98
99
99
100
101
105
106
108
109
111
121
125
127
128
136
137
139
145
146
146
147
147
148
150
151
155
156
158
160
162
164
166

N1570

6.11

Committee Draft — April 12, 2011

6.10.4 Line control

6.10.5 Error directive

6.10.6 Pragma directive

6.10.7 Null directive .
6.10.8 Predefined macro names
6.10.9 Pragma operator

Future language directions

6.11.1 Floating types

6.11.2 Linkages of identifiers
6.11.3 External names .
6.11.4 Character escape sequences
6.11.5 Storage-class specifiers
6.11.6 Function declarators
6.11.7 Function definitions
6.11.8 Pragma directives

6.11.9 Predefined macro names

7. Library

7.1

7.2

7.3

7.4

7.5
7.6

7.7

Introductlon

7.1.1 Definitions of terms
7.1.2 Standard headers

7.1.3 Reserved identifiers
7.1.4 Use of library functions
Diagnostics <assert.h>
7.2.1 Program diagnostics
Complex arithmetic <complex.h>
7.3.1 Introduction

7.3.2 Conventions

7.3.3 Branch cuts

7.34 ThecX LIMITED RANGE pragma

7.35 Trigonometric functions

7.3.6 Hyperbolic functions .
7.3.7 Exponential and logarithmic functlons
7.3.8 Power and absolute-value functions
7.3.9 Manipulation functions

Character handling <ctype.h>

7.4.1 Character classification functlons
7.4.2 Character case mapping functions
Errors <errno.h> . .
Floating-point environment <fenv h>
7.6.1 The FENV_ACCESS pragma

7.6.2 Floating-point exceptions

7.6.3 Rounding

7.6.4 Environment

Characteristics of floating types <float h>

Contents

ISO/IEC 9899:201x

173
174
174
175
175
178
179
179
179
179
179
179
179
179
179
179

180
180
180
181
182
183
186
186
188
188
189
189
189
190
192
194
195
196
200
200
203
205
206
208
209
212
213
216

ISO/IEC 9899:201x Committee Draft — April 12, 2011

Vi

7.8

7.9
7.10
7.11

7.12

7.13

7.14

7.15
7.16

7.17

7.18
7.19
7.20

Format conversion of integer types <inttypes.h>
7.8.1 Macros for format specifiers . .
7.8.2 Functions for greatest-width integer types
Alternative spellings <iso646 .h>

Sizes of integer types <limits.h>

Localization <locale.h>

7.11.1 Locale control :
7.11.2 Numeric formatting conventlon mquwy
Mathematics <math.h> .

7.12.1 Treatment of error condltlons

7.12.2 The FP_CONTRACT pragma

7.12.3 Classification macros

7.12.4 Trigonometric functions

7.12.5 Hyperbolic functions .

7.12.6 Exponential and logarithmic functlons
7.12.7 Power and absolute-value functions

7.12.8 Error and gamma functions

7.12.9 Nearest integer functions

7.12.10 Remainder functions

7.12.11 Manipulation functions

7.12.12 Maximum, minimum, and posmve dlfference functlons

7.12.13 Floating multiply-add

7.12.14 Comparison macros

Nonlocal jJumps <setjmp.h>

7.13.1 Save calling environment

7.13.2 Restore calling environment
Signal handling <signal.h>

7.14.1 Specify signal handling

7.14.2 Send signal

Alignment <stdalign.h>

Variable arguments <stdarg.h> .
7.16.1 Variable argument list access macros
Atomics <stdatomic.h>

7.17.1 Introduction

7.17.2 Initialization .

7.17.3 Order and consistency

7.17.4 Fences .

7.17.5 Lock-free property

7.17.6 Atomic integer types

7.17.7 Operations on atomic types
7.17.8 Atomic flag type and operations
Boolean type and values <stdbool.h>
Common definitions <stddef .h>
Integer types <stdint.h>

Contents

N1570

217
217
218
221
222
223
224
225
231
233
235
235
238
240
242
247
249
251
254
255
257
258
259
262
262
263
265
266
267
268
269
269
273
273
274
275
278
279
280
282
285
287
288
289

N1570

7.21

1.22

7.23
7.24

7.25
7.26

7.27

Committee Draft — April 12, 2011

7.20.1 Integer types . .
7.20.2 Limits of specified-width mteger types
7.20.3 Limits of other integer types

7.20.4 Macros for integer constants
Input/output <stdio.h>

7.21.1 Introduction

7.21.2 Streams

7.21.3 Files . .

7.21.4 Operations on flles

7.21.5 File access functions

7.21.6 Formatted input/output functlons
7.21.7 Character input/output functions
7.21.8 Direct input/output functions

7.21.9 File positioning functions

7.21.10 Error-handling functions

General utilities <stdlib.h>

7.22.1 Numeric conversion functions

7.22.2 Pseudo-random sequence generation functlons

7.22.3 Memory management functions
7.22.4 Communication with the environment
7.22.5 Searching and sorting utilities

7.22.6 Integer arithmetic functions

7.22.7 Multibyte/wide character conversion functlons

7.22.8 Multibyte/wide string conversion functions
_Noreturn <stdnoreturn.h>
String handling <string.h>
7.24.1 String function conventions
7.24.2 Copying functions

7.24.3 Concatenation functions
7.24.4 Comparison functions
7.24.5 Search functions

7.24.6 Miscellaneous functions
Type-generic math <tgmath.h>
Threads <threads.h>

7.26.1 Introduction .

7.26.2 Initialization functlons
7.26.3 Condition variable functions
7.26.4 Mutex functions

7.26.5 Thread functions

7.26.6 Thread-specific storage functlons
Date and time <time.h>

7.27.1 Components of time

7.27.2 Time manipulation functions
7.27.3 Time conversion functions

Contents

ISO/IEC 9899:201x

289
291
293
294
296
296
298
300
302
304
309
330
335
336
338
340
341
346
347
350
354
356
357
359
361
362
362
362
364
365
367
371
373
376
376
378
378
380
383
386
388
388
389
392

vii

ISO/IEC 9899:201x Committee Draft — April 12, 2011

viii

7.28 Unicode utilities <uchar.h>

7.29

7.30 Wide character classification and mapplng ut|I|t|es <wctype h>

7.31

7.28.1

Restartable multibyte/wide character conversion functrons

Extended multibyte and wide character utilities <wchar .h>

7.29.1
7.29.2
7.29.3
7.29.4

7.29.5
7.29.6

7.30.1
7.30.2

7.30.3

Introduction

Formatted wide character mput/output functlons

Wide character input/output functions

General wide string utilities .
7.29.4.1 Wide string numeric conversion functlons
7.29.4.2 Wide string copying functions

7.29.4.3 Wide string concatenation functions

7.29.4.4 Wide string comparison functions

7.29.4.5 Wide string search functions

7.29.4.6 Miscellaneous functions

Wide character time conversion functions .
Extended multibyte/wide character conversion utllltles
7.29.6.1 Single-byte/wide character conversion functions
7.29.6.2 Conversion state functions

7.29.6.3 Restartable multibyte/wide character conversion

functions . .
7.29.6.4 Restartable multlbyte/W|de strlng conversion
functions

Introduction .

Wide character cIassrflcatlon utllltles

7.30.2.1 Wide character classification functlons

7.30.2.2 Extensible wide character classification
functions

Wide character case mapping ut|I|t|es .

7.30.3.1 Wide character case mapping functrons

7.30.3.2 Extensible wide character case mapping
functions

Future library directions

7.31.1
7.31.2
7.31.3
7.31.4
7.31.5
7.31.6
7.31.7
7.31.8
7.31.9
7.31.10
7.31.11
7.31.12

Complex arithmetic <comp1ex h>

Character handling <ctype.h>

Errors <errno.h>

Floating-point envrronment<fenv h> .
Format conversion of integer types <inttypes. h>
Localization <locale.h>

Signal handling <signal.h>

Atomics <stdatomic.h> . . .
Boolean type and values <stdbool. h>

Integer types <stdint.h>

Input/output <stdio.h>

General utilities <stdlib.h>

Contents

N1570

398
398
402
402
403
421
426
426
430
432
433
435
439
439
440
441
441

442

444
447
447
448
448

451
453
453

453
455
455
455
455
455
455
455
455
455
456
456
456
456

N1570

Committee Draft — April 12, 2011 ISO/IEC 9899:201x

7.31.13 String handling <string.h>

7.31.14 Date and time <time.h>

7.31.15 Threads <threads.h> . . .

7.31.16 Extended multibyte and wide character utllltles
<wchar.h> .

7.31.17 Wide character classmcatlon and mapplng ut|I|t|es
<wctype.h>

Annex A (informative) Language syntax summary

Al
A2
A3

Lexical grammar
Phrase structure grammar
Preprocessing directives

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29

Diagnostics <assert.h>

Complex <complex.h>

Character handling <ctype.h>

Errors <errno.h> . .
Floating-point environment <fenv h>
Characteristics of floating types <float.h>
Format conversion of integer types <inttypes.h>
Alternative spellings <iso646.h>

Sizes of integer types <limits.h>
Localization <locale.h>

Mathematics <math.h>

Nonlocal jumps <setjmp.h>

Signal handling <signal.h>

Alighment <stdalign.h>

Variable arguments <stdarg.h>

Atomics <stdatomic.h> .

Boolean type and values <stdbool. h>
Common definitions <stddef.h>

Integer types <stdint.h>

Input/output <stdio.h>

General utilities <stdlib.h>
_Noreturn <stdnoreturn.h>

String handling <string.h>

Type-generic math <tgmath.h>

Threads <threads.h>

Date and time <time.h>

Unicode utilities <uchar.h> .
Extended multibyte/wide character utllltles <wchar h>

Wide character classification and mapping utilities <wctype.h>

Annex C (informative) Sequence points

Contents

456
456
456

456

457

458
458
465
473

475
475
475
477
477
477
478
478
479
479
479
479
484
484
485
485
485
487
487
487
488
491
493
493
495
495
496
497
497
502

503

ISO/IEC 9899:201x Committee Draft — April 12, 2011

Annex D (normative) Universal character names for identifiers
D.1 Ranges of characters allowed .
D.2 Ranges of characters disallowed |n|t|ally

Annex E (informative) Implementation limits

Annex F (normative) IEC 60559 floating-point arithmetic
F.1 Introduction Ce e e
F.2 Types
F.3 Operators and functlons
F.4 Floating to integer conversion
F.5 Binary-decimal conversion
F.6 The return statement
F.7 Contracted expressions
F.8 Floating-point environment
F.9 Optimization .

F.10 Mathematics <math. h>
F.10.1 Trigonometric functions
F.10.2 Hyperbolic functions .
F.10.3 Exponential and logarithmic functlons
F.10.4 Power and absolute value functions
F.10.5 Error and gamma functions
F.10.6 Nearest integer functions
F.10.7 Remainder functions
F.10.8 Manipulation functions

F.10.9 Maximum, minimum, and posmve dlfference functlons

F.10.10 Floating multiply-add
F.10.11 Comparison macros

Annex G (normative) IEC 60559-compatible complex arithmetic
G.1 Introduction o
G.2 Types
G.3 Conventions
G.4 Conversions . .
G.4.1 Imaginary types
G.4.2 Real and imaginary
G.4.3 Imaginary and complex
G.5 Binary operators .
G.5.1 Multiplicative operators
G.5.2 Additive operators
G.6 Complex arithmetic <complex.h>
G.6.1 Trigonometric functions
G.6.2 Hyperbolic functions .
G.6.3 Exponential and logarithmic functlons
G.6.4 Power and absolute-value functions
G.7 Type-generic math <tgmath.h>

X Contents

N1570

504
504
504

505

507
507
507
508
510
510
511
511
511
514
517
518
520
520
524
525
526
528
529
530
530
531

532
532
532
532
533
533
533
533
533
534
537
537
539
539
543
544
545

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Annex H (informative) Language independent arithmetic
H.1 Introduction
H.2 Types
H.3 Notification

Annex | (informative) Common warnings

Annex J (informative) Portability issues
J.1 Unspecified behavior
J.2 Undefined behavior .
J.3 Implementation-defined behawor
J.4 Locale-specific behavior
J.5 Common extensions

Annex K (normative) Bounds-checking interfaces
K.1 Background
K.2 Scope
K.3 Library .
K.3.1 Introductlon Co .
K.3.1.1 Standard headers
K.3.1.2 Reserved identifiers
K.3.1.3 Use of errno .
K.3.1.4 Runtime-constraint V|0Iat|ons
K.3.2 Errors <errno.h> .
K.3.3 Common definitions <stddef h>
K.3.4 Integer types <stdint.h>
K.3.5 Input/output <stdio.h>
K.3.5.1 Operations on files
K.3.5.2 File access functions
K.3.5.3 Formatted input/output functlons
K.3.5.4 Character input/output functions
K.3.6 General utilities <stdlib.h>
K.3.6.1 Runtime-constraint handling
K.3.6.2 Communication with the environment
K.3.6.3 Searching and sorting utilities
K.3.6.4 Multibyte/wide character conversion functlons
K.3.6.5 Multibyte/wide string conversion functions
K.3.7 String handling <string.h>
K.3.7.1 Copying functions
K.3.7.2 Concatenation functions
K.3.7.3 Search functions
K.3.7.4 Miscellaneous functions
K.3.8 Date andtime <time.h>
K.3.8.1 Components of time
K.3.8.2 Time conversion functions

Contents

546
546
546
550

552

554
554
557
571
578
579

582
582
583
583
583
583
584
584
584
585
585
585
586
586
588
591
602
604
604
606
607
610
611
614
614
617
620
621
624
624
624

Xi

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

K.3.9 Extended multibyte and wide character utilities

<wchar.h> 627
K.3.9.1 Formatted W|de charactermput/outputfunctlons . . . 628
K.3.9.2 General wide string utilities 639

K.3.9.3 Extended multibyte/wide character conversion
utilities 647
Annex L (normative) Analyzability N o 14
L1 Scope, 065
L.2 Definitions 65
L.3 Requirements 653
Bibliography 654
Index N <1 Y4

Xii Contents

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with I1ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 2. This International Standard was drafted in accordance with the fifth
edition (2004).

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. 1SO and IEC shall not be held responsible for identifying any
or all such patent rights.

This International Standard was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming languages, their
environments and system software interfaces. The Working Group responsible for this
standard (WG 14) maintains a site on the World Wide Web at http://www.open-
std.org/JTC1/SC22/WG14/ containing additional information relevant to this
standard such as a Rationale for many of the decisions made during its preparation and a
log of Defect Reports and Responses.

This third edition cancels and replaces the second edition, ISO/IEC 9899:1999, as
corrected by ISO/IEC 9899:1999/Cor 1:2001, ISO/IEC 9899:1999/Cor 2:2004, and
ISO/IEC 9899:1999/Cor 3:2007. Major changes from the previous edition include:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing
model, atomic objects, and thread-local storage (<stdatomic.h> and
<threads.h>)

— additional floating-point characteristic macros (<£loat.h>)
— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in
ISO/IEC TR 19769:2004)

— type-generic expressions

Foreword Xiii

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— static assertions

— anonymous structures and unions

— no-return functions

— macros to create complex numbers (<complex.h>)
— support for opening files for exclusive access

— removed the gets function (<stdio.h>)

— added the aligned alloc, at quick exit, and quick exit functions
(«<stdlib.h>)

— (conditional) support for bounds-checking interfaces (originally specified in
ISO/IEC TR 24731-1:2007)

— (conditional) support for analyzability
Major changes in the second edition included:

— restricted character set support via digraphs and <iso646 .h> (originally specified
in AMD1)

— wide character library support in <wchar.h> and <wctype.h> (originally
specified in AMD1)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— static and type qualifiers in parameter array declarators
— complex (and imaginary) support in <complex.h>
— type-generic math macros in <tgmath.h>

— the long long int type and library functions

— increased minimum translation limits

— additional floating-point characteristics in <float.h>
— remove implicit int

— reliable integer division

— universal character names (\u and \U)

— extended identifiers

— hexadecimal floating-point constants and %a and %A printf/scanf conversion
specifiers

Xiv Foreword

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

compound literals

designated initializers

// comments

extended integer types and library functions in <inttypes.h> and <stdint.h>
remove implicit function declaration

preprocessor arithmetic done in intmax t/uintmax t

mixed declarations and code

new block scopes for selection and iteration statements

integer constant type rules

integer promotion rules

macros with a variable number of arguments

the vscanf family of functions in <stdio.h> and <wchar.h>
additional math library functions in <math.h>

treatment of error conditions by math library functions (math errhandling)
floating-point environment access in <fenv.h>

IEC 60559 (also known as IEC 559 or IEEE arithmetic) support
trailing comma allowed in enum declaration

%1 £ conversion specifier allowed in print£

inline functions

the snprintf£ family of functions in <stdio.h>

boolean type in <stdbool.h>

idempotent type qualifiers

empty macro arguments

new structure type compatibility rules (tag compatibility)
additional predefined macro names

__Pragma preprocessing operator

standard pragmas

__func__ predefined identifier

va_ copy macro

additional strftime conversion specifiers

LIA compatibility annex

Foreword XV

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— deprecate ungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to lvalues

— relaxed constraints on aggregate and union initialization
— relaxed restrictions on portable header names

— return without expression not permitted in function that returns a value (and vice
Versa)

Annexes D, F, G, K, and L form a normative part of this standard; annexes A, B, C, E, H,
I, J, the bibliography, and the index are for information only. In accordance with Part 2 of
the ISO/IEC Directives, this foreword, the introduction, notes, footnotes, and examples
are also for information only.

XVi Foreword

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Introduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features are obsolescent, which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.31]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is derived from *“The C Reference Manual”’.
The library clause (clause 7) is based on the 1984 /usr/group Standard.

Introduction Xvii

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Xviii Introduction

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:201x

Programming languages — C

1.

Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming language.?) It specifies

the representation of C programs;

the syntax and constraints of the C language;

the semantic rules for interpreting C programs;

the representation of input data to be processed by C programs;
the representation of output data produced by C programs;

the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

the mechanism by which C programs are transformed for use by a data-processing
system;

the mechanism by which C programs are invoked for use by a data-processing
system;

the mechanism by which input data are transformed for use by a C program;

the mechanism by which output data are transformed after being produced by a C
program;

the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1)

81

This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

General 1

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

2. Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO 31-11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

ISO/IEC 646, Information technology — 1SO 7-bit coded character set for information
interchange.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

2 General 82

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

3. Terms, definitions, and symbols

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1. Mathematical symbols not
defined in this International Standard are to be interpreted according to 1SO 31-11.

3.1
access
(execution-time action) to read or modify the value of an object

NOTE 1 Where only one of these two actions is meant, “read” or “modify” is used.
NOTE 2 “Modify” includes the case where the new value being stored is the same as the previous value.

NOTE 3 Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

3.4
behavior
external appearance or action

3.4.1
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

83.4.2 General 3

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.6

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7

character

(abstracty member of a set of elements used for the organization, control, or
representation of data

3.7.1

character

single-byte character

(C) bit representation that fits in a byte

4 General 8§3.7.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.7.3

wide character

value representable by an object of type wehar t, capable of representing any character
in the current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding
mode, to what the result would be given unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.11

forward reference

reference to a later subclause of this International Standard that contains additional
information relevant to this subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment

3.13
implementation limit
restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having
nonzero width

§3.14 General 5

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

NOTE 1 Two threads of execution can update and access separate memory locations without interfering
with each other.

NOTE 2 A bit-field and an adjacent non-bit-field member are in separate memory locations. The same
applies to two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the
two are separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field member
declaration. It is not safe to concurrently update two non-atomic bit-fields in the same structure if all
members declared between them are also (non-zero-length) bit-fields, no matter what the sizes of those
intervening bit-fields happen to be.

EXAMPLE A structure declared as

struct {
char a;
int b:5, c¢:11, :0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The member a, and bit-fields 4 and e.ee are each separate
memory locations, and can be modified concurrently without interfering with each other. The bit-fields b
and c together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently
modified, but b and a, for example, can be.

3.15

object

region of data storage in the execution environment, the contents of which can represent
values

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.17

recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.18
runtime-constraint
requirement on a program when calling a library function

NOTE 1 Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and
need not be diagnosed at translation time.

NOTE 2 Implementations that support the extensions in annex K are required to verify that the runtime-
constraints for a library function are not violated by the program; see K.3.1.4.

6 General §3.18

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

3.19
value
precise meaning of the contents of an object when interpreted as having a specific type

3.19.1
implementation-defined value
unspecified value where each implementation documents how the choice is made

3.19.2
indeterminate value
either an unspecified value or a trap representation

3.19.3

unspecified value

valid value of the relevant type where this International Standard imposes no
requirements on which value is chosen in any instance

NOTE An unspecified value cannot be a trap representation.
3.194

trap representation
an object representation that need not represent a value of the object type

3.19.5
perform a trap
interrupt execution of the program such that no further operations are performed

NOTE In this International Standard, when the word “trap” is not immediately followed by
“representation”, this is the intended usage.?

3.20
[x]

ceiling of x: the least integer greater than or equal to x
EXAMPLE [2.4]is3,[-2.4]is -2.

3.21
Lx]

floor of x: the greatest integer less than or equal to x
EXAMPLE |2.4]is2,|-2.4]is-3.

2) For example, “Trapping or stopping (if supported) is disabled...” (F.8.2). Note that fetching a trap
representation might perform a trap but is not required to (see 6.2.6.1).

8§3.21 General 7

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, “shall not” is to be interpreted as a
prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-
constraint is violated, the behavior is undefined. Undefined behavior is otherwise
indicated in this International Standard by the words “undefined behavior” or by the
omission of any explicit definition of behavior. There is no difference in emphasis among
these three; they all describe “behavior that is undefined™.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a #error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

A strictly conforming program shall use only those features of the language and library
specified in this International Standard.®) It shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming
hosted implementation shall accept any strictly conforming program. A conforming
freestanding implementation shall accept any strictly conforming program in which the
use of the features specified in the library clause (clause 7) is confined to the contents of
the standard headers <float.h>, <is0646.h>, <limits.h>, <stdalign.h>,
<stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>, and
<stdnoreturn.h>. A conforming implementation may have extensions (including
additional library functions), provided they do not alter the behavior of any strictly
conforming program.®

3) A strictly conforming program can use conditional features (see 6.10.8.3) provided the use is guarded
by an appropriate conditional inclusion preprocessing directive using the related macro. For example:

#ifdef STDC IEC 559 _ /* FE UPWARD defined */

/* ..o*/
fesetround (FE_UPWARD) ;
/* ..o*/

#endif

4) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

8 General 84

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

A conforming program is one that is acceptable to a conforming implementation.

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5),
characteristics of floating types <£loat.h> (7.7), alternative spellings <iso646.h>
(7.9), sizes of integer types <limits.h> (7.10), alignment <stdalign.h> (7.15),
variable arguments <stdarg.h> (7.16), boolean type and values <stdbool.h>
(7.18), common definitions <stddef.h> (7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

5) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

84 General 9

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be called the translation environment and
the execution environment in this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units called source files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive #include is known as a preprocessing translation unit. After preprocessing, a
preprocessing translation unit is called a translation unit. Previously translated translation
units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing directives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following
phases.®)

1. Physical source file multibyte characters are mapped, in an implementation-
defined manner, to the source character set (introducing new-line characters for
end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

6) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not
necessarily be stored as files, nor need there be any one-to-one correspondence between these entities
and any external representation. The description is conceptual only, and does not specify any
particular implementation.

10 Environment §5.1.1.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

2. Each instance of a backslash character (\) immediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part
of such a splice. A source file that is not empty shall end in a new-line character,
which shall not be immediately preceded by a backslash character before any such
splicing takes place.

3. The source file is decomposed into preprocessing tokens”) and sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
__Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member and escape sequence in character constants and
string literals is converted to the corresponding member of the execution character
set; if there is no corresponding member, it is converted to an implementation-
defined member other than the null (wide) character.?)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

7) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #include preprocessing directive.

8) An implementation need not convert all non-corresponding source characters to the same execution
character.

§5.1.1.2 Environment 11

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.”

EXAMPLE An implementation shall issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects with static storage duration shall be initialized (set to their
initial values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the execution
environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.9).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

9) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

12 Environment §5.1.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no
prototype for this function. It shall be defined with a return type of int and with no
parameters:

int main(void) { /* .. */ }

or with two parameters (referred to here as arge and argv, though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv([l) { /* .. */ }
or equivalent;'? or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following
constraints:

— The value of argc shall be nonnegative.
— argv [arge] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv [0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0]
represents the program name; argv [0] [0] shall be the null character if the
program name is not available from the host environment. If the value of argc is
greater than one, the strings pointed to by argv[1] through argv[argc-1]
represent the program parameters.

— The parameters arge and argv and the strings pointed to by the argv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

10) Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as
char ** argv, and soon.

§5.1.2.2.2 Environment 13

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the
initial call to the main function is equivalent to calling the exi t function with the value
returned by the main function as its argument;!V) reaching the } that terminates the
main function returns a value of 0. If the return type is not compatible with int, the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.4.4).
5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations are all side effects,’? which are changes in the state of
the execution environment. Evaluation of an expression in general includes both value
computations and initiation of side effects. Value computation for an lvalue expression
includes determining the identity of the designated object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations
executed by a single thread, which induces a partial order among those evaluations.
Given any two evaluations A and B, if A is sequenced before B, then the execution of A
shall precede the execution of B. (Conversely, if A is sequenced before B, then B is
sequenced after A.) If A is not sequenced before or after B, then A and B are
unsequenced. Evaluations A and B are indeterminately sequenced when A is sequenced
either before or after B, but it is unspecified which.'® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and
side effect associated with A is sequenced before every value computation and side effect
associated with B. (A summary of the sequence points is given in annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by

11) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main
will have ended in the former case, even where they would not have in the latter.

12) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13) The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations
cannot interleave, but can be executed in any order.

14 Environment §5.1.2.3

10

11

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, the
values of objects that are neither lock-free atomic objects nor of type volatile
sig atomic_ t are unspecified, as is the state of the floating-point environment. The
value of any object modified by the handler that is neither a lock-free atomic object nor of
type volatile sig atomic t becomes indeterminate when the handler exits, as
does the state of the floating-point environment if it is modified by the handler and not
restored to its original state.

The least requirements on a conforming implementation are:

— Accesses to volatile objects are evaluated strictly according to the rules of the abstract
machine.

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.21.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

This is the observable behavior of the program.
What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keyword volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activated by the signal function
would require explicit specification of volatile storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char cl, c2;
/* %/

cl = cl + c2;

the *“integer promotions” require that the abstract machine promote the value of each variable to int size
and then add the two ints and truncate the sum. Provided the addition of two chars can be done without

85.1.2.3 Environment 15

12

13

14

15

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float £f1, £2;
double d;

/* ..o*/

f1 = £2 * 4;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for example, if d
were replaced by the constant 2. 0, which has type double).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicit spilling of a register is not permitted to alter the value. Also, an explicit store and load
is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

double dl, d2;

float f£;

dl = £ = expression;

d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to £loat.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.9).

double x, y, z;

/* .o*/

x = (x *y) * z; // notequivalenttox *= y * z;

z = (x -y) +y ; // notequivalenttoz = x;

Z =X + X *y; // notequivalenttoz = x * (1.0 + y);
y =x/ 5.0; // notequivalenttoy = x * 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ..o*/
a =a + 32760 + b + 5;

the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is
next added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which overflows produce an explicit trap and in which the range of values representable by an int is
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, —32754 and -15, the sum a + b would produce a trap

16 Environment §5.1.2.3

16

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);
or
a= (a+ (b + 32765)):;

since the values for a and b might have been, respectively, 4 and -8 or =17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;
char *p;
/* .. */
sum = sum * 10 - '0' + (*p++ = getchar()):;

the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0') + ((*(p++)) = (getchar()))):

but the actual increment of p can occur at any time between the previous sequence point and the next
sequence point (the ;), and the call to getchar can occur at any point prior to the need of its returned
value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-
point environment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution
(or thread) running concurrently. The execution of each thread proceeds as defined by
the remainder of this standard. The execution of the entire program consists of an
execution of all of its threads.'” Under a freestanding implementation, it is
implementation-defined whether a program can have more than one thread of execution.

The value of an object visible to a thread T at a particular point is the initial value of the
object, a value stored in the object by T, or a value stored in the object by another thread,
according to the rules below.

NOTE 1 In some cases, there may instead be undefined behavior. Much of this section is motivated by

the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the
other one reads or modifies the same memory location.

14) The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of
atomic operations, for example, allow executions inconsistent with a simple interleaving as described
below.

8§5.1.2.4 Environment 17

10

11

12

13

14

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

The library defines a number of atomic operations (7.17) and operations on mutexes
(7.26.4) that are specially identified as synchronization operations. These operations play
a special role in making assignments in one thread visible to another. A synchronization
operation on one or more memory locations is either an acquire operation, a release
operation, both an acquire and release operation, or a consume operation. A
synchronization operation without an associated memory location is a fence and can be
either an acquire fence, a release fence, or both an acquire and release fence. In addition,
there are relaxed atomic operations, which are not synchronization operations, and
atomic read-modify-write operations, which have special characteristics.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations
composing the mutex. Correspondingly, a call that releases the same mutex will perform a release
operation on those same locations. Informally, performing a release operation on A forces prior side effects
on other memory locations to become visible to other threads that later perform an acquire or consume

operation on A. We do not include relaxed atomic operations as synchronization operations although, like
synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order,
called the modification order of M. If A and B are modifications of an atomic object M,
and A happens before B, then A shall precede B in the modification order of M, which is
defined below.

NOTE 3 This states that the modification orders must respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be
combined into a single total order for all objects. In general this will be impossible since different threads
may observe modifications to different variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal
contiguous sub-sequence of side effects in the modification order of M, where the first
operation is A and every subsequent operation either is performed by the same thread that
performed the release or is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In
particular, an atomic operation A that performs a release operation on an object M
synchronizes with an atomic operation B that performs an acquire operation on M and
reads a value written by any side effect in the release sequence headed by A.

NOTE5 Except in the specified cases, reading a later value does not necessarily ensure visibility as
described below. Such a requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by
another. For atomic variables, the definition is clear. All operations on a given mutex occur in a single total
order. Each mutex acquisition “reads the value written” by the last mutex release.

An evaluation A carries a dependency®® to an evaluation B if:

15) The “carries a dependency” relation is a subset of the *““sequenced before” relation, and is similarly
strictly intra-thread.

18 Environment §5.1.2.4

15

16

17

18

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— the value of A is used as an operand of B, unless:
+ B isan invocation of the ki1l dependency macro,
« A s the left operand of a && or | | operator,
« Ais the left operand of a ? : operator, or

« Alsthe left operand of a , operator;
or

— A writes a scalar object or bit-field M, B reads from M the value written by A, and A
is sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.
An evaluation A is dependency-ordered before'® an evaluation B if:

— A performs a release operation on an atomic object M, and, in another thread, B
performs a consume operation on M and reads a value written by any side effect in
the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a
dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A
is dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

NOTE 7 The “inter-thread happens before™ relation describes arbitrary concatenations of “sequenced
before™, “synchronizes with”, and “dependency-ordered before™ relationships, with two exceptions. The
first exception is that a concatenation is not permitted to end with “dependency-ordered before” followed
by “sequenced before”. The reason for this limitation is that a consume operation participating in a
“dependency-ordered before™ relationship provides ordering only with respect to operations to which this
consume operation actually carries a dependency. The reason that this limitation applies only to the end of
such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of
“sequenced before”. The reasons for this limitation are (1) to permit ““inter-thread happens before™ to be
transitively closed and (2) the “happens before” relation, defined below, provides for relationships
consisting entirely of “sequenced before™.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-
thread happens before B.

16) The “dependency-ordered before™ relation is analogous to the *““synchronizes with” relation, but uses
release/consume in place of release/acquire.

8§5.1.2.4 Environment 19

19

20

21

22

23

24

25

26

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

A visible side effect A on an object M with respect to a value computation B of M
satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens
before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the

value stored by the visible side effect A.

NOTE 8 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

NOTE 9 This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and with suitable
restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially consistent)
execution.

The visible sequence of side effects on an atomic object M, with respect to a value
computation B of M, is a maximal contiguous sub-sequence of side effects in the
modification order of M, where the first side effect is visible with respect to B, and for
every subsequent side effect, it is not the case that B happens before it. The value of an
atomic object M, as determined by evaluation B, shall be the value stored by some
operation in the visible sequence of M with respect to B. Furthermore, if a value
computation A of an atomic object M happens before a value computation B of M, and
the value computed by A corresponds to the value stored by side effect X, then the value
computed by B shall either equal the value computed by A, or be the value stored by side
effect Y, where Y follows X in the modification order of M.

NOTE 10 This effectively disallows compiler reordering of atomic operations to a single object, even if

both operations are “relaxed” loads. By doing so, we effectively make the “cache coherence” guarantee
provided by most hardware available to C atomic operations.

NOTE 11 The visible sequence depends on the “happens before” relation, which in turn depends on the
values observed by loads of atomics, which we are restricting here. The intended reading is that there must
exist an association of atomic loads with modifications they observe that, together with suitably chosen
modification orders and the “happens before” relation derived as described above, satisfy the resulting
constraints as imposed here.

The execution of a program contains a data race if it contains two conflicting actions in
different threads, at least one of which is not atomic, and neither happens before the
other. Any such data race results in undefined behavior.

NOTE12 It can be shown that programs that correctly use simple mutexes and
memory order seq cst operations to prevent all data races, and use no other synchronization
operations, behave as though the operations executed by their constituent threads were simply interleaved,
with each value computation of an object being the last value stored in that interleaving. This is normally
referred to as ““sequential consistency”. However, this applies only to data-race-free programs, and data-
race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since
any program that behaves differently as a result must contain undefined behavior.

20 Environment 8§5.1.2.4

27

28

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

NOTE 13 Compiler transformations that introduce assignments to a potentially shared memory location
that would not be modified by the abstract machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member
assignment that overwrite adjacent members in separate memory locations. We also generally preclude
reordering of atomic loads in cases in which the atomics in question may alias, since this may violate the
"visible sequence" rules.

NOTE 14 Transformations that introduce a speculative read of a potentially shared memory location may
not preserve the semantics of the program as defined in this standard, since they potentially introduce a data
race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that
is not tolerant of races or provides hardware race detection.

8§5.1.2.4 Environment 21

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a
basic character set, whose contents are given by this subclause, and a set of zero or more
locale-specific members (which are not members of the basic character set) called
extended characters. The combined set is also called the extended character set. The
values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or by escape
sequences consisting of the backslash \ followed by one or more characters. A byte with
all bits set to 0, called the null character, shall exist in the basic execution character set; it
is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following
members: the 26 uppercase letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b ¢ d e £ g h i j k 1
n o p qgq r s t u v w x y 2z

the 10 decimal digits
0o 1 2 3 4 5 6 7 8 9
the following 29 graphic characters

I I T G B R
i o< = > 2 [\ 1 7 {1} -

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character after 0 in the above list of decimal digits shall be one greater than
the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the basic execution character set, there shall be
control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never

22 Environment §5.2.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

converted to a token), the behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this International
Standard the term does not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

Before any other processing takes place, each occurrence of one of the following
sequences of three characters (called trigraph sequences'”)) is replaced with the
corresponding single character.

??= # ??) 1 2! |
?? [22 7 ??> }
2?2/ \ ?2?2< { ??-

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed
above is not changed.

EXAMPLE 1

??=define arraycheck(a, b) a??(b??) ??1?2?! b??(a??)
becomes

#define arraycheck(a, b) albl || blal

EXAMPLE 2 The following source line
printf ("Eh???/n") ;
becomes (after replacement of the trigraph sequence ?72/)

printf ("Eh?\n") ;
5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The basic character set shall be present and each character shall be encoded as a
single byte.

— The presence, meaning, and representation of any additional members is locale-
specific.

17) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

§5.2.1.2 Environment 23

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— A multibyte character set may have a state-dependent encoding, wherein each
sequence of multibyte characters begins in an initial shift state and enters other
locale-specific shift states when specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state. Such a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by
the £putc function would appear. The intent of writing a printing character (as defined
by the isprint function) to a display device is to display a graphic representation of
that character at the active position and then advance the active position to the next
position on the current line. The direction of writing is locale-specific. If the active
position is at the final position of a line (if there is one), the behavior of the display device
is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior of the display
device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next
logical page.

\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior of the display device is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical

24 Environment §5.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

tabulation position, the behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a single char object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: the isprint function (7.4.1.8), the £putc function (7.21.7.3).
5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outside the function
image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following limits:'®

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a short identifier of 0000FFFF or less is considered 6 characters, each

18) Implementations should avoid imposing fixed translation limits whenever possible.

§5.2.4.1 Environment 25

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

universal character name specifying a short identifier of 00010000 or more is
considered 10 characters, and each extended source character is considered the same
number of characters as the corresponding universal character name, if any)*®)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block
— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)
— 65535 bytes in an object (in a hosted environment only)
— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause,
which are specified in the headers <1imits.h> and <£loat.h>. Additional limits are
specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).
5.2.4.2.1 Sizes of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #i £
preprocessing directives. Moreover, except for CHAR BIT and MB_LEN MAX, the
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude

19) See “future language directions” (6.11.3).

26 Environment §5.2.4.2.1

N1570 Committee Draft — April 12, 2011

(absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR BIT 8

— minimum value for an object of type signed char

ISO/IEC 9899:201x

SCHAR MIN -127 // —-(2"-1)

— maximum value for an object of type signed char
SCHAR MAX +127 // 2'-1

— maximum value for an object of type unsigned char
UCHAR MAX 255 // 2°-1

— minimum value for an object of type char
CHAR MIN see below

— maximum value for an object of type char
CHAR MAX see below

— maximum number of bytes in a multibyte character, for any supported locale

MB_LEN MAX 1

— minimum value for an object of type short int

SHRT MIN -32767 // -2 -1)

— maximum value for an object of type short int
SHRT MAX +32767 // 2¥ -1

— maximum value for an object of type unsigned short int

USHRT MAX 65535 // 2°-1

— minimum value for an object of type int

INT MIN -32767 // -(2¥-1)

— maximum value for an object of type int
INT MAX +32767 // 2¥ -1

— maximum value for an object of type unsigned int
UINT MAX 65535 // 2°-1

— minimum value for an object of type long int

LONG MIN -2147483647 // —(2*'-1)

— maximum value for an object of type long int
LONG MAX +2147483647 // 2¥ -1

— maximum value for an object of type unsigned long int
ULONG MAX 4294967295 // 2% -1

§5.2.4.2.1 Environment

27

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— minimum value for an object of type long long int
LLONG MIN -9223372036854775807 // —(2%-1)

— maximum value for an object of type long long int
LLONG MAX +9223372036854775807 // 2% -1

— maximum value for an object of type unsigned long long int
ULLONG MAX 18446744073709551615 // 2% -1

If the value of an object of type char is treated as a signed integer when used in an
expression, the value of CHAR MIN shall be the same as that of SCHAR MIN and the
value of CHAR MAX shall be the same as that of SCHAR MAX. Otherwise, the value of
CHAR_MIN shall be 0 and the value of CHAR MAX shall be the same as that of
UCHAR MAX.?Y The value UCHAR MAX shall equal 2CHARBIT _ 1,

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).
5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.?) The following parameters are used to
define the model for each floating-point type:

sign (1)
base or radix of exponent representation (an integer > 1)
exponent (an integer between a minimum e,;, and a maximum €,.,)
precision (the number of base-b digits in the significand)
K nonnegative integers less than b (the significand digits)

- O D T O»

A floating-point number (x) is defined by the following model:
p
x=sb®Y fib™ enin<e<ens
k=1

In addition to normalized floating-point numbers (f; > 0 if x # 0), floating types may be
able to contain other kinds of floating-point numbers, such as subnormal floating-point
numbers (x #0, e =¢en, f1 =0) and unnormalized floating-point numbers (x # 0,
e > e f;=0), and values that are not floating-point numbers, such as infinities and
NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a
signaling NaN generally raises a floating-point exception when occurring as an

20) See 6.2.5.

21) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

28 Environment §5.2.4.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

arithmetic operand.??

An implementation may give zero and values that are not floating-point numbers (such as
infinities and NaNs) a sign or may leave them unsigned. Wherever such values are
unsigned, any requirement in this International Standard to retrieve the sign shall produce
an unspecified sign, and any requirement to set the sign shall be ignored.

The minimum range of representable values for a floating type is the most negative finite
floating-point number representable in that type through the most positive finite floating-
point number representable in that type. In addition, if negative infinity is representable
in a type, the range of that type is extended to all negative real numbers; likewise, if
positive infinity is representable in a type, the range of that type is extended to all positive
real numbers.

The accuracy of the floating-point operations (+, -, *, /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation-
defined, as is the accuracy of the conversion between floating-point internal
representations and string representations performed by the library functions in
<stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state that the
accuracy is unknown.

All integer values in the <float.h> header, except FLT ROUNDS, shall be constant
expressions suitable for use in #if£ preprocessing directives; all floating values shall be
constant expressions. All except DECIMAL DIG, FLT EVAL METHOD, FLT RADIX,
and FLT ROUNDS have separate names for all three floating-point types. The floating-
point model representation is provided for all values except FLT EVAL METHOD and
FLT ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-

defined value of FLT ROUNDS:?®)

-1 indeterminable
0 toward zero
1 tonearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT ROUNDS characterize implementation-defined rounding
behavior.

22) 1EC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support
IEC 60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with
similar behavior.

23) Evaluation of FLT ROUNDS correctly reflects any execution-time change of rounding mode through
the function fesetround in <fenv.hs>.

8§5.2.4.2.2 Environment 29

10

11

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Except for assignment and cast (which remove all extra range and precision), the values
yielded by operators with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized

by the implementation-defined value of FLT EVAL METHOD:2"
-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the
type;
1 evaluate operations and constants of type £loat and double to the

range and precision of the double type, evaluate long double
operations and constants to the range and precision of the long double

type;

2 evaluate all operations and constants to the range and precision of the
long double type.

All other negative values for FLT EVAL METHOD characterize implementation-defined
behavior.

The presence or absence of subnormal numbers is characterized by the implementation-
defined values of FLT HAS SUBNORM, DBL_ HAS SUBNORM, and
LDBL_ HAS SUBNORM:

-1 indeterminable®

0 absent®® (type does not support subnormal numbers)
1 present (type does support subnormal numbers)

The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representation, b
FLT RADIX 2

24) The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, if FLT EVAL METHOD is 1, then the product of two float
_Complex operands is represented in the double Complex format, and its parts are evaluated to
double.

25) Characterization as indeterminable is intended if floating-point operations do not consistently interpret
subnormal representations as zero, nor as nonzero.

26) Characterization as absent is intended if no floating-point operations produce subnormal results from
non-subnormal inputs, even if the type format includes representations of subnormal numbers.

30 Environment §5.2.4.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— number of base-FLT RADIX digits in the floating-point significand, p

FLT MANT DIG
DBL MANT DIG
LDBL MANT DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits
can be rounded to a floating-point number with n decimal digits and back again
without change to the value,

plog,, b if b is a power of 10
[1+ plog,,b] otherwise

FLT DECIMAL DIG 6
DBL DECIMAL DIG 10
LDBL DECIMAL DIG 10

— number of decimal digits, n, such that any floating-point number in the widest
supported floating type with p..« radix b digits can be rounded to a floating-point
number with n decimal digits and back again without change to the value,

Pmax 10950 b if b is a power of 10
[1+ Pmax 10940 b otherwise

DECIMAL DIG 10

— number of decimal digits, g, such that any floating-point number with g decimal digits
can be rounded into a floating-point number with p radix b digits and back again
without change to the g decimal digits,

plog,, b if b is a power of 10
| (p—1)log,, b | otherwise

FLT DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT RADIX raised to one less than that power is
a normalized floating-point number, e,

FLT MIN EXP
DBL MIN EXP
LDBL MIN EXP

8§5.2.4.2.2 Environment 31

12

13

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point numbers, [Iog10 bemin‘q

FLT MIN 10 EXP -37
DBL MIN 10 EXP -37
LDBL MIN 10 EXP -37

maximum integer such that FLT RADIX raised to one less than that power is a
representable finite floating-point number, €.«

FLT MAX EXP
DBL MAX EXP
LDBL MAX EXP

maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers, | 10g,,((1 — b™P)b®m=) |

FLT MAX 10 EXP +37
DBL MAX 10 EXP +37
LDBL MAX 10 EXP +37

The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater than or equal to those shown:

maximum representable finite floating-point number, (1 — b™P)b®me

FLT MAX 1E+37
DBL MAX 1E+37
LDBL MAX 1E+37

The values given in the following list shall be replaced by constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

32

the difference between 1 and the least value greater than 1 that is representable in the
given floating point type, b*P

FLT EPSILON 1E-5
DBL EPSILON 1E-9
LDBL EPSILON 1E-9

minimum normalized positive floating-point number, bemn~*

FLT MIN 1E-37
DBL MIN 1E-37
LDBL MIN 1E-37

Environment §5.2.4.2.2

N1570 Committee Draft — April 12, 2011

— minimum positive floating-point number

FLT TRUE MIN
DBL TRUE MIN
LDBL _TRUE MIN

Recommended practice

27)

1E-37
1E-37
1E-37

ISO/IEC 9899:201x

14 Conversion from (at least) double to decimal with DECIMAL DIG digits and back

should be the identity function.

15 EXAMPLE1 The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a <float.h> header for type

float:

6
x=516° Y f,16%, —31<e<+32
k=1

FLT RADIX 16
FLT MANT DIG 6
FLT EPSILON 9.53674316E-07F
FLT DECIMAL DIG 9
FLT DIG 6
FLT MIN EXP -31
FLT MIN 2.93873588E-39F
FLT MIN 10 EXP -38
FLT MAX EXP +32
FLT MAX 3.40282347E+38F
FLT MAX 10 EXP +38

16 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision numbers in IEC 60559, and the appropriate values in a

<float.h> header for types £loat and double:

24
X; =522 Y f 2% —125<e<+128
k=1

53
Xg =52 Y f, 27, -1021<e <+1024
k=1

FLT RADIX 2

DECIMAL DIG 17

FLT MANT DIG 24

FLT EPSILON 1.19209290E-07F // decimal constant
FLT EPSILON 0X1P-23F // hex constant
FLT DECIMAL DIG 9

27) If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a
positive number no greater than the minimum normalized positive number for the type.

28) The floating-point model in that standard sums powers of b from zero, so the values of the exponent

limits are one less than shown here.

8§5.2.4.2.2 Environment

33

ISO/IEC 9899:201x

FLT DIG

FLT MIN EXP
FLT MIN

FLT MIN

FLT TRUE MIN
FLT TRUE MIN
FLT HAS SUBNORM
FLT MIN 10 EXP
FLT MAX EXP
FLT MAX

FLT MAX

6

-125
1.17549435E-38F
0X1P-126F
1.40129846E-45F
0X1P-149F

1

-37

+128
3.40282347E+38F
0X1.fffffePl127F

FLT MAX 10 EXP +38
DBL_MANT DIG 53
DBL_EPSILON 2.2204460492503131E-16
DBL_EPSILON 0X1P-52
DBL_DECIMAL DIG 17
DBL_DIG 15
DBL_MIN EXP -1021
DBL_MIN 2.2250738585072014E-308
DBL_MIN 0X1P-1022
DBL_TRUE MIN 4.9406564584124654E-324
DBL_TRUE MIN 0X1P-1074
DBL_HAS SUBNORM 1
DBL_MIN 10 EXP -307
DBL_MAX EXP +1024

DBL_MAX
DBL_MAX
DBL_MAX 10 EXP

1.7976931348623157E+308
OX1.fffffffEfFfEFFFP1023

+308

//
//

//

//

//
//

//

//
//

//
//

Committee Draft — April 12, 2011

decimal constant
hex constant
decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant
decimal constant
hex constant

decimal constant
hex constant

N1570

If a type wider than double were supported, then DECIMAL DIG would be greater than 17. For
example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of
precision), then DECIMAL DIG would be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic
<complex.h> (7.3), extended multibyte and wide character utilities <wchar.h>
(7.29), floating-point environment <fenv.h> (7.6), general utilities <stdlib.h>
(7.22), input/output <stdio.h> (7.21), mathematics <math.h> (7.12).

34 Environment §5.2.4.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6. Language
6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated by italic type, and literal words and character set members (terminals) by bold
type. A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words *““one of”. An
optional symbol is indicated by the subscript “opt™, so that

{ expressiongpt }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and
words are separated by spaces instead of hyphens.

A summary of the language syntax is given in annex A.
6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called an enumeration constant. Macro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be
used) only within a region of program text called its scope. Different entities designated
by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype. (A function
prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier has file scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier has block scope, which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

§6.2.1 Language 35

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the
function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entity (the inner scope) will end
strictly before the scope of the other entity (the outer scope). Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term
“identifier” to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same
point.

Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to
have a scope that begins just after the place within the type name where the omitted
identifier would appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions
(6.9.1), identifiers (6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3),
source file inclusion (6.10.2), statements (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process called linkage.?®) There are
three kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier with external linkage denotes the same object or
function. Within one translation unit, each declaration of an identifier with internal
linkage denotes the same object or function. Each declaration of an identifier with no
linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifier static, the identifier has internal linkage.3?)

29) There is no linkage between different identifiers.

36 Language 86.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

For an identifier declared with the storage-class specifier extern in a scope in which a
prior declaration of that identifier is visible,®?) if the prior declaration specifies internal or
external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifier extern. If
the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9),
statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separate name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any3?
of the keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the . or - > operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3), the goto statement (6.8.6.1).

30) A function declaration can contain the storage-class specifier static only if it is at file scope; see
6.7.1.

31) As specified in 6.2.1, the later declaration might hide the prior declaration.

32) There is only one name space for tags even though three are possible.

86.2.3 Language 37

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage
durations: static, thread, automatic, and allocated. Allocated storage is described in
7.22.3.

The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant address,®) and retains
its last-stored value throughout its lifetime.>*) If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to (or just past) reaches the end of its lifetime.

An object whose identifier is declared without the storage-class specifier
_Thread local, and either with external or internal linkage or with the storage-class
specifier static, has static storage duration. Its lifetime is the entire execution of the
program and its stored value is initialized only once, prior to program startup.

An object whose identifier is declared with the storage-class specifier Thread local
has thread storage duration. Its lifetime is the entire execution of the thread for which it
is created, and its stored value is initialized when the thread is started. There is a distinct
object per thread, and use of the declared name in an expression refers to the object
associated with the thread evaluating the expression. The result of attempting to
indirectly access an object with thread storage duration from a thread other than the one
with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class
specifier static has automatic storage duration, as do some compound literals. The
result of attempting to indirectly access an object with automatic storage duration from a
thread other than the one with which the object is associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object is created each time. The initial value of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration or
compound literal is reached in the execution of the block; otherwise, the value becomes
indeterminate each time the declaration is reached.

33) The term ““constant address” means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same
program.

34) In the case of a volatile object, the last store need not be explicit in the program.

38 Language 86.2.4

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

For such an object that does have a variable length array type, its lifetime extends from
the declaration of the object until execution of the program leaves the scope of the
declaration.®® If the scope is entered recursively, a new instance of the object is created
each time. The initial value of the object is indeterminate.

A non-lvalue expression with structure or union type, where the structure or union
contains a member with array type (including, recursively, members of all contained
structures and unions) refers to an object with automatic storage duration and temporary
lifetime.36) 1ts lifetime begins when the expression is evaluated and its initial value is the
value of the expression. Its lifetime ends when the evaluation of the containing full
expression or full declarator ends. Any attempt to modify an object with temporary
lifetime results in undefined behavior.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators
(6.7.6), function calls (6.5.2.2), initialization (6.7.9), statements (6.8).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned into object types (types that describe objects) and function types (types
that describe functions). At various points within a translation unit an object type may be
incomplete (lacking sufficient information to determine the size of objects of that type) or
complete (having sufficient information).3”)

An object declared as type Bool is large enough to store the values 0 and 1.

An object declared as type char is large enough to store any member of the basic
execution character set. If a member of the basic execution character set is stored in a
char object, its value is guaranteed to be nonnegative. If any other character is stored in
a char object, the resulting value is implementation-defined but shall be within the range
of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short
int, int, long int, and long long int. (These and other types may be
designated in several additional ways, as described in 6.7.2.) There may also be
implementation-defined extended signed integer types.®® The standard and extended
signed integer types are collectively called signed integer types.3?)

35) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

36) The address of such an object is taken implicitly when an array member is accessed.

37) A type may be incomplete or complete throughout an entire translation unit, or it may change states at
different points within a translation unit.

86.2.5 Language 39

10

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

An object declared as type signed char occupies the same amount of storage as a
“plain” char object. A “plain” int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
INT MIN to INT MAX as defined in the header <1limits.hs>).

For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keyword unsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are the standard unsigned integer types. The unsigned integer types that
correspond to the extended signed integer types are the extended unsigned integer types.
The st%r;dard and extended unsigned integer types are collectively called unsigned integer
types.*

The standard signed integer types and standard unsigned integer types are collectively
called the standard integer types, the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank
(see 6.3.1.1), the range of values of the type with smaller integer conversion rank is a
subrange of the values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the same.*Y) A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting type.

There are three real floating types, designated as float, double, and long
double.*? The set of values of the type £1oat is a subset of the set of values of the
type double; the set of values of the type double is a subset of the set of values of the
type long double.

38) Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

39) Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.

40) Therefore, any statement in this Standard about unsigned integer types also applies to the extended
unsigned integer types.

41) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

42) See “future language directions™ (6.11.1).

40 Language 86.2.5

11

12

13

14

15

16

17

18

19

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

There are three complex types, designated as float Complex, double
_Complex, and long double _Complex.43) (Complex types are a conditional
feature that implementations need not support; see 6.10.8.3.) The real floating and
complex types are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given
by deleting the keyword _Comp1lex from the type name.

Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

The type char, the signed and unsigned integer types, and the floating types are
collectively called the basic types. The basic types are complete object types. Even if the
implementation defines two or more basic types to have the same representation, they are
nevertheless different types.**

The three types char, signed char, and unsigned char are collectively called
the character types. The implementation shall define char to have the same range,
representation, and behavior as either signed char or unsigned char.*)

An enumeration comprises a set of named integer constant values. Each distinct
enumeration constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integer types. The integer and real floating types are collectively called
real types.

Integer and floating types are collectively called arithmetic types. Each arithmetic type
belongs to one type domain: the real type domain comprises the real types, the complex
type domain comprises the complex types.

The void type comprises an empty set of values; it is an incomplete object type that
cannot be completed.

43) A specification for imaginary types is in annex G.

44) An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different.
Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

45) CHAR_MIN, defined in <1imits.h>, will have one of the values 0 or SCHAR MIN, and this can be
used to distinguish the two options. Irrespective of the choice made, char is a separate type from the
other two and is not compatible with either.

86.2.5 Language 41

20

21

22

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Any number of derived types can be constructed from the object and function types, as
follows:

— An array type describes a contiguously allocated nonempty set of objects with a
particular member object type, called the element type. The element type shall be
complete whenever the array type is specified. Array types are characterized by their
element type and by the number of elements in the array. An array type is said to be
derived from its element type, and if its element type is T, the array type is sometimes
called “array of T”’. The construction of an array type from an element type is called
“array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type is T, the
function type is sometimes called ““function returning T”’. The construction of a
function type from a return type is called “function type derivation”.

— A pointer type may be derived from a function type or an object type, called the
referenced type. A pointer type describes an object whose value provides a reference
to an entity of the referenced type. A pointer type derived from the referenced type T
Is sometimes called ““pointer to T”. The construction of a pointer type from a
referenced type is called *““pointer type derivation”. A pointer type is a complete
object type.

— An atomic type describes the type designated by the construct Atomic (type-
name). (Atomic types are a conditional feature that implementations need not
support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and
structure types are collectively called aggregate types.*®)

An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage).
A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete

46) Note that aggregate type does not include union type because an object with union type can only
contain one member at a time.

42 Language 86.2.5

23

24

25

26

27

28

29

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

type. It is completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length
array type.

Array, function, and pointer types are collectively called derived declarator types. A
declarator type derivation from a type T is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

A type is characterized by its type category, which is either the outermost derivation of a
derived type (as noted above in the construction of derived types), or the type itself if the
type consists of no derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several
qualified versions of its type,*”) corresponding to the combinations of one, two, or all
three of the const, volatile, and restrict qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requirements.*® A derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

Further, there is the Atomic qualifier. The presence of the Atomic qualifier
designates an atomic type. The size, representation, and alignment of an atomic type
need not be the same as those of the corresponding unqualified type. Therefore, this
Standard explicitly uses the phrase “atomic, qualified or unqualified type” whenever the
atomic version of a type is permitted along with the other qualified versions of a type.
The phrase “qualified or unqualified type’’, without specific mention of atomic, does not
include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a
pointer to a character type.*® Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements. All
pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same
representation or alignment requirements.

EXAMPLE 1 The type designated as “£loat *” has type “pointer to £loat”. Its type category is

pointer, not a floating type. The const-qualified version of this type is designated as “float * const”
whereas the type designated as “const float *” is not a qualified type — its type is “pointer to const-

47) See 6.7.3 regarding qualified array and function types.

48) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

86.2.5 Language 43

30

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

qualified £1oat” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (*[5]) (£loat)” has type “array of pointer to
function returning struct tag”. The array has length five and the function has a single parameter of type
float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).
6.2.6 Representations of types
6.2.6.1 General

The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

Values stored in unsigned bit-fields and objects of type unsigned char shall be
represented using a pure binary notation.*?)

Values stored in non-bit-field objects of any other object type consist of n x CHAR BIT
bits, where n is the size of an object of that type, in bytes. The value may be copied into
an object of type unsigned char [n] (e.g., by memcpy); the resulting set of bytes is
called the object representation of the value. Values stored in bit-fields consist of m bits,
where m is the size specified for the bit-field. The object representation is the set of m
bits the bit-field comprises in the addressable storage unit holding it. Two values (other
than NaNs) with the same object representation compare equal, but values that compare
equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is read by an Ivalue expression that does
not have character type, the behavior is undefined. If such a representation is produced
by a side effect that modifies all or any part of the object by an lvalue expression that
does not have character type, the behavior is undefined.>® Such a representation is called
a trap representation.

When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified values.’? The value of a structure or union object is never a trap

49) A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits, and the values of
type unsigned char range from 0 to 2°%AR-BIT 1

50) Thus, an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.

44 Language §6.2.6.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

representation, even though the value of a member of the structure or union object may be
a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values.

Where an operator is applied to a value that has more than one object representation,
which object representation is used shall not affect the value of the result.>? Where a
value is stored in an object using a type that has more than one object representation for
that value, it is unspecified which representation is used, but a trap representation shall
not be generated.

Loads and stores of objects with atomic types are done with
memory order seq cst semantics.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function
designators (6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types

For unsigned integer types other than unsigned char, the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2", so that objects of that type shall be capable of
representing values from 0 to 2N —1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.>®

For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
signed char shall not have any padding bits. There shall be exactly one sign bit.
Each bit that is a value bit shall have the same value as the same bit in the object
representation of the corresponding unsigned type (if there are M value bits in the signed
type and N in the unsigned type, then M < N). If the sign bit is zero, it shall not affect

51) Thus, for example, structure assignment need not copy any padding bits.

52) It is possible for objects x and y with the same effective type T to have the same value when they are

accessed as objects of type T, but to have different values in other contexts. In particular, if == is
defined for type T, then x == y does not imply that memcmp (&x, &y, sizeof (T)) ==
Furthermore, x == y does not necessarily imply that x and y have the same value; other operations

on values of type T may distinguish between them.

53) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow, and this cannot occur
with unsigned types. All other combinations of padding bits are alternative object representations of
the value specified by the value bits.

§6.2.6.2 Language 45

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

the resulting value. If the sign bit is one, the value shall be modified in one of the
following ways:

— the corresponding value with sign bit O is negated (sign and magnitude);
— the sign bit has the value —(2M) (two’s complement);
— the sign bit has the value —(2™ — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’
complement), is a trap representation or a normal value. In the case of sign and
magnitude and ones’ complement, if this representation is a normal value it is called a
negative zero.

If the implementation supports negative zeros, they shall be generated only by:
— theg, |, ", ~, <<, and >> operators with operands that produce such a value;

— the +, -, *, /, and % operators where one operand is a negative zero and the result is
zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero,
and whether a negative zero becomes a normal zero when stored in an object.

A

If the implementation does not support negative zeros, the behavior of the &, |, *, ~, <<,
and >> operators with operands that would produce such a value is undefined.

The values of any padding bits are unspecified.>*) A valid (non-trap) object representation
of a signed integer type where the sign bit is zero is a valid object representation of the
corresponding unsigned type, and shall represent the same value. For any integer type,
the object representation where all the bits are zero shall be a representation of the value
zero in that type.

The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. The width of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while
for signed integer types the width is one greater than the precision.

54) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow. All other
combinations of padding bits are alternative object representations of the value specified by the value
bits.

46 Language §6.2.6.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.6 for declarators.’® Moreover, two structure,
union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are completed anywhere within their
respective translation units, then the following additional requirements apply: there shall
be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is
declared with an alignment specifier, the other is declared with an equivalent alignment
specifier; and if one member of the pair is declared with a name, the other is declared
with the same name. For two structures, corresponding members shall be declared in the
same order. For two structures or unions, corresponding bit-fields shall have the same
widths. For two enumerations, corresponding members shall have the same values.

All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

« If one type is an array of known constant size, the composite type is an array of
that size.

« Otherwise, if one type is a variable length array whose size is specified by an
expression that is not evaluated, the behavior is undefined.

+ Otherwise, if one type is a variable length array whose size is specified, the
composite type is a variable length array of that size.

« Otherwise, if one type is a variable length array of unspecified size, the composite
type is a variable length array of unspecified size.

+ Otherwise, both types are arrays of unknown size and the composite type is an
array of unknown size.
The element type of the composite type is the composite type of the two element
types.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

55) Two types need not be identical to be compatible.

86.2.7 Language 47

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visible,%® if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite

type.
Forward references: array declarators (6.7.6.2).
EXAMPLE Given the following two file scope declarations:

int f£(int (*) (), double (*) [3]);
int f£(int (*) (char *), double (*)I[]);

The resulting composite type for the function is:

int f(int (*) (char *), double (*) [3]):;
6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the
addresses at which objects of that type may be allocated. An alignment is an
implementation-defined integer value representing the number of bytes between
successive addresses at which a given object can be allocated. An object type imposes an
alignment requirement on every object of that type: stricter alignment can be requested
using the Alignas keyword.

A fundamental alignment is represented by an alignment less than or equal to the greatest
alignment supported by the implementation in all contexts, which is equal to
_Alignof (max align t).

An extended alignment is represented by an alignment greater than
_Alignof (max align t). It is implementation-defined whether any extended
alignments are supported and the contexts in which they are supported. A type having an
extended alignment requirement is an over-aligned type.>”)

Alignments are represented as values of the type size t. Valid alignments include only
those values returned by an Alignof expression for fundamental types, plus an
additional implementation-defined set of values, which may be empty. Every valid
alignment value shall be a nonnegative integral power of two.

56) As specified in 6.2.1, the later declaration might hide the prior declaration.

57) Every over-aligned type is, or contains, a structure or union type with a member to which an extended
alignment has been applied.

48 Language 8§6.2.8

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Alignments have an order from weaker to stronger or stricter alignments. Stricter
alignments have larger alignment values. An address that satisfies an alignment
requirement also satisfies any weaker valid alignment requirement.

The alignment requirement of a complete type can be queried using an Alignof
expression. The types char, signed char, and unsigned char shall have the
weakest alignment requirement.

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

§6.2.8 Language 49

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.3 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such an implicit conversion, as well as those
that result from a cast operation (an explicit conversion). The list in 6.3.1.8 summarizes
the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank of long long int shall be greater than the rank of long int, which
shall be greater than the rank of int, which shall be greater than the rank of short
int, which shall be greater than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of _Boo1 shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an int or unsigned int may
be used:

50 Language §6.3.1.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— An object or expression with an integer type (other than int or unsigned int)
whose integer conversion rank is less than or equal to the rank of int and
unsigned int.

— Abit-field of type Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type (as restricted by the width, for a
bit-field), the value is converted to an int; otherwise, it is converted to an unsigned
int. These are called the integer promotions.58) All other types are unchanged by the
integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to Bool, the result is O if the value compares equal
to 0; otherwise, the result is 1.5%

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than Bool, if
the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.5%

Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to an integer type other than Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.5?

58) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unary +, -, and ~ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

59) NaNs do not compare equal to 0 and thus convert to 1.
60) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

61) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (-1, Utype MAX+1).

§6.3.1.4 Language 51

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined. Results of some implicit
conversions may be represented in greater range and precision than that required by the
new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.5 Real floating types

When a value of real floating type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined. Results of some implicit
conversions may be represented in greater range and precision than that required by the
new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determine a common real type for the operands
and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is called the usual arithmetic conversions:

First, if the corresponding real type of either operand is long double, the other
operand is converted, without change of type domain, to a type whose

52 Language §6.3.1.8

2

N1570

Committee Draft — April 12, 2011 ISO/IEC 9899:201x

corresponding real type is long double.

Otherwise, if the corresponding real type of either operand is double, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is double.

Otherwise, if the corresponding real type of either operand is £loat, the other
operand is converted, without change of type domain, to a type whose

corresponding real type is £loat.

62)

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be
represented in greater range and precision than that required by the type; the types are not

changed thereby.

63)

62) For example, addition of a double Complex and a £loat entails just the conversion of the
float operand to double (and yields a double Complex result).

63) The cast and assignment operators are still required to remove extra range and precision.

86.3.1.8

Language 53

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators

An lvalue is an expression (with an object type other than void) that potentially
designates an object;%¥ if an Ivalue does not designate an object when it is evaluated, the
behavior is undefined. When an object is said to have a particular type, the type is
specified by the Ivalue used to designate the object. A modifiable lvalue is an Ivalue that
does not have array type, does not have an incomplete type, does not have a const-
qualified type, and if it is a structure or union, does not have any member (including,
recursively, any member or element of all contained aggregates or unions) with a const-
qualified type.

Except when it is the operand of the sizeof operator, the Alignof operator, the
unary & operator, the ++ operator, the - - operator, or the left operand of the . operator
or an assignment operator, an lvalue that does not have array type is converted to the
value stored in the designated object (and is no longer an Ivalue); this is called Ivalue
conversion. If the lvalue has qualified type, the value has the unqualified version of the
type of the lvalue; additionally, if the Ivalue has atomic type, the value has the non-atomic
version of the type of the Ivalue; otherwise, the value has the type of the lvalue. If the
Ivalue has an incomplete type and does not have array type, the behavior is undefined. If
the Ivalue designates an object of automatic storage duration that could have been
declared with the register storage class (never had its address taken), and that object
IS uninitialized (not declared with an initializer and no assignment to it has been
performed prior to use), the behavior is undefined.

Except when it is the operand of the sizeof operator, the Alignof operator, or the
unary & operator, or is a string literal used to initialize an array, an expression that has
type “array of type” is converted to an expression with type “pointer to type” that points
to the initial element of the array object and is not an Ivalue. If the array object has
register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the
operand of the sizeof operator, the Alignof operator,® or the unary & operator, a
function designator with type ““function returning type” is converted to an expression that

64) The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left
operand E1 is required to be a (modifiable) Ivalue. It is perhaps better considered as representing an
object “locator value”. What is sometimes called “rvalue” is in this International Standard described
as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further example, if E is a unary
expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

65) Because this conversion does not occur, the operand of the sizeof or Alignof operator remains
a function designator and violates the constraints in 6.5.3.4.

54 Language §6.3.2.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

has type ““pointer to function returning type”.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions <stddef.h> (7.19), initialization (6.7.9), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), the sizeof and Alignof operators (6.5.3.4), structure and union members
(6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not
be used in any way, and implicit or explicit conversions (except to void) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to
any object type may be converted to a pointer to void and back again; the result shall
compare equal to the original pointer.

For any qualifier q, a pointer to a non-g-qualified type may be converted to a pointer to
the g-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type
void *, is called a null pointer constant.®® If a null pointer constant is converted to a
pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal
to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to an
entity of the referenced type, and might be a trap representation.®”)

Any pointer type may be converted to an integer type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefined. The result need not be in the range of values of any integer

type.

66) The macro NULL is defined in <stddef .h> (and other headers) as a null pointer constant; see 7.19.

67) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

§6.3.2.3 Language 55

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

A pointer to an object type may be converted to a pointer to a different object type. If the
resulting pointer is not correctly aligned®® for the referenced type, the behavior is
undefined. Otherwise, when converted back again, the result shall compare equal to the
original pointer. When a pointer to an object is converted to a pointer to a character type,
the result points to the lowest addressed byte of the object. Successive increments of the
result, up to the size of the object, yield pointers to the remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the referenced type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types
capable of holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

68) In general, the concept “correctly aligned™ is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

56 Language §6.3.2.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.4 Lexical elements
Syntax

token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing tokens are: header names,
identifiers, preprocessing numbers, character constants, string literals, punctuators, and
single non-white-space characters that do not lexically match the other preprocessing
token categories.? If a * or a » character matches the last category, the behavior is
undefined. Preprocessing tokens can be separated by white space; this consists of
comments (described later), or white-space characters (space, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than
preprocessing token separation. White space may appear within a preprocessing token
only as part of a header name or between the quotation characters in a character constant
or string literal.

69) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

86.4 Language 57

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: header name preprocessing
tokens are recognized only within #include preprocessing directives and in
implementation-defined locations within #pragma directives. In such contexts, a
sequence of characters that could be either a header name or a string literal is recognized
as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing tokens 1 and Ex
might produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program

fragment 1E1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or
not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on
increment operators, even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords

Syntax
keyword: one of

auto * if unsigned
break inline void
case int volatile
char long while
const register _Alignas
continue restrict _Alignof
default return _Atomic
do short _Bool
double signed _Complex
else sizeof _Generic
enum static _Imaginary
extern struct _Noreturn
float switch _Static assert
for typedef _Thread local
goto union

Semantics

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise. The keyword Imaginary is reserved for
58 Language 86.4.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

specifying imaginary types.”®
6.4.2 ldentifiers
6.4.2.1 General
Syntax
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

_a b ¢ d e £f g h i j k 1 m
n o p qq r s t u v w x y 2z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y 1Z
digit: one of

o 1 2 3 4 5 6 7 8 9
Semantics

An identifier is a sequence of nondigit characters (including the underscore , the
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lowercase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in D.1."Y The initial character
shall not be a universal character name designating a character whose encoding falls into
one of the ranges specified in D.2. An implementation may allow multibyte characters
that are not part of the basic source character set to appear in identifiers; which characters
and their correspondence to universal character names is implementation-defined.

70) One possible specification for imaginary types appears in annex G.

71) On systems in which linkers cannot accept extended characters, an encoding of the universal character
name may be used in forming valid external identifiers. For example, some otherwise unused
character or sequence of characters may be used to encode the \u in a universal character name.
Extended characters may produce a long external identifier.

86.4.2.1 Language 59

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for an external name (an identifier that has external
linkage) may be more restrictive than that for an internal name (a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).
6.4.2.2 Predefined identifiers
Semantics

The identifier = func _ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char func [] = "function-name";
appeared, where function-name is the name of the lexically-enclosing function.”?

This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>
void myfunc (void)

{

printf ("%$s\n", func);
/* .o*/
}

Each time the function is called, it will print to the standard output stream:

my func

Forward references: function definitions (6.9.1).

72) Since the name _ func s reserved for any use by the implementation (7.1.3), if any other
identifier is explicitly declared using the name __ func__, the behavior is undefined.

60 Language §6.4.2.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.4.3 Universal character names
Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

Constraints

A universal character name shall not specify a character whose short identifier is less than
00AOQ other than 0024 ($), 0040 (@), or 0060 (), nor one in the range D800 through
DFFF inclusive.”®

Description

Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

Semantics

The universal character name \uUnnnnnnnn designates the character whose eight-digit
short identifier (as specified by 1SO/IEC 10646) is nnnnnnnn.”®) Similarly, the universal
character name \unnnn designates the character whose four-digit short identifier is nnnn
(and whose eight-digit short identifier is 0000nnnn).

73) The disallowed characters are the characters in the basic character set and the code positions reserved
by ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by
UTF-16).

74) Short identifiers for characters were first specified in ISO/IEC 10646-1/AMD?9:1997.

86.4.3 Language 61

ISO/IEC 9899:201x Committee Draft — April 12, 2011

6.4.4 Constants
Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

N1570

Each constant shall have a type and the value of a constant shall be in the range of

representable values for its type.
Semantics

Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
i1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 17

62 Language

86.4.4.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b ¢ 4 e £
A B C D E F

integer-suffix:
unsigned-suffix long-suffixp
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixgpt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l1 L

long-long-suffix: one of
11 LL

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix 0 optionally followed by a sequence of the
digits 0 through 7 only. A hexadecimal constant consists of the prefix 0x or 0X followed
by a sequence of the decimal digits and the letters a (or &) through £ (or F) with values
10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can
be represented.

8§6.4.4.1 Language 63

ISO/IEC 9899:201x

Committee Draft — April 12, 2011

Octal or Hexadecimal

N1570

Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uor?uU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long long int
Both u or U unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int
unsigned long long int
Both u or U unsigned long long int | unsigned long long int

and 11 or LL

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned. If an integer constant cannot be represented by any type in
its list and has no extended integer type, then the integer constant has no type.

64

Language

86.4.4.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.4.4.2 Floating constants
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partyp; floating-suffixop
digit-sequence exponent-part floating-suffixgpt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixop
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixop

fractional-constant:
digit-sequenceqgp; . digit-sequence
digit-sequence .

exponent-part:
e signgpt digit-sequence
E signgp digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadecimal-fractional-constant:
hexadecimal-digit-sequenceqpt -
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signgpt digit-sequence
P signgpt digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
£ 1 F L

8§6.4.4.2 Language 65

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Description

A floating constant has a significand part that may be followed by an exponent part and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants when FLT RADIX is not a power of 2, the result is either
the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants when FLT RADIX is a power of 2, the result is
correctly rounded.

An unsuffixed floating constant has type double. If suffixed by the letter £ or F, it has
type £loat. If suffixed by the letter 1 or L, it has type long double.

Floating constants are converted to internal format as if at translation-time. The
conversion of a floating constant shall not raise an exceptional condition or a floating-
point exception at execution time. All floating constants of the same source form’® shall
convert to the same internal format with the same value.

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, such as strtod, given matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding.”®

75) 1.23,1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus need not
convert to the same internal format and value.

76) The specification for the library functions recommends more accurate conversion than required for
floating constants (see 7.22.1.3).

66 Language §6.4.4.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:

identifier

Semantics
An identifier declared as an enumeration constant has type int.
Forward references: enumeration specifiers (6.7.2.2).
6.4.4.4 Character constants
Syntax

character-constant:
' c-char-sequence
L' c-char-sequence '
u' c-char-sequence
U' c-char-sequence '

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ', backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of

AL W A N

\a \b \f \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit

86.4.4.4 Language 67

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as in *x'. A wide character constant is the same, except prefixed by the
letter L, u, or U. With a few exceptions detailed later, the elements of the sequence are
any members of the source character set; they are mapped in an implementation-defined
manner to members of the execution character set.

The single-quote ', the double-quote ", the question-mark 2, the backslash \, and
arbitrary integer values are representable according to the following table of escape
sequences:

single quote * \'!
double quote " \"
question mark ? \?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

The double-quote ™ and question-mark ? are representable either by themselves or by the
escape sequences \" and \?, respectively, but the single-quote ' and the backslash \
shall be represented, respectively, by the escape sequences \ * and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, characters not in the basic character set are representable by universal
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslash \ followed by a lowercase letter: \a, \b, \ £, \n, \r, \t,
and \v.”"

68 Language §6.4.4.4

10

11

12
13

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the corresponding type:

Prefix | Corresponding Type
none unsigned char
L the unsigned type corresponding to wchar t
u charlé t
U char32 t
Semantics

An integer character constant has type int. The value of an integer character constant
containing a single character that maps to a single-byte execution character is the
numerical value of the representation of the mapped character interpreted as an integer.
The value of an integer character constant containing more than one character (e.g.,
rab'), or containing a character or escape sequence that does not map to a single-byte
execution character, is implementation-defined. If an integer character constant contains
a single character or escape sequence, its value is the one that results when an object with
type char whose value is that of the single character or escape sequence is converted to
type int.

A wide character constant prefixed by the letter L. has type wehar t, an integer type
defined in the <stddef . h> header; a wide character constant prefixed by the letter u or
U has type char16 t or char32 t, respectively, unsigned integer types defined in the
<uchar.h> header. The value of a wide character constant containing a single
multibyte character that maps to a single member of the extended execution character set
is the wide character corresponding to that multibyte character, as defined by the
mbtowc, mbrtoclé, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing
more than one multibyte character or a single multibyte character that maps to multiple
members of the extended execution character set, or containing a multibyte character or
escape sequence not represented in the extended execution character set, is
implementation-defined.

EXAMPLE 1 The construction *\0' is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight
bits for objects that have type char. In an implementation in which type char has the same range of
values as signed char, the integer character constant ' \xFF "' has the value -1; if type char has the
same range of values as unsigned char, the character constant ' \xFF ' has the value +255.

77) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,
the result is not a token and a diagnostic is required. See “future language directions™ (6.11.4).

86.4.4.4 Language 69

14

15

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction '\x123"
specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values are *\x12' and '3, the construction *\0223 ' may be used, since an octal
escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar t, the construction
L'\1234"' specifies the implementation-defined value that results from the combination of the values
0123 and '4".

Forward references: common definitions <stddef .h> (7.19), the mbtowc function
(7.22.7.2), Unicode utilities <uchar.h> (7.28).

6.4.5 String literals
Syntax

string-literal:
encoding-prefixopt " s-char-sequencegpt ™

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence

Constraints

A sequence of adjacent string literal tokens shall not include both a wide string literal and
a UTF-8 string literal.

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in
double-quotes, as in "xyz". A UTF—8 string literal is the same, except prefixed by u8.
A wide string literal is the same, except prefixed by the letter L, u, or U.

The same considerations apply to each element of the sequence in a string literal as if it
were in an integer character constant (for a character or UTF-8 string literal) or a wide
character constant (for a wide string literal), except that the single-quote ' is
representable either by itself or by the escape sequence \ ', but the double-quote ™ shall

70 Language 86.4.5

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

be represented by the escape sequence \ .
Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and identically-prefixed string literal tokens are concatenated into a
single multibyte character sequence. If any of the tokens has an encoding prefix, the
resulting multibyte character sequence is treated as having the same prefix; otherwise, it
is treated as a character string literal. Whether differently-prefixed wide string literal
tokens can be concatenated and, if so, the treatment of the resulting multibyte character
sequence are implementation-defined.

In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or literals.”®) The multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char, and are initialized with the individual bytes of the multibyte character
sequence. For UTF-8 string literals, the array elements have type char, and are
initialized with the characters of the multibyte character sequence, as encoded in UTF-8.
For wide string literals prefixed by the letter L, the array elements have type wchar t
and are initialized with the sequence of wide characters corresponding to the multibyte
character sequence, as defined by the mbstowecs function with an implementation-
defined current locale. For wide string literals prefixed by the letter u or U, the array
elements have type char1l6 t or char32 t, respectively, and are initialized with the
sequence of wide characters corresponding to the multibyte character sequence, as
defined by successive calls to the mbrtoc16, or mbrtoc32 function as appropriate for
its type, with an implementation-defined current locale. The value of a string literal
containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

EXAMPLE 1 This pair of adjacent character string literals
"\x12" n3n

produces a single character string literal containing the two characters whose values are *\x12' and '3",
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

78) A string literal need not be a string (see 7.1.1), because a null character may be embedded in it by a
\ 0 escape sequence.

86.4.5 Language 71

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

gn wpmw Lucn
"a" L"b" wen
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal
LII abc n
Likewise, each of the sequences

Ilall Ilbll ullcll
Ilall ullbll Ilcll
ullall Ilbll ullcll
ullall ullbll ullcll

is equivalent to

ull abc n

Forward references: common definitions <stddef.h> (7.19), the mbstowcs
function (7.22.8.1), Unicode utilities <uchar .h> (7.28).

6.4.6 Punctuators

Syntax

punctuator: one of
[1) { } ->
++ -- & * 4+ - ~
/ % << >> > <= >= == 1= " | && ||
? ;
= *= [= %= 4= -= <<= >>= &= "= |=
p ##
< > <% %> % %:%

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as an operator (other forms of operator also exist in some
contexts). An operand is an entity on which an operator acts.

72 Language 86.4.6

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

In all aspects of the language, the six tokens’®

o°

) o .0
> I 5%

<: :> <%
behave, respectively, the same as the six tokens

[1 { } # ##
except for their spelling.2%

Forward references: expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
the new-line character and "

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

If the characters ', \, ", //, or /* occur in the sequence between the < and > delimiters,
the behavior is undefined. Similarly, if the characters ', \, //, or /* occur in the

79) These tokens are sometimes called “digraphs”.

80) Thus [and <: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely
interchanged.

86.4.7 Language 73

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

sequence between the " delimiters, the behavior is undefined.8) Header name
preprocessing tokens are recognized only within #include preprocessing directives and
in implementation-defined locations within #pragma directives.2?)

EXAMPLE The following sequence of characters:

0x3<l/a.h>le2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a { on the left and a } on the right).

{ox3H{<H1H/HaH.HhH{>H1e2}
{#H{include} {<1/a.h>}
{#H{define} {const}{.HmemberH{e}{s}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

pp-number:

digit
digit

pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may
be followed by valid identifier characters and the character sequences e+, e-, E+, E-,
p+,p-, P+,0r P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

81) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

82) For an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.

74 Language 86.4.8

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /*
introduce a comment. The contents of such a comment are examined only to identify
multibyte characters and to find the characters * / that terminate it.5%

Except within a character constant, a string literal, or a comment, the characters //
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

EXAMPLE
"a//b" // four-character string literal
#include "//e" // undefined behavior
/] */ // comment, not syntax error
£f = g/**//h; // equivalentto £ = g / h;
//\
i(); // part of a two-line comment
/\
/ 30; // part of a two-line comment
##define glue(x,y) xi##ty
glue(/,/) k() ; // syntax error, not comment
/*//*/ 10); // equivalentto 1 () ;
m=n//**/o

+ p; // equivalenttom = n + p;

83) Thus, /* ... */ comments do not nest.

86.4.9 Language 75

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof. The value computations of the operands of an operator
are sequenced before the value computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect
on the same scalar object or a value computation using the value of the same scalar
object, the behavior is undefined. If there are multiple allowable orderings of the
subexpressions of an expression, the behavior is undefined if such an unsequenced side
effect occurs in any of the orderings.8¥

The grouping of operators and operands is indicated by the syntax.2®) Except as specified
later, side effects and value computations of subexpressions are unsequenced.&6)

A

Some operators (the unary operator ~, and the binary operators <<, >>, &, *, and |,
collectively described as bitwise operators) are required to have operands that have
integer type. These operators yield values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the
result is not mathematically defined or not in the range of representable values for its
type), the behavior is undefined.

84) This paragraph renders undefined statement expressions such as

i=++1 + 1;
ali++] = i;

while allowing

i=i+1;

85) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary + operator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained between any of the following pairs of operators: grouping
parentheses () (6.5.1), subscripting brackets [1 (6.5.2.1), function-call parentheses () (6.5.2.2), and
the conditional operator ? : (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

86) In an expression that is evaluated more than once during the execution of a program, unsequenced and
indeterminately sequenced evaluations of its subexpressions need not be performed consistently in
different evaluations.

76 Language 86.5

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

The effective type of an object for an access to its stored value is the declared type of the
object, if any.8”) If a value is stored into an object having no declared type through an
Ivalue having a type that is not a character type, then the type of the lvalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify
the stored value. If a value is copied into an object having no declared type using
memcpy Of memmove, Of is copied as an array of character type, then the effective type
of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of

the following types:®®)

— atype compatible with the effective type of the object,
— aqualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may be contracted, that is, evaluated as though it were a single
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation method.? The FP_CONTRACT pragma in <math.h> provides a
way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defined.®®

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

87) Allocated objects have no declared type.
88) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

89) The intermediate operations in the contracted expression are evaluated as if to infinite range and
precision, while the final operation is rounded to the format determined by the expression evaluation
method. A contracted expression might also omit the raising of floating-point exceptions.

90) This license is specifically intended to allow implementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictability, and can even
decrease accuracy for containing expressions, their use needs to be well-defined and clearly
documented.

86.5 Language 77

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.1 Primary expressions
Syntax

primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an lvalue) or a function (in which case it is a function
designator).V)

A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

A string literal is a primary expression. It is an Ivalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

A generic selection is a primary expression. Its type and value depend on the selected |
generic association, as detailed in the following subclause.

Forward references: declarations (6.7).
6.5.1.1 Generic selection
Syntax

generic-selection:
_Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association
generic-assoc-list , generic-association

generic-association:
type-name : assignment-expression
default : assignment-expression

91) Thus, an undeclared identifier is a violation of the syntax.

78 Language §6.5.1.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Constraints

A generic selection shall have no more than one default generic association. The type
name in a generic association shall specify a complete object type other than a variably
modified type. No two generic associations in the same generic selection shall specify
compatible types. The controlling expression of a generic selection shall have type
compatible with at most one of the types named in its generic association list. If a
generic selection has no default generic association, its controlling expression shall
have type compatible with exactly one of the types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection
has a generic association with a type name that is compatible with the type of the
controlling expression, then the result expression of the generic selection is the
expression in that generic association. Otherwise, the result expression of the generic
selection is the expression in the default generic association. None of the expressions
from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It
is an lIvalue, a function designator, or a void expression if its result expression is,
respectively, an Ivalue, a function designator, or a void expression.

EXAMPLE The ebrt type-generic macro could be implemented as follows:

#define cbrt(X) Generic((X),
long double: cbrtl,
default: cbrt,
float: cbrtf
) (X)

P

6.5.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expression [expression 1]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression - -
(type-name) { initializer-list }
(type-name) { initializer-list , }

86.5.2 Language 79

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object type™, the other
expression shall have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator []
is that E1 [E2] is identical to (* ((E1) + (E2))). Because of the conversion rules that
apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the
initial element of an array object) and E2 is an integer, E1 [E2] designates the E2-th
element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object.
If E is an n-dimensional array (n > 2) with dimensions ix jx---x Kk, then E (used as
other than an Ivalue) is converted to a pointer to an (n—1)-dimensional array with
dimensions jx---x k. If the unary * operator is applied to this pointer explicitly, or
implicitly as a result of subscripting, the result is the referenced (n —1)-dimensional
array, which itself is converted into a pointer if used as other than an Ivalue. It follows
from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration
int x[3][5];

Here x is a 3 x5 array of ints; more precisely, x is an array of three element objects, each of which is an
array of five ints. In the expression x [11, which is equivalent to (* ((x) + (1))), x is first converted to
a pointer to the initial array of five ints. Then i is adjusted according to the type of x, which conceptually
entails multiplying i by the size of the object to which the pointer points, namely an array of five int
objects. The results are added and indirection is applied to yield an array of five ints. When used in the
expression x[i] [§1, that array is in turn converted to a pointer to the first of the ints, so x[1] []
yields an int.

Forward references: additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.6.2).

80 Language §6.5.2.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.5.2.2 Function calls
Constraints

The expression that denotes the called function®? shall have type pointer to function
returning void or returning a complete object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

An argument may be an expression of any complete object type. In preparing for the call
to a function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.®®)

If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have type £loat are promoted to double. These are called the default argument
promotions. If the number of arguments does not equal the number of parameters, the
behavior is undefined. If the function is defined with a type that includes a prototype, and
either the prototype ends with an ellipsis (, ...) or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

92) Most often, this is the result of converting an identifier that is a function designator.

93) A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2 Language 81

10

11

12

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— both types are pointers to qualified or unqualified versions of a character type or
void.

If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

There is a sequence point after the evaluations of the function designator and the actual
arguments but before the actual call. Every evaluation in the calling function (including
other function calls) that is not otherwise specifically sequenced before or after the
execution of the body of the called function is indeterminately sequenced with respect to
the execution of the called function.®*

Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.
EXAMPLE In the function call

(*pE[£1()1) (£2(), £3() + £4())

the functions £1, £2, £3, and £4 may be called in any order. All side effects have to be completed before
the function pointed to by p£ [£1 () 1 is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function
definitions (6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified
structure or union type, and the second operand shall name a member of that type.

The first operand of the -> operator shall have type “pointer to atomic, qualified, or
unqualified structure or “pointer to atomic, qualified, or unqualified union”, and the
second operand shall name a member of the type pointed to.

94) In other words, function executions do not “interleave” with each other.

82 Language §6.5.2.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Semantics

A postfix expression followed by the . operator and an identifier designates a member of
a structure or union object. The value is that of the named member,®® and is an Ivalue if
the first expression is an lIvalue. If the first expression has qualified type, the result has
the so-qualified version of the type of the designated member.

A postfix expression followed by the -> operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an Ivalue.?®) If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated
member.

Accessing a member of an atomic structure or union object results in undefined
behavior.®”)

One special guarantee is made in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence (see below), and if the union
object currently contains one of these structures, it is permitted to inspect the common
initial part of any of them anywhere that a declaration of the completed type of the union
is visible. Two structures share a common initial sequence if corresponding members
have compatible types (and, for bit-fields, the same widths) for a sequence of one or more
initial members.

EXAMPLE 1 If £ is a function returning a structure or union, and x is a member of that structure or
union, £ () .x is a valid postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; comst int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:

95) If the member used to read the contents of a union object is not the same as the member last used to
store a value in the object, the appropriate part of the object representation of the value is reinterpreted
as an object representation in the new type as described in 6.2.6 (a process sometimes called “type
punning™). This might be a trap representation.

96) If &E is a valid pointer expression (where & is the “address-of”” operator, which generates a pointer to
its operand), the expression (&E) - >MOS is the same as E . MOS.

97) For example, a data race would occur if access to the entire structure or union in one thread conflicts
with access to a member from another thread, where at least one access is a modification. Members
can be safely accessed using a non-atomic object which is assigned to or from the atomic object.

86.5.2.3 Language 83

ISO/IEC 9899:201x Committee Draft — April 12, 2011

s.i int

s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int

vs.ci volatile const int

9 EXAMPLE 3 The following is a valid fragment:

The following is not a valid fragment (because the union type is not visible within function £):

union {
struct {
int alltypes;
} n;
struct {
int type:;
int intnode;
} ni;
struct {
int type:;
double doublenode;
} nf;
}ow

u.nf.type = 1;
u.nf.doublenode = 3.14;

/* . o*/
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)

/* .o*/

struct tl1 { int m; };
struct t2 { int m; };
int f(struct tl *pl, struct t2 *p2)
{
if (pl->m < 0)
p2->m = -p2->m;
return pl->m;

}
int g/()
{
union {
struct tl sl1;
struct t2 s2;
}ow
/* ..o*/
return f(&u.sl, &u.s2);
}

N1570

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

84

Language

86.5.2.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified,
or unqualified real or pointer type, and shall be a modifiable Ivalue.

Semantics

The result of the postfix ++ operator is the value of the operand. As a side effect, the
value of the operand object is incremented (that is, the value 1 of the appropriate type is
added to it). See the discussions of additive operators and compound assignment for
information on constraints, types, and conversions and the effects of operations on
pointers. The value computation of the result is sequenced before the side effect of
updating the stored value of the operand. With respect to an indeterminately-sequenced
function call, the operation of postfix ++ is a single evaluation. Postfix ++ on an object
with atomic type is a read-modify-write operation with memory order seq cst
memory order semantics.*®)

The postfix - - operator is analogous to the postfix ++ operator, except that the value of
the operand is decremented (that is, the value 1 of the appropriate type is subtracted from

it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).
6.5.2.5 Compound literals

Constraints

The type name shall specify a complete object type or an array of unknown size, but not a
variable length array type.

All the constraints for initializer lists in 6.7.9 also apply to compound literals.
Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is a compound literal. It provides an unnamed object whose

98) Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the |
following code sequence where T is the type of E:

T *addr = &E; |
T old = *addr; |
T new; |
do {

new = old + 1; \
} while (!atomic compare exchange strong(addr, &old, new));

with o1d being the result of the operation. |

Special care must be taken if E has floating type; see 6.5.16.2.

86.5.2.5 Language 85

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

10

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

value is given by the initializer list.%®

If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.9, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
Ivalue.

The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.1%)

String literals, and compound literals with const-qualified types, need not designate
distinct objects. 0V
EXAMPLE 1 The file scope definition

int *p = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

EXAMPLE 2 In contrast, in

void f (void)

{
int *p;
/*.%/
p = (int [2]1){*p}:
/*.%/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to by p and the second, zero. The expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point) {.x=3, .y=4});

99) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types
or void only, and the result of a cast expression is not an lvalue.

100) For example, subobjects without explicit initializers are initialized to zero.

101) This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.

86 Language 86.5.2.5

11

12

13

14

15

16

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Or, if drawline instead expected pointers to struct point:

drawline (& (struct point){.x=1, .y=1},
& (struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:
(const float []1){1le0, lel, 1le2, le3, le4, le5, le6}
EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX“
(char [1){"/tmp/fileXXXXXX"}
(const char []1){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last
two have automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char []){"abc"} == "abc"
might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named object endless zeros below:

struct int list { int car; struct int list *cdr; };
struct int list endless zeros = {0, &endless zeros};
eval (endless_ zeros) ;

EXAMPLE 8 Each compound literal creates only a single object in a given scope:
struct s { int i; };

int £ (void)

{
struct s *p = 0, *q;
intj:o;
again:
g =p, P = &((struct S){ J++ });
if (j < 2) goto again;
return p == q && qg->i == 1;
}

The function £ () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time around p would
have an indeterminate value, which would result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

86.5.2.5 Language 87

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ Unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
_Alignof (type-name)

unary-operator: one of
& * + - ~

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified,
or unqualified real or pointer type, and shall be a modifiable Ivalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to (E+=1).
See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

The prefix - - operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).
6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a
[1 or unary * operator, or an lvalue that designates an object that is not a bit-field and is
not declared with the register storage-class specifier.

The operand of the unary * operator shall have pointer type.
Semantics

The unary & operator yields the address of its operand. If the operand has type “type”,
the result has type “pointer to type”. If the operand is the result of a unary * operator,
neither that operator nor the & operator is evaluated and the result is as if both were
omitted, except that the constraints on the operators still apply and the result is not an

88 Language 86.5.3.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Ivalue. Similarly, if the operand is the result of a [1 operator, neither the & operator nor
the unary * that is implied by the []1 is evaluated and the result is as if the & operator
were removed and the []1 operator were changed to a + operator. Otherwise, the result is
a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an Ivalue designating the
object. If the operand has type “pointer to type”, the result has type “type”. If an
invalid value has been assigned to the pointer, the behavior of the unary * operator is
undefined.1%?

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator,
integer type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expression ~E is equivalent
to the maximum value representable in that type minus E.

The result of the logical negation operator ! is O if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result has type int.
The expression ! E is equivalentto (0==E).

102) Thus, &*E is equivalent to E (even if E is a null pointer), and & (E1 [E2]) to ((E1) + (E2)). Itis
always true that if E is a function designator or an Ivalue that is a valid operand of the unary &
operator, *&E is a function designator or an lvalue equal to E. If *P is an lvalue and T is the name of
an object pointer type, * (T) P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an object after the
end of its lifetime.

§6.5.3.3 Language 89

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.3.4 The sizeof and Alignof operators
Constraints

The sizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an expression that
designates a bit-field member. The Alignof operator shall not be applied to a
function type or an incomplete type.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

The Alignof operator yields the alignment requirement of its operand type. The
operand is not evaluated and the result is an integer constant. When applied to an array
type, the result is the alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or
signed char, (or a qualified version thereof) the result is 1. When applied to an
operand that has array type, the result is the total number of bytes in the array.’®® When
applied to an operand that has structure or union type, the result is the total number of
bytes in such an object, including internal and trailing padding.

The value of the result of both operators is implementation-defined, and its type (an
unsigned integer type) is size t, defined in <stddef.h> (and other headers).

EXAMPLE 1 A principal use of the sizeo£ operator is in communication with routines such as storage
allocators and 1/0O systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointer to void. For example:

extern void *alloc(size t);
double *dp = alloc(sizeof *dp):;

The implementation of the alloc function should ensure that its return value is aligned suitably for
conversion to a pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:
sizeof array / sizeof arrayl[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a
function:

#include <stddef.h>

103) When applied to a parameter declared to have array or function type, the sizeof operator yields the
size of the adjusted (pointer) type (see 6.9.1).

90 Language 86.5.3.4

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

size t fsize3 (int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size t size;
size = fsize3(10); // £size3returns13
return 0;
}

Forward references: common definitions <stddef.h> (7.19), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

6.5.4 Cast operators
Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies a void type, the type name shall specify atomic, qualified,
or unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be
converted to any pointer type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called a cast.1%9 A cast that specifies
no conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required
by the type named by the cast (6.3.1.8), then the cast specifies a conversion even if the
type of the expression is the same as the named type and removes any extra range and
precision.

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.6.3), simple assignment (6.5.16.1), type names (6.7.7).

104) A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

86.5.4 Language 91

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall
have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.
The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any
fractional part discarded.’® If the quotient a/b is representable, the expression
(a/b) *b + a%b shall equal a; otherwise, the behavior of both a/b and a%b is
undefined.

6.5.6 Additive operators
Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to a complete object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

For subtraction, one of the following shall hold:

105) This is often called “truncation toward zero”.

92 Language 86.5.6

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete
object types; or

— the left operand is a pointer to a complete object type and the right operand has
integer type.

(Decrementing is equivalent to subtracting 1.)
Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expression P points to
the i-th element of an array object, the expressions (P) +N (equivalently, N+ (P)) and
(P) -N (where N has the value n) point to, respectively, the i+n-th and i—n-th elements of
the array object, provided they exist. Moreover, if the expression P points to the last
element of an array object, the expression (P) +1 points one past the last element of the
array object, and if the expression Q points one past the last element of an array object,
the expression (Q) -1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a unary * operator that is evaluated.

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer type) is ptrdiff t defined in the <stddef.h> header.
If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of
an array object, the expression (P) - (Q) has the value i—j provided the value fits in an

86.5.6 Language 93

10

11

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

object of type ptrdif£ t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Q points
to the last element of the same array object, the expression ((Q) +1) - (P) has the same
value as ((Q)-(P))+1 and as - ((P)-((Q)+1)), and has the value zero if the
expression P points one past the last element of the array object, even though the
expression (Q) +1 does not point to an element of the array object.'%%)

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int aln] [m];
int (*p)[m] = a; // p == &al0]
p += 1; // p == &alll
(*p) [2] = 99; // alll[2] == 99
n=p-aj // n==1

}

If array a in the above example were declared to be an array of known constant size, and pointer p were
declared to be a pointer to an array of the same known constant size (pointing to a), the results would be
the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef.h>
(7.19).

6.5.7 Bitwise shift operators
Syntax

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints
Each of the operands shall have integer type.
Semantics

The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is

106) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the *““one past the last
element” requirements.

94 Language 86.5.7

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

greater than or equal to the width of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the result is E1 x 252, reduced modulo
one more than the maximum value representable in the result type. If E1 has a signed
type and nonnegative value, and E1 x 25 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient of E1/2%. If E1 has a signed type and a negative value, the
resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
One of the following shall hold:
— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object
types.
Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object types both point to the
same object, or both point one past the last element of the same array object, they
compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript
values compare greater than pointers to elements of the same array with lower subscript

86.5.8 Language 95

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

values. All pointers to members of the same union object compare equal. If the
expression P points to an element of an array object and the expression Q points to the
last element of the same array object, the pointer expression Q+1 compares greater than
P. In all other cases, the behavior is undefined.

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and O if it is
false.1%”) The result has type int.

6.5.9 Equality operators
Syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or
unqualified version of void; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and != (not equal to) operators are analogous to the relational
operators except for their lower precedence.’%) Each of the operators yields 1 if the
specified relation is true and O if it is false. The result has type int. For any pair of
operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal.

107) The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
means (a<b) <c; in other words, “if a is less than b, compare 1 to c; otherwise, compare 0 to ¢”.

108) Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

96 Language 86.5.9

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a
null pointer constant, the null pointer constant is converted to the type of the pointer. If
one operand is a pointer to an object type and the other is a pointer to a qualified or
unqualified version of void, the former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array Oo%j)eCt that happens to immediately follow the first array object in the address
space.*

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

6.5.10 Bitwise AND operator
Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

109) Two objects may be adjacent in memory because they are adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them so, even though they are unrelated. If prior invalid pointer operations (such as accesses
outside array bounds) produced undefined behavior, subsequent comparisons also produce undefined
behavior.

8§6.5.10 Language 97

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.11 Bitwise exclusive OR operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression

A

AND-expression
Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the * operator is the bitwise exclusive OR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

6.5.12 Bitwise inclusive OR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

98 Language 86.5.12

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.5.13 Logical AND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 if both of its operands compare unequal to O; otherwise, it
yields 0. The result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation;
if the second operand is evaluated, there is a sequence point between the evaluations of
the first and second operands. If the first operand compares equal to O, the second
operand is not evaluated.

6.5.14 Logical OR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The | | operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has type int.

Unlike the bitwise | operator, the | | operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first
and second operands. If the first operand compares unequal to 0, the second operand is
not evaluated.

8§6.5.14 Language 99

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.15 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or
unqualified version of void.

Semantics

The first operand is evaluated; there is a sequence point between its evaluation and the
evaluation of the second or third operand (whichever is evaluated). The second operand
is evaluated only if the first compares unequal to O; the third operand is evaluated only if
the first compares equal to O; the result is the value of the second or third operand
(whichever is evaluated), converted to the type described below.1?

If both the second and third operands have arithmetic type, the result type that would be
determined by the usual arithmetic conversions, were they applied to those two operands,
is the type of the result. If both the operands have structure or union type, the result has
that type. If both operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types referenced by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is
a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
IS a pointer to void or a qualified version of void, in which case the result type is a
pointer to an appropriately qualified version of void.

110) A conditional expression does not yield an Ivalue.

100 Language 86.5.15

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

Given the declarations

const void *c_vp;
void *vp;

const int *c_ip;
volatile int *v_ip;
int *ip;

const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

c vp c_ip const void *

v ip O volatile int *

c ip +v_ip const volatile int *
vp c cp const void *

ip c_ip const int *

vp ip void *

6.5.16 Assignment operators
Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= [= %= 4= -= <<= >>= &= = |=
Constraints
An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment,'*V) but is not
an Ivalue. The type of an assignment expression is the type the left operand would have
after lvalue conversion. The side effect of updating the stored value of the left operand is
sequenced after the value computations of the left and right operands. The evaluations of
the operands are unsequenced.

111) The implementation is permitted to read the object to determine the value but is not required to, even
when the object has volatile-qualified type.

86.5.16 Language 101

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.5.16.1 Simple assignment

Constraints

One of the following shall hold:!!?)

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union
type compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering
the type the left operand would have after Ivalue conversion) both operands are
pointers to qualified or unqualified versions of compatible types, and the type pointed
to by the left has all the qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering
the type the left operand would have after lvalue conversion) one operand is a pointer
to an object type, and the other is a pointer to a qualified or unqualified version of
void, and the type pointed to by the left has all the qualifiers of the type pointed to
by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null
pointer constant; or

— the left operand has type atomic, qualified, or unqualified Bool, and the right is a
pointer.

Semantics

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is read from another object that overlaps in any way
the storage of the first object, then the overlap shall be exact and the two objects shall
have qualified or unqualified versions of a compatible type; otherwise, the behavior is
undefined.

EXAMPLE 1 In the program fragment

112) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.3.2.1) that changes Ivalues to ““the value of the expression” and thus removes any type
qualifiers that were applied to the type category of the expression (for example, it removes const but
not volatile fromthe type int volatile * const).

102 Language 86.5.16.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

int £ (void);

char c;

/* .o*/

if ((c = £()) == -1)
/* .o*/

the int value returned by the function may be truncated when stored in the char, and then converted back
to int width prior to the comparison. In an implementation in which “plain” char has the same range of
values as unsigned char (and char is narrower than int), the result of the conversion cannot be
negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the
variable ¢ should be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;
l=(c=1);

the value of i is converted to the type of the assignment expression ¢ = i, that is, char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment expression,
that is, long int type.

EXAMPLE 3 Consider the fragment:

const char **cpp;

char *p;

const char ¢ = 'A';

cpp = &p; // constraint violation
*cpp = &C; // Valid

*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const object c.

6.5.16.2 Compound assignment
Constraints

For the operators += and -= only, either the left operand shall be an atomic, qualified, or
unqualified pointer to a complete object type, and the right shall have integer type; or the
left operand shall have atomic, qualified, or unqualified arithmetic type, and the right
shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified
arithmetic type, and (considering the type the left operand would have after lvalue
conversion) each operand shall have arithmetic type consistent with those allowed by the
corresponding binary operator.

Semantics

A compound assignment of the form E1 op = E2 is equivalent to the simple assignment
expression E1 = E1 op (E2), except that the Ivalue E1 is evaluated only once, and with
respect to an indeterminately-sequenced function call, the operation of a compound

8§6.5.16.2 Language 103

ISO/IEC 9899:201x

Committee Draft — April 12, 2011

N1570

assignment is a single evaluation. If E1 has an atomic type, compound assignment is a

read-modify-write
semantics.

113)

operation

with memory order seq cst memory order

113) Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent
to the following code sequence where T1 is the type of E1 and T2 is the type of E2:

104

Tl *addr = &El;

T2 val = (E2);
Tl old = *addr;
Tl new;
do {
new = old op val;

} while (!atomic compare exchange strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered
during discarded evaluations of new should also be discarded in order to satisfy the equivalence of E1
op=E2 and E1 = E1 op (E2). For example, if annex F is in effect, the floating types involved have
IEC 60559 formats, and FLT EVAL_ METHOD is 0, the equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON

VARV

fenv t fenv;
Tl *addr = &E1;

T2 val
Tl old
Tl new

= E2;
*addr;

.
I

feholdexcept (&fenv) ;

for (;

}

;) {

new = old op val;

if (atomic compare exchange strong(addr,
break;

feclearexcept (FE_ALL EXCEPT) ;

feupdateenv (&fenv) ;

&old, new))

If FLT EVAL METHOD is not 0, then T2 must be a type with the range and precision to which E2 is
evaluated in order to satisfy the equivalence.

Language

86.5.16.2

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

scjones
Note
None set by scjones

scjones
Note
Accepted set by scjones

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.5.17 Comma operator

Syntax
expression:
assignment-expression
expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point between its evaluation and that of the right operand. Then the right
operand is evaluated; the result has its type and value.**

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.9).

114) A comma operator does not yield an Ivalue.

86.5.17 Language 105

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated.®)

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic range and precision
shall be at least as great as if the expression were being evaluated in the execution
environment.1%6)

An integer constant expression'!”) shall have integer type and shall only have operands

that are integer constants, enumeration constants, character constants, sizeof
expressions whose results are integer constants, Alignof expressions, and floating
constants that are the immediate operands of casts. Cast operators in an integer constant
expression shall only convert arithmetic types to integer types, except as part of an
operand to the sizeof or Alignof£ operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

115) The operand of a sizeof or Alignof£ operator is usually not evaluated (6.5.3.4).

116) The use of evaluation formats as characterized by FLT EVAL METHOD also applies to evaluation in
the translation environment.

117) An integer constant expression is required in a number of contexts such as the size of a bit-field
member of a structure, the value of an enumeration constant, and the size of a non-variable length
array. Further constraints that apply to the integer constant expressions used in conditional-inclusion
preprocessing directives are discussed in 6.10.1.

106 Language 86.6

10
11

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— a null pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant
expression.

An arithmetic constant expression shall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, sizeof expressions whose results are integer constants, and Alignof
expressions. Cast operators in an arithmetic constant expression shall only convert
arithmetic types to arithmetic types, except as part of an operand to a sizeof or
_Alignof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of static
storage duration, or a pointer to a function designator; it shall be created explicitly using
the unary & operator or an integer constant cast to pointer type, or implicitly by the use of
an expression of array or function type. The array-subscript [1 and member-access .
and -> operators, the address & and indirection * unary operators, and pointer casts may
be used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions. 18

Forward references: array declarators (6.7.6.2), initialization (6.7.9).

118) Thus, in the following initialization,
static int i =2 || 1 / 0;

the expression is a valid integer constant expression with value one.

86.6 Language 107

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listop; ;
static_assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersqp
type-specifier declaration-specifiersop
type-qualifier declaration-specifiersgpt
function-specifier declaration-specifiersgpt
alignment-specifier declaration-specifiersyp

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration other than a static_assert declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or
the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
that:

— a typedef name may be redefined to denote the same type as it currently does,
provided that type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A definition
of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;'%

108 Language 86.7

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

— for an enumeration constant, is the (only) declaration of the identifier; |
— for a typedef name, is the first (or only) declaration of the identifier. |

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have
additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer; in the case of function parameters (including in prototypes), it is the adjusted
type (see 6.7.6.3) that is required to be complete.

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization
(6.7.9), type names (6.7.7), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
_Thread local
auto
register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
declaration, except that Thread local may appear with static or extern.?0)

In the declaration of an object with block scope, if the declaration specifiers include
_Thread local, they shall also include either static or extern. If
_Thread local appears in any declaration of an object, it shall be present in every
declaration of that object.

_Thread local shall not appear in the declaration specifiers of a function declaration. |

119) Function definitions have a different syntax, described in 6.9.1.

120) See “future language directions” (6.11.5).

86.7.1 Language 109

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Semantics

The typedef£ specifier is called a ““storage-class specifier” for syntactic convenience
only; it is discussed in 6.7.8. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specifier register
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defined.?%

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than
typedef, the properties resulting from the storage-class specifier, except with respect to
linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

Forward references: type definitions (6.7.8).

121) The implementation may treat any register declaration simply as an auto declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifier register cannot be computed, either explicitly (by use of the unary &
operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.3.2.1). Thus, the only operators that can be applied to an array declared with storage-class specifier
register are sizeof and Alignof.

110 Language 86.7.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.7.2 Type specifiers
Syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following multisets (delimited by commas, when there
is more than one multiset per item); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int
— unsigned short, Orunsigned short int

— int, signed, or signed int

— unsigned, orunsigned int

— long, signed long, long int, or signed long int

— unsigned long, Orunsigned long int

86.7.2 Language 111

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

— long long, signed long long, long long int, or
signed long long int

— unsigned long long, Orunsigned long long int
— float

— double

— long double

— _Bool

— float Complex

— double Complex

— long double Complex
— atomic type specifier

— struct or union specifier

— enum specifier

— typedef name

The type specifier _Comp1lex shall not be used if the implementation does not support
complex types (see 6.10.8.3).

Semantics

Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1
through 6.7.2.4. Declarations of typedef names are discussed in 6.7.8. The
characteristics of the other types are discussed in 6.2.5.

Each of the comma-separated multisets designates the same type, except that for bit-
fields, it is implementation-defined whether the specifier int designates the same type as
signed int or the same type asunsigned int.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2),
structure and union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union identifieryy; { struct-declaration-list }
struct-or-union identifier

112 Language §6.7.2.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-listop; ;
static_assert-declaration

specifier-qualifier-list:
type-specifier specifier-qualifier-listop
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratorqp; = constant-expression

Constraints

A struct-declaration that does not declare an anonymous structure or anonymous union
shall contain a struct-declarator-list.

A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

The expression that specifies the width of a bit-field shall be an integer constant
expression with a nonnegative value that does not exceed the width of an object of the
type that would be specified were the colon and expression omitted.1?? If the value is
zero, the declaration shall have no declarator.

A bit-field shall have a type that is a qualified or unqualified version of Bool, signed
int, unsigned int, or some other implementation-defined type. It is
implementation-defined whether atomic types are permitted.

122) While the number of bits in a Bool object is at least CHAR BIT, the width (number of sign and
value bits) of a _Bool may be just 1 bit.

86.7.2.1 Language 113

10

11

12

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

Structure and union specifiers have the same form. The keywords struct and union
indicate that the type being specified is, respectively, a structure type or a union type.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list does not contain any
named members, either directly or via an anonymous structure or anonymous union, the
behavior is undefined. The type is incomplete until immediately after the } that
terminates the list, and complete thereafter.

A member of a structure or union may have any complete object type other than a
variably modified type.!?® In addition, a member may be declared to consist of a
specified number of bits (including a sign bit, if any). Such a member is called a
bit-field ;¥ its width is preceded by a colon.

A bit-field is interpreted as having a signed or unsigned integer type consisting of the
specified number of bits.1?>) If the value 0 or 1 is stored into a nonzero-width bit-field of
type Bool, the value of the bit-field shall compare equal to the value stored; a Bool
bit-field has the semantics of a _Bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.1?®) As a special case, a bit-field structure member with a width of 0

123) A structure or union cannot contain a member with a variably modified type because member names
are not ordinary identifiers as defined in 6.2.3.

124) The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

125) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int,
then it is implementation-defined whether the bit-field is signed or unsigned.

126) An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.

114 Language §6.7.2.1

13

14

15

16

17
18

19

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

indicates that no further bit-field is to be packed into the unit in which the previous bit-
field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an
anonymous structure; an unnamed member whose type specifier is a union specifier with
no tag is called an anonymous union. The members of an anonymous structure or union
are considered to be members of the containing structure or union. This applies
recursively if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last element of a structure with more than one named member may
have an incomplete array type; this is called a flexible array member. In most situations,
the flexible array member is ignored. In particular, the size of the structure is as if the
flexible array member were omitted except that it may have more trailing padding than
the omission would imply. However, when a . (or ->) operator has a left operand that is
(a pointer to) a structure with a flexible array member and the right operand names that
member, it behaves as if that member were replaced with the longest array (with the same
element type) that would not make the structure larger than the object being accessed; the
offset of the array shall remain that of the flexible array member, even if this would differ
from that of the replacement array. If this array would have no elements, it behaves as if
it had one element but the behavior is undefined if any attempt is made to access that
element or to generate a pointer one past it.

EXAMPLE 1 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;
}:

int m;

86.7.2.1 Language 115

20

21

22

23

24

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

vli.i 2; // valid
vli.k = 3; // invalid: inner structure is not anonymous
vi.w.k = 5; // valid

EXAMPLE 2 After the declaration:
struct s { int n; double dll; };
the structure struct s has a flexible array member d. A typical way to use this is:

int m = /* somevalue */;
struct s *p = malloc(sizeof (struct s) + sizeof (double [m])):;

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if
p had been declared as:

struct { int n; double dml; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member & might
not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = { 1, { 4.2 }}; // invalid

tl.n = 4; // valid

tl.d[0] = 4.2; // might be undefined behavior

The initialization of £2 is invalid (and violates a constraint) because struct s is treated as if it did not
contain member 4. The assignment to t1.d[0] is probably undefined behavior, but it is possible that

sizeof (struct s) >= offsetof(struct s, d) + sizeof (double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming
code.

After the further declaration:
struct ss { int n; };
the expressions:

sizeof (struct s) >= sizeof (struct ss)
sizeof (struct s) >= offsetof(struct s, d4d)

are always equal to 1.
If sizeof (double) is 8, then after the following code is executed:

struct s *sl;
struct s *s2;
sl = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most
purposes, as if the identifiers had been declared as:

struct { int n; double d[8]1; } *sl;
struct { int n; double d[5]1; } *s2;

Following the further successful assignments:

116 Language 86.7.2.1

25

26

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

sl
s2

malloc(sizeof (struct s) + 10);
malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:
struct { int n; double d[1l]; } *sl, *s2;
and:

double *dp;
dp = &(sl1->dI[0]1); // valid

*dp = 42; // valid
dp = &(s2->dI[0]1); // valid
*dp = 42; // undefined behavior

The assignment;
*sl = *s2;

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes
of the structure, they might be copied or simply overwritten with indeterminate values.

EXAMPLE 3 Because members of anonymous structures and unions are considered to be members of the
containing structure or union, struct s in the following example has more than one named member and
thus the use of a flexible array member is valid:

struct s {
struct { int i; };
int all;

}:
Forward references: declarators (6.7.6), tags (6.7.2.3).
6.7.2.2 Enumeration specifiers
Syntax

enum-specifier:
enum identifieroy { enumerator-list }
enum identifiergye { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representable as an int.

86.7.2.2 Language 117

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Semantics

The identifiers in an enumerator list are declared as constants that have type int and
may appear wherever such are permitted.’?”) An enumerator with = defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no =
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

Each enumerated type shall be compatible with char, a signed integer type, or an
unsigned integer type. The choice of type is implementation-defined,'?® but shall be
capable of representing the values of all the members of the enumeration. The
enumerated type is incomplete until immediately after the } that terminates the list of
enumerator declarations, and complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &col;
if (*cp != burgundy)
/* .. */

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a
pointer to an object that has that type. The enumerated values are in the set {0, 1, 20, 21 }.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags

Constraints

A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use
the same choice of struct, union, or enum.

A type specifier of the form
enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

127) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.

128) An implementation may delay the choice of which integer type until all enumeration constants have
been seen.

118 Language 86.7.2.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Semantics

All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. lrrespective of whether there is a tag or what
other declarations of the type are in the same translation unit, the type is incomplete'2?)
until immediately after the closing brace of the list defining the content, and complete
thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifierop; { struct-declaration-list }
or

enum identifieroy { enumerator-list }
or

enum identifiergy { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content,
union content, or enumeration content. If an identifier is provided,*3% the type specifier
also declares the identifier to be the tag of that type.

A declaration of the form

struct-or-union identifier ;
specifies a structure or union type and declares the identifier as a tag of that type.t3%
If a type specifier of the form

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that type.*3%

129) An incomplete type may only by used when the size of an object of that type is not needed. It is not
needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types
in 6.2.5.) The specification has to be complete before such a function is called or defined.

130) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration
of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations
can make use of that typedef name to declare objects having the specified structure, union, or
enumerated type.

131) A similar construction with enum does not exist.

86.7.2.3 Language 119

10

11

12

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

If a type specifier of the form

struct-or-union identifier
or
enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not
redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode ({
int count;
struct tnode *left, *right;

}:
specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With
these declarations, the expression sp->1eft refers to the left struct tnode pointer of the object to
which sp points; the expression s.right->count designates the count member of the right struct
tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode ({

int count;

TNODE *left, *right;

}:

TNODE s, *sp;

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct sl { struct s2 *s2p; /* .. */ }; // D1
struct s2 { struct sl *slp; /* .. */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already
declared as a tag in an enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then
completes the specification of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

120 Language 86.7.2.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.7.2.4 Atomic type specifiers
Syntax
atomic-type-specifier:
_Atomic (type-name)
Constraints

Atomic type specifiers shall not be used if the implementation does not support atomic
types (see 6.10.8.3).

The type name in an atomic type specifier shall not refer to an array type, a function type,
an atomic type, or a qualified type.

Semantics

The properties associated with atomic types are meaningful only for expressions that are
Ivalues. If the Atomic keyword is immediately followed by a left parenthesis, it is
interpreted as a type specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers
Syntax

type-qualifier:
const
restrict
volatile
_Atomic

Constraints

Types other than pointer types whose referenced type is an object type shall not be
restrict-qualified.

The type modified by the Atomic qualifier shall not be an array type or a function
type.

Semantics

The properties associated with qualified types are meaningful only for expressions that
are Ivalues.3?

If the same qualifier appears more than once in the same specifier-qualifier-list, either
directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the _Atomic qualifier in a specifier-qualifier-

132) The implementation may place a const object that is not volatile in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

86.7.3 Language 121

10

11

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

list, the resulting type is the so-qualified atomic type.

If an attempt is made to modify an object defined with a const-qualified type through use
of an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an Ivalue
with non-volatile-qualified type, the behavior is undefined.*3%

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the
unknown factors mentioned previously.’3 What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular pointer.1®® The intended
use of the restrict qualifier (like the register storage class) is to promote
optimization, and deleting all instances of the qualifier from all preprocessing translation
units composing a conforming program does not change its meaning (i.e., observable
behavior).

If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefined.136)

For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

EXAMPLE 1 An object declared

extern const volatile int real time clock;

133) This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

134) A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be “optimized out” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

135) For example, a statement that assigns a value returned by malloc to a single pointer establishes this
association between the allocated object and the pointer.

136) Both of these can occur through the use of typedefs.

122 Language 86.7.3

12

13

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

may be maodifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct s { int mem; } cs = { 1 };

struct s ncs; // theobject ncs is modifiable

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // arrayofarray of const int
int *pi;

const int *pci;

ncs = cs; // valid
cs = ncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid

pi &cs.mem; // violates type constraints for =
pci = &cs.mem; // valid
pi = al0]; // invalid: a[0] hastype “const int *”

EXAMPLE 3 The declaration
_Atomic volatile int *p;

specifies that p has the type “pointer to volatile atomic int”’, a pointer to a volatile-qualified atomic type.
6.7.3.1 Formal definition of restrict

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of main (or the block of
whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some
sequence point in the execution of B prior to the evaluation of E) modifying P to point to
a copy of the array object into which it formerly pointed would change the value of .137)
Note that “based’” is defined only for expressions with pointer types.

During each execution of B, let L. be any lvalue that has &L based on Pp. If L is used to
access the value of the object X that it designates, and X is also modified (by any means),
then the following requirements apply: T shall not be const-qualified. Every other Ivalue
used to access the value of X shall also have its address based on P. Every access that
modifies X shall be considered also to modify P, for the purposes of this subclause. If P
is assigned the value of a pointer expression E that is based on another restricted pointer

137) In other words, E depends on the value of P itself rather than on the value of an object referenced
indirectly through P. For example, if identifier p has type (int **restrict), then the pointer
expressions p and p+1 are based on the restricted pointer object designated by p, but the pointer
expressions *p and p [1] are not.

86.7.3.1 Language 123

10

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration
associated with B.

A translator is free to ignore any or all aliasing implications of uses of restrict.
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int cl[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the
program, then it is never accessed using either of the other two.

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{
while (n-- > 0)
*p++ = *g++;

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence
analysis of function £ without examining any of the calls of £ in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call of £ in g has undefined behavior because each of d[1] through d[49] is accessed through
both p and q.

void g(void)

{

extern int d4[100];

£(50, 4 + 50, d); // valid

£(50, 4 + 1, d); // undefined behavior
}

EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict gq, int * restrict r)
int 1i;
for (i = 0; i < n; i++)
plil = qlil + r[il;

}

illustrate how an unmodified object can be aliased through two restricted pointers. In particular, if a and b
are disjoint arrays, a call of the form h (100, a, b, b) has defined behavior, because array b is not
modified within function h.

124 Language §6.7.3.1

11

12

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only “outer-to-inner” assignments
between restricted pointers declared in nested blocks have defined behavior.

{
int * restrict pl;
int * restrict qgql;
pl = gl; // undefined behavior
{
int * restrict p2 = pl; // valid
int * restrict g2 = ql; // valid
pl = g2; // undefined behavior
P2 = g2; // undefined behavior
}
}

The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permits new_vector to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new vector (int n)

{
vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;
}
6.7.4 Function specifiers
Syntax
function-specifier:
inline
_Noreturn

Constraints
Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static or thread storage duration, and shall not contain a reference
to an identifier with internal linkage.

In a hosted environment, no function specifier(s) shall appear in a declaration of main.
Semantics

A function specifier may appear more than once; the behavior is the same as if it
appeared only once.

A function declared with an inline function specifier is an inline function. Making a
function an inline function suggests that calls to the function be as fast as possible.!3®)

86.7.4 Language 125

10

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

The extent to which such suggestions are effective is implementation-defined.'3?)

Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared with an inline
function specifier, then it shall also be defined in the same translation unit. If all of the
file scope declarations for a function in a translation unit include the inline function
specifier without extern, then the definition in that translation unit is an inline
definition. An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definition. 4%

A function declared with a Noreturn function specifier shall not return to its caller.
Recommended practice

The implementation should produce a diagnostic message for a function declared with a
_Noreturn function specifier that appears to be capable of returning to its caller.

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external
definition, or a definition available for use only within the translation unit. A file scope declaration with
extern creates an external definition. The following example shows an entire translation unit.

inline double fahr (double t)

{
return (9.0 * t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr (double) ; // creates an external definition

138) By using, for example, an alternative to the usual function call mechanism, such as “inline
substitution”. Inline substitution is not textual substitution, nor does it create a new function.
Therefore, for example, the expansion of a macro used within the body of the function uses the
definition it had at the point the function body appears, and not where the function is called; and
identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a
single address, regardless of the number of inline definitions that occur in addition to the external
definition.

139) For example, an implementation might never perform inline substitution, or might only perform inline
substitutions to calls in the scope of an inline declaration.

140) Since an inline definition is distinct from the corresponding external definition and from any other
corresponding inline definitions in other translation units, all corresponding objects with static storage
duration are also distinct in each of the definitions.

126 Language 86.7.4

11

12

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

double convert(int is fahr, double temp)

{

/* Atranslator may perform inline substitutions */
return is_ fahr ? cels(temp) : fahr(temp);

}

Note that the definition of £ahr is an external definition because £ahr is also declared with extern, but
the definition of cels is an inline definition. Because cels has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

EXAMPLE 2

_Noreturn void £ () {
abort(); // ok
}

_Noreturn void g (int i) { // causesundefined behaviorif i <= 0
if (1 > 0) abort();
}

Forward references: function definitions (6.9.1).

6.7.5 Alignment specifier
Syntax

alignment-specifier:
_Alignas (type-name)
_Alignas (constant-expression)

Constraints

An alignment attribute shall not be specified in a declaration of a typedef, or a bit-field, or
a function, or a parameter, or an object declared with the register storage-class
specifier.

The constant expression shall be an integer constant expression. It shall evaluate to a
valid fundamental alignment, or to a valid extended alignment supported by the
implementation in the context in which it appears, or to zero.

The combined effect of all alignment attributes in a declaration shall not specify an
alignment that is less strict than the alignment that would otherwise be required for the
type of the object or member being declared.

Semantics
The first form is equivalentto _Alignas (Alignof (type-name)).

The alignment requirement of the declared object or member is taken to be the specified
alignment. An alignment specification of zero has no effect.!*) When multiple
alignment specifiers occur in a declaration, the effective alignment requirement is the
strictest specified alignment.

86.7.5 Language 127

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

If the definition of an object has an alignment specifier, any other declaration of that
object shall either specify equivalent alignment or have no alignment specifier. If the
definition of an object does not have an alignment specifier, any other declaration of that
object shall also have no alignment specifier. If declarations of an object in different
translation units have different alignment specifiers, the behavior is undefined.

6.7.6 Declarators
Syntax

declarator:
pointergy; direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [type-qualifier-listyp; assignment-expressiongp; 1
direct-declarator [static type-qualifier-listop; assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listopt *]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listgp;)

pointer:
* type-qualifier-listopt
* type-qualifier-listop; pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list ,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratorgpt

141) An alignment specification of zero also does not affect other alignment specifications in the same
declaration.

128 Language 86.7.6

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If, in the nested sequence of declarators in a full
declarator, there is a declarator specifying a variable length array type, the type specified
by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
T D1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is
a declarator that contains an identifier ident. The type specified for the identifier ident in
the various forms of declarator is described inductively using this notation.

If, in the declaration *“T D1”, D1 has the form
identifier

then the type specified for identis T.

If, in the declaration ““T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complicated
declarators may be altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or void type, either
directly or via one or more typedefs.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8).

86.7.6 Language 129

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.7.6.1 Pointer declarators

Semantics

If, in the declaration “T D1”, D1 has the form
* type-qualifier-listyp; D

and the type specified for ident in the declaration “T D is “derived-declarator-type-list
T, then the type specified for ident is “derived-declarator-type-list type-qualifier-list
pointer to T™’. For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

EXAMPLE The following pair of declarations demonstrates the difference between a *““variable pointer
to a constant value” and a ““constant pointer to a variable value”.

const int *ptr to constant;
int *const constant ptr;

The contents of any object pointed to by ptr to constant shall not be modified through that pointer,
but ptr to constant itself may be changed to point to another object. Similarly, the contents of the
int pointed to by constant ptr may be modified, but constant ptr itself shall always point to the
same location.

The declaration of the constant pointer constant ptr may be clarified by including a definition for the
type “pointer to int”.

typedef int *int ptr;
const int ptr constant ptr;

declares constant ptr as an object that has type *“const-qualified pointer to int”.
6.7.6.2 Array declarators
Constraints

In addition to optional type qualifiers and the keyword statiec, the [and 1 may delimit
an expression or *. If they delimit an expression (which specifies the size of an array), the
expression shall have an integer type. If the expression is a constant expression, it shall
have a value greater than zero. The element type shall not be an incomplete or function
type. The optional type qualifiers and the keyword static shall appear only in a
declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary
identifier (as defined in 6.2.3), have no linkage, and have either block scope or function
prototype scope. If an identifier is declared to be an object with static or thread storage
duration, it shall not have a variable length array type.

130 Language 86.7.6.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Semantics
If, in the declaration ““T D1”’, D1 has one of the forms:

D [type-qualifier-listop; assignment-expressiongp 1

D[static type-qualifier-listop: assignment-expression]
D [type-qualifier-list static assignment-expression]
D [type-qualifier-listop * 1

and the type specified for ident in the declaration “T D is “derived-declarator-type-list
T, then the type specified for ident is “derived-declarator-type-list array of T .14
(See 6.7.6.3 for the meaning of the optional type qualifiers and the keyword static.)

If the size is not present, the array type is an incomplete type. If the size is * instead of
being an expression, the array type is a variable length array type of unspecified size,
which can only be used in declarations or type names with function prototype scope;*®
such arrays are nonetheless complete types. If the size is an integer constant expression
and the element type has a known constant size, the array type is not a variable length
array type; otherwise, the array type is a variable length array type. (Variable length
arrays are a conditional feature that implementations need not support; see 6.10.8.3.)

If the size is an expression that is not an integer constant expression: if it occurs in a
declaration at function prototype scope, it is treated as if it were replaced by *; otherwise,
each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size
expression is part of the operand of a sizeof operator and changing the value of the
size expression would not affect the result of the operator, it is unspecified whether or not
the size expression is evaluated.

For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

EXAMPLE 1

float fal[lll, *afpl[l7];
declares an array of £loat numbers and an array of pointers to £1loat numbers.
EXAMPLE 2 Note the distinction between the declarations

142) When several “array of” specifications are adjacent, a multidimensional array is declared.

143) Thus, * can be used only in function declarations that are not definitions (see 6.7.6.3).

86.7.6.2 Language 131

10

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

extern int *x;
extern int yI[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;

void fcompat (void)
{
int al[n] [6] [m];
int (*p) [4] [n+1];
int c[n] [n] [6] [m];
int (*r) [n] [n] [n+1];
p = a; // invalid: not compatible because 4 1= 6
r = c; // compatible, but defined behavior only if
// n == 6andm == n+1

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with the Thread local, static, Or extern
storage-class specifier cannot have a variable length array (VLA) type. However, an object declared with
the static storage-class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all
identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be members of
structures or unions.

extern int n;

int Alnl; // invalid: file scope VLA
extern int (*p2) [n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m] [m]); // valid: VLA with prototype scope
void fvla(int m, int C[m] [m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA [m] [m]; // valid: block scope typedef VLA
struct tag {
int (*y) [n]l; // invalid: y not ordinary identifier
int z[nl; // invalid: z not ordinary identifier
};
int DIm]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int FI[m]; // invalid: F has linkage and is VLA
int (*s) [m]; // valid: auto pointer to VLA
extern int (*r) [m]; // invalid: r has linkage and points to VLA
static int (*q) [m] = &B; // valid: qis a static block pointer to VLA

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1),
initialization (6.7.9).

132 Language 86.7.6.2

10

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.7.6.3 Function declarators (including prototypes)
Constraints

A function declarator shall not specify a return type that is a function type or an array
type.
The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type.

Semantics
If, in the declaration ““T D1”, D1 has the form

D (parameter-type-list)
or
D (identifier-listopt)

and the type specified for ident in the declaration “T D is “derived-declarator-type-list
T, then the type specified for ident is *““derived-declarator-type-list function returning
T”.

A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function.

A declaration of a parameter as “array of type” shall be adjusted to *““qualified pointer to
type”, where the type qualifiers (if any) are those specified within the [and 1 of the
array type derivation. If the keyword static also appears within the [and 1 of the
array type derivation, then for each call to the function, the value of the corresponding
actual argument shall provide access to the first element of an array with at least as many
elements as specified by the size expression.

A declaration of a parameter as ““function returning type”” shall be adjusted to “pointer to
function returning type”’, as in 6.3.2.1.

If the list terminates with an ellipsis (, .. .), no information about the number or types
of the parameters after the comma is supplied.44

The special case of an unnamed parameter of type void as the only item in the list
specifies that the function has no parameters.

144) The macros defined in the <stdarg.h> header (7.16) may be used to access arguments that
correspond to the ellipsis.

86.7.6.3 Language 133

11

12

13

14

15

16

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a
parameter name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use the [*] notation in their sequences of declarator specifiers
to specify variable length array types.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a definition of that function specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is supplied.1*®)

For two function types to be compatible, both shall specify compatible return types.146)

Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

EXAMPLE 1 The declaration
int f£(void), *fip(), (*pfi) ();

declares a function £ with no parameters returning an int, a function £ip with no parameter specification
returning a pointer to an int, and a pointer p£i to a function with no parameter specification returning an
int. It is especially useful to compare the last two. The binding of *£ip () is * (£ip ()), so that the
declaration suggests, and the same construction in an expression requires, the calling of a function £ip,
and then using indirection through the pointer result to yield an int. In the declarator (*p£i) (), the
extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function

145) See “future language directions” (6.11.6).

146) If both function types are “old style”, parameter types are not compared.

134 Language 86.7.6.3

17

18

19

20

21

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functions £ and £ip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointer p£i has block scope and no linkage.

EXAMPLE 2 The declaration
int (*apfi[3]) (int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two
parameters that are pointers to int. The identifiers x and y are declared for descriptive purposes only and
go out of scope at the end of the declaration of ap£1i.

EXAMPLE 3 The declaration
int (*fpfi(int (*) (long), int)) (int, ...);

declares a function £p£i that returns a pointer to a function returning an int. The function £p£i has two
parameters: a pointer to a function returning an int (with one parameter of type long int), and an int.
The pointer returned by £p£i points to a function that has one int parameter and accepts zero or more
additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double aln] [n*m+300], double Xx);

int main()

{
double b[4] [308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n] [n*m+300], double x)

{
for (int i = 0; i < n; i++)
for (int j = 0, k = n*m+300; j < k; j++)
// aisapointer to a VLA with n*m+300 elements
alil [31 += x;
}

EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double aln] [m]);
double maximum(int n, int m, double al*] [*]);
double maximum(int n, int m, double al 1[*]);
double maximum(int n, int m, double al] [m]):;

as are:

void f (double (* restrict a) [5]);

void £ (double alrestrict] [5]);

void f(double alrestrict 3] [5]);

void f(double alrestrict static 3] [5]);

86.7.6.3 Language 135

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

(Note that the last declaration also specifies that the argument corresponding to a in any call to £ must be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.7).

6.7.7 Type names
Syntax

type-name:
specifier-qualifier-list abstract-declaratorp

abstract-declarator:
pointer
pointergp; direct-abstract-declarator

direct-abstract-declarator:

(abstract-declarator)

direct-abstract-declaratorgn; [type-qualifier-listop
assignment-expressiongp; |

direct-abstract-declaratorgy [static type-qualifier-listgp
assignment-expression]

direct-abstract-declaratorgy: [type-qualifier-list static
assignment-expression 1]

direct-abstract-declaratorgye [* 1]

direct-abstract-declaratorop; (parameter-type-listgpt)

Semantics
In several contexts, it is necessary to specify a type. This is accomplished using a type

name, which is syntactically a declaration for a function or an object of that type that
omits the identifier.147)

EXAMPLE The constructions

@) int

(b) int *

(c) int *[3]
(d) int (*) [3]
(e) int (*) [*]

) int *()
(9) int (*) (void)
(h) int (*const []) (unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an
array of three ints, (e) pointer to a variable length array of an unspecified number of ints, (f) function
with no parameter specification returning a pointer to int, (g) pointer to function with no parameters

147) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no
parameter specification”, rather than redundant parentheses around the omitted identifier.

136 Language 86.7.7

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

returning an int, and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has type unsigned int and an unspecified number of other parameters, returning an
int.

6.7.8 Type definitions
Syntax

typedef-name:
identifier

Constraints
If a typedef name specifies a variably modified type then it shall have block scope.
Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.6. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. A typedef declaration does not introduce a new type, only a
synonym for the type so specified. That is, in the following declarations:

typedef T type ident;
type ident D;

type ident is defined as a typedef name with the type specified by the declaration
specifiers in T (known as T), and the identifier in D has the type “derived-declarator-
type-list T™” where the derived-declarator-type-list is specified by the declarators of D. A
typedef name shares the same name space as other identifiers declared in ordinary
declarators.

EXAMPLE 1 After

typedef int MILES, KLICKSP() ;
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP *metricp;
range X;

range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with no
parameter specification returning int”, and that of x and z is the specified structure; zp is a pointer to
such a structure. The object distance has a type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } tl1, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with type struct

86.7.8 Language 137

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

s1, but not compatible with the types struct s2, t2, the type pointed to by tp2, or int.
EXAMPLE 3 The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure
with three bit-field members, one named t that contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in either the range [-15, +15] or
[-16, +15], and one named r that contains values in one of the ranges [0, 31], [-15, +15], or [-16, +15].
(The choice of range is implementation-defined.) The first two bit-field declarations differ in that
unsigned is a type specifier (which forces t to be the name of a structure member), while const is a
type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed
in an inner scope by

t £(t (t));
long t;

then a function £ is declared with type “function returning signed int with one unnamed parameter
with type pointer to function returning signed int with one unnamed parameter with type signed
int”, and an identifier t with type long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the signal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv) (int);

void (*signal (int, wvoid (*) (int))) (int);
fv *signal (int, fv *);
pfv signal (int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

void copyt(int n)

{
typedef int BI[n]; // Bisnints, n evaluated now
n += 1;
B a; // aisnints, nwithout += 1
int b[n]; // aandb are different sizes
for (int i = 1; i < n; i++)

al[i-1] = bl[il;
}

138 Language 86.7.8

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.7.9 Initialization

Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designationgp; initializer
initializer-list , designationgp; initializer
designation:

designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression 1]
identifier
Constraints

No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

The type of the entity to be initialized shall be an array of unknown size or a complete
object type that is not a variable length array type.

All the expressions in an initializer for an object that has static or thread storage duration
shall be constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression 1

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.

86.7.9 Language 139

10

11

12

13

14

15

16

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static or thread storage duration is not initialized
explicitly, then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules,
and any padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these
rules, and any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar
to be the unqualified version of its declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union
type.

The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible
structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

An array of character type may be initialized by a character string literal or UTF-8 string
literal, optionally enclosed in braces. Successive bytes of the string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

An array with element type compatible with a qualified or unqualified version of
wchar t, charl6 t, or char32 t may be initialized by a wide string literal with
the corresponding encoding prefix (L, u, or U, respectively), optionally enclosed in
braces. Successive wide characters of the wide string literal (including the terminating
null wide character if there is room or if the array is of unknown size) initialize the
elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

140 Language 86.7.9

17

18

19

20

21

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Each brace-enclosed initializer list has an associated current object. When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure
members in declaration order, and the first named member of a union.**® In contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the designator.t4?

Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that member.’®®) The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; %
all subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions,
these rules apply recursively to the subaggregates or contained unions. If the initializer of
a subaggregate or contained union begins with a left brace, the initializers enclosed by
that brace and its matching right brace initialize the elements or members of the
subaggregate or the contained union. Otherwise, only enough initializers from the list are
taken to account for the elements or members of the subaggregate or the first member of
the contained union; any remaining initializers are left to initialize the next element or
member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

148) If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

149) After a union member is initialized, the next object is not the next member of the union; instead, it is
the next subobject of an object containing the union.

150) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with
the surrounding brace pair. Note, too, that each separate designator list is independent.

151) Any initializer for the subobject which is overridden and so not used to initialize that subobject might
not be evaluated at all.

86.7.9 Language 141

22

23

24

25

26

27

28

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. The array type is completed at the end of its
initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with
respect to one another and thus the order in which any side effects occur is
unspecified.1%?

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex ¢ =5 + 3 * I;

define and initialize i with the value 3 and ¢ with the value 5.0 + 3. 0.
EXAMPLE 2 The declaration
int x[1 = { 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

EXAMPLE 3 The declaration

int y[4]1[3] = {
{1, 3, 53},
6 },
7}

4

{ 2, 4,
{ 3, 5,

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object
y[01), namely y[0] [0], y[0] [1], and y[0] [2]. Likewise the next two lines initialize y [1] and
y [2]. The initializer ends early, so y [31 is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4]11[3]1 = {
1, 3, 5, 2, 4, 6, 3, 5, 17
};

The initializer for y [0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successively for y [1]1 and y [2].

EXAMPLE 4 The declaration
int z[4]1[3] = {

{1 {23} {3} {4}

initializes the first column of z as specified and initializes the rest with zeros.
EXAMPLE 5 The declaration
struct { int al3]1, b; } wll = { {1}, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element

152) In particular, the evaluation order need not be the same as the order of subobject initialization.

142 Language 86.7.9

29

30

31

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

structures: w[0] .a[0] islandw([1] .a[0] is 2; all the other elements are zero.
EXAMPLE 6 The declaration
short ql4][31[2] = {

{1},

{2, 31}

{ 4, 5, 6 }

}:

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: q[0] [0]1[0] is 1, g[1]1([0]1I[0] is 2, g[11([01([1] is 3, and 4, 5, and 6 initialize
ql[2]1 [0]1[0]1, g[2]1 [0] [1], and gq[2] [1] [0, respectively; all the rest are zero. The initializer for
q[0] [0] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for g[1] [0] and g[2] [0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short ql4][31[2] = {
i, o, o0, 0, 0O, O,
2, 3, 0, 0, 0, O,
4, 5, 6
};
or by:

short q[4][31[2] = {

};
in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[l; // OK-declared with block scope
the declaration

Aa={1,23} b={3, 4, 5};
is identical to

int a[l = {1, 2 }, bll = { 3, 4, 5 };

due to the rules for incomplete types.

86.7.9 Language 143

32

33

34

35

36

37

38

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

EXAMPLE 8 The declaration
char s[] = "abec", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals.
This declaration is identical to
char sl { ra', 'b', 'ec', "\O' },
t[] = { ta', 'b', '¢! };

The contents of the arrays are modifiable. On the other hand, the declaration
char *p = "abc";

defines p with type “pointer to char” and initializes it to point to an object with type “array of char”
with length 4 whose elements are initialized with a character string literal. If an attempt is made to use p to
modify the contents of the array, the behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member one, member two };

const char *nm[] = {
[member two] = "member two",
[member one] = "member one",

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:
div_t answer = { .quot = 2, .rem = -1 };

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct { int al3], b; } wl[l =
{ 101.a = {1}, [1l1.al0] = 2 };

EXAMPLE 12 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
};

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 13 Any member of a union can be initialized:
union { /* .. */ } u = { .any member = 42 };

Forward references: common definitions <stdde£f .h> (7.19).

144 Language 86.7.9

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.7.10 Static assertions
Syntax

static_assert-declaration:
_Static_assert (constant-expression , string-literal) ;

Constraints
The constant expression shall compare unequal to 0.
Semantics

The constant expression shall be an integer constant expression. If the value of the
constant expression compares unequal to 0, the declaration has no effect. Otherwise, the
constraint is violated and the implementation shall produce a diagnostic message that
includes the text of the string literal, except that characters not in the basic source
character set are not required to appear in the message.

Forward references: diagnostics (7.2).

86.7.10 Language 145

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.8 Statements and blocks
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are
executed in sequence.

A block allows a set of declarations and statements to be grouped into one syntactic unit.
The initializers of objects that have automatic storage duration, and the variable length
array declarators of ordinary identifiers with block scope, are evaluated and the values are
stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

A full expression is an expression that is not part of another expression or of a declarator.
Each of the following is a full expression: an initializer that is not part of a compound
literal; the expression in an expression statement; the controlling expression of a selection
statement (i £ or switch); the controlling expression of a while or do statement; each
of the (optional) expressions of a for statement; the (optional) expression in a return
statement. There is a sequence point between the evaluation of a full expression and the
evaluation of the next full expression to be evaluated.

Forward references: expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints

A case or default label shall appear only in a switch statement. Further
constraints on such labels are discussed under the swi tch statement.

146 Language §6.8.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Label names shall be unique within a function.
Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references: the goto statement (6.8.6.1), the swi tch statement (6.8.4.2).
6.8.2 Compound statement
Syntax

compound-statement:
{ block-item-listop }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement
Semantics

A compound statement is a block.

6.8.3 Expression and null statements
Syntax

expression-statement:

expressiongpt ;

Semantics
The expression in an expression statement is evaluated as a void expression for its side
effects.?>?
A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
/* .. */
(void)p(0) ;

153) Such as assignments, and function calls which have side effects.

86.8.3 Language 147

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

EXAMPLE 2 In the program fragment

char *s;
/* .. */
while (*s++ != '\0')
a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement may also be used to carry a label just before the closing } of a compound
statement.

while (loopl) {

/* ..o*/
while (loop2) {
/* ..o*/

if (want_out)
goto end loopl;

/* .. */
}
/[* .. %/
end loopl: ;

}
Forward references: iteration statements (6.8.5).
6.8.4 Selection statements
Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

A selection statement is a block whose scope is a strict subset of the scope of its
enclosing block. Each associated substatement is also a block whose scope is a strict
subset of the scope of the selection statement.

6.8.4.1 The if statement

Constraints

The controlling expression of an i £ statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0.
In the else form, the second substatement is executed if the expression compares equal

148 Language §6.8.4.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

to 0. If the first substatement is reached via a label, the second substatement is not
executed.

An else is associated with the lexically nearest preceding if that is allowed by the
syntax.

6.8.4.2 The switch statement
Constraints
The controlling expression of a switch statement shall have integer type.

If a switch statement has an associated case or default label within the scope of an
identifier with a variably modified type, the entire switch statement shall be within the
scope of that identifier.1%*

The expression of each case label shall be an integer constant expression and no two of
the case constant expressions in the same switch statement shall have the same value
after conversion. There may be at most one default label in a switch statement.
(Any enclosed switch statement may have a default label or case constant
expressions with values that duplicate case constant expressions in the enclosing
swi tch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of a
default label and the values of any case labels on or in the switch body. A case or
default label is accessible only within the closest enclosing swi tch statement.

The integer promotions are performed on the controlling expression. The constant
expression in each case label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there is
adefault label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no default label, no part of the switch body is
executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a
swi tch statement.

154) That is, the declaration either precedes the switch statement, or it follows the last case or
default label associated with the switch that is in the block containing the declaration.

§6.8.4.2 Language 149

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

7 EXAMPLE In the artificial program fragment

switch (expr)

{
int i = 4;
£(i);
case 0:
i=17;
/* fallsthrough into default code */
default:
printf ("%d\n", 1i);
}

the object whose identifier is i exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the call to the print£ function will
access an indeterminate value. Similarly, the call to the function £ cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressiongy: ; expressiongpt ; €Xpressiongne) statement
for (declaration expressiongn; ; expressiongp) statement

Constraints
2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of a £or statement shall only declare identifiers for objects having
storage class auto Or register.

Semantics

4 An iteration statement causes a statement called the loop body to be executed repeatedly
until the controlling expression compares equal to 0. The repetition occurs regardless of
whether the loop body is entered from the iteration statement or by a jump.1%®

5 An iteration statement is a block whose scope is a strict subset of the scope of its
enclosing block. The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement.

6 An iteration statement whose controlling expression is not a constant expression,*°® that
performs no input/output operations, does not access volatile objects, and performs no
synchronization or atomic operations in its body, controlling expression, or (in the case of

155) Code jumped over is not executed. In particular, the controlling expression of a for or while
statement is not evaluated before entering the loop body, nor is clause-1 of a for statement.

156) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

150 Language 86.8.5

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

a for statement) its expression-3, may be assumed by the implementation to
terminate. %"

6.8.5.1 The while statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 The for statement
The statement
for (clause-1 ; expression-2 ; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is
evaluated before each execution of the loop body. The expression expression-3 is
evaluated as a void expression after each execution of the loop body. If clause-1 is a
declaration, the scope of any identifiers it declares is the remainder of the declaration and
the entire loop, including the other two expressions; it is reached in the order of execution
before the first evaluation of the controlling expression. If clause-1 is an expression, it is
evaluated as a void expression before the first evaluation of the controlling expression.'%®)

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a
nonzero constant.

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressiongp; ;

157) This is intended to allow compiler transformations such as removal of empty loops even when
termination cannot be proven.

158) Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in
the loop; the controlling expression, expression-2, specifies an evaluation made before each iteration,
such that execution of the loop continues until the expression compares equal to 0; and expression-3
specifies an operation (such as incrementing) that is performed after each iteration.

§6.8.6 Language 151

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Semantics

A jump statement causes an unconditional jump to another place.
6.8.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing
function. A goto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics
A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
continue statements, for example.)

/* .o*/

goto first time;

for (;;) {
// determine next operation
/* .o*/

if (need to reinitialize) {
// reinitialize-only code
/* .. */
first time:
// general initialization code

/* .o/
continue;
}
// handle other operations
/* .o/

152 Language §6.8.6.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double aln];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints

1 A continue statement shall appear only in or as a loop body.
Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* .. */) { do { for (/* .. */) {
/* ..o*/ /* .. %/ /* .. o*/
continue; continue; continue;
/* ..o*/ /* .. %/ /* .. o*/

contin: ; contin: ; contin: ;

} } while (/* .. */); }

unless the continue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalent to goto contin;.1%%

6.8.6.3 The break statement
Constraints

1 Abreak statement shall appear only in or as a switch body or loop body.
Semantics

2 A break statement terminates execution of the smallest enclosing switch or iteration
statement.

159) Following the contin: label is a null statement.

§6.8.6.3 Language 153

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.8.6.4 The return statement
Constraints

A return statement with an expression shall not appear in a function whose return type
IS void. A return statement without an expression shall only appear in a function
whose return type is void.

Semantics

A return statement terminates execution of the current function and returns control to
its caller. A function may have any number of return statements.

If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the function.6%

EXAMPLE In:

struct s { double i; } £(void);

union {
struct {
int £f1;
struct s £2;
} ui;
struct {
struct s £3;
int £4;
} u2;
} g;
struct s £ (void)
{
return g.ul.£f2;
}
/* .. */

g.u2.£f3 = £();

there is no undefined behavior, although there would be if the assignment were done directly (without using
a function call to fetch the value).

160) The return statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return. The representation of floating-point values may have wider range
or precision than implied by the type; a cast may be used to remove this extra range and precision.

154 Language §6.8.6.4

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.9 External definitions
Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifiers auto and register shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operand of a sizeof or |
_Alignof operator whose result is an integer constant), there shall be exactly one
external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as ““external”
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function
(other than an inline definition) or an object. If an identifier declared with external
linkage is used in an expression (other than as part of the operand of a sizeof or |
_Alignof operator whose result is an integer constant), somewhere in the entire
program there shall be exactly one external definition for the identifier; otherwise, there
shall be no more than one.*6%

161) Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

86.9 Language 155

scjones
Note
Accepted set by scjones

scjones
Note
Marked set by scjones

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.9.1 Function definitions
Syntax

function-definition:
declaration-specifiers declarator declaration-listop; compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function definition.16%

The return type of a function shall be void or a complete object type other than array
type.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or
static.

If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of type void, in which case there shall not be an identifier. No declaration list
shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier other than register and no
initializations.

162) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type Fis “function with no parameters
// returning int”

F £, g; // £ and g both have type compatible with F

FE£E{/*. */} // WRONG: syntax/constraint error

Fg() {/* . =*/} // WRONG: declares that g returns a function

int f(void) { /* .. */ } // RIGHT: £ has type compatible with F

int g() { /* .. */ } // RIGHT: g has type compatible with F

F *e(void) { /* .. */ } // e returns a pointer to a function

F *((e)) (void) { /* .. */ } // same: parentheses irrelevant

int (*£fp) (void); // £p points to a function that has type F

F *Fp; // Fp points to a function that has type F

156 Language §6.9.1

10

11

12

13

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list, X3 the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.6.3 for a parameter type list; the resulting type shall be a complete object

type.

If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration; its identifier is an Ivalue.’®¥ The layout
of the storage for parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are
evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function
designators as arguments were converted to pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

If the } that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.
EXAMPLE 1 In the following:

extern int max(int a, int b)

{
}

extern is the storage-class specifier and int is the type specifier; max (int a, int b) is the
function declarator; and

return a > b ? a : b;

return a > b ? a : b;
{

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

163) See “future language directions™ (6.11.7).

164) A parameter identifier cannot be redeclared in the function body except in an enclosed block.

86.9.1 Language 157

14

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

extern int max(a, b)
int a, b;

{
}

Here int a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

return a > b ? a : b;

EXAMPLE 2 To pass one function to another, one might say

int £ (void);
/* .o*/
g(f);

Then the definition of g might read

void g(int (*funcp) (void))

{
/* .o*/
(*funcp) (); /* or funcp(); .. */

}

or, equivalently,

void g(int func(void))

{
/* .o*/
func(); /* or (*func) (); .. */
}
6.9.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifier static, constitutes a
tentative definition. If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

158 Language 8§6.9.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

4 EXAMPLE 1

int il = 1; // definition, external linkage

static int i2 = 2; // definition, internal linkage

extern int i3 = 3; // definition, external linkage

int i4; // tentative definition, external linkage

static int i5; // tentative definition, internal linkage

int il; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement
extern int il; / / refers to previous, whose linkage is external
extern int i2; / / refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; / / refers to previous, whose linkage is internal

5 EXAMPLE 2 |Ifatthe end of the translation unit containing
int ill;

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to
zero on program startup.

§6.9.2 Language 159

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.10 Preprocessing directives
Syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsgp; else-groupgp; endif-line

if-group:
if constant-expression new-line groupgpt
ifdef identifier new-line groupgp
ifndef identifier new-line groupgpt

elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line groupgpt
else-group:
else new-line groupgpt
endif-line:
endif new-line

160 Language §6.10

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-listop)
replacement-list new-line
define identifier Iparen ...) replacement-list new-line
define identifier Iparen identifier-list , ...)
replacement-list new-line

3+

undef identifier new-line
line pp-tokens new-line
error pp-tokensgp: new-line
pragma pp-tokensynt new-line
new-line

text-line:

pp-tokensgpe new-line

non-directive:
pp-tokens new-line

Iparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensgpt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the
following constraints: The first token in the sequence is a # preprocessing token that (at
the start of translation phase 4) is either the first character in the source file (optionally
after white space containing no new-line characters) or that follows white space
containing at least one new-line character. The last token in the sequence is the first new-
line character that follows the first token in the sequence.'®® A new-line character ends
the preprocessing directive even if it occurs within what would otherwise be an

165) Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

§6.10 Language 161

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin
with any of the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any
sequence of preprocessing tokens to occur between the directive name and the following
new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through
just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are called preprocessing,
because conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.
EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced.

6.10.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integer constant expression
except that: identifiers (including those lexically identical to keywords) are interpreted as
described below;'%) and it may contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is

166) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

162 Language §6.10.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef£ directive with the same subject identifier), O if it is not.

Each preprocessing token that remains (in the list of preprocessing tokens that will
become the controlling expression) after all macro replacements have occurred shall be in
the lexical form of a token (6.4).

Semantics
Preprocessing directives of the forms

if constant-expression new-line groupgpt
elif constant-expression new-line groupgpt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the token defined is
generated as a result of this replacement process or use of the defined unary operator
does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion and the defined unary
operator have been performed, all remaining identifiers (including those lexically
identical to keywords) are replaced with the pp-number 0, and then each preprocessing
token is converted into a token. The resulting tokens compose the controlling constant
expression which is evaluated according to the rules of 6.6. For the purposes of this
token conversion and evaluation, all signed integer types and all unsigned integer types
act as if they have the same representation as, respectively, the types intmax_ t and
uintmax t defined in the header <stdint.h>.'®") This includes interpreting
character constants, which may involve converting escape sequences into execution
character set members. Whether the numeric value for these character constants matches
the value obtained when an identical character constant occurs in an expression (other
than within a #if or #elif directive) is implementation-defined.’®® Also, whether a
single-character character constant may have a negative value is implementation-defined.

167) Thus, on an implementation where INT MAX is 0x7FFF and UINT MAX is OxFFFF, the constant
0x8000 is signed and positive within a #if expression even though it would be unsigned in
translation phase 7.

168) Thus, the constant expression in the following #i£ directive and if statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z' - 'a' == 25
if ('z' - 'a' == 25)

§6.10.1 Language 163

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Preprocessing directives of the forms

ifdef identifier new-line groupgpt
ifndef identifier new-line groupgp

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to #if defined identifier and #if !defined identifier
respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups
until the #endi £ are skipped.16?

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.20.1.5).

6.10.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics
A preprocessing directive of the form
include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the < and > delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

A preprocessing directive of the form
include "g-char-sequence™ new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the ™ delimiters. The named source file is searched

169) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive
before the terminating new-line character. However, comments may appear anywhere in a source file,
including within a preprocessing directive.

164 Language §6.10.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original
directive.

A preprocessing directive of the form
include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after include in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous forms.2’® The method by which a sequence of preprocessing tokens
between a < and a > preprocessing token pair or a pair of " characters is combined into a
single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or
more nondigits or digits (6.4.2.1) followed by a period (.) and a single nondigit. The
first character shall not be a digit. The implementation may ignore distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

A #include preprocessing directive may appear in a source file that has been read
because of a #include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

170) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

§6.10.2 Language 165

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "versl.h"
#elif VERSION ==
#define INCFILE "“vers2.h" // andsoon
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another
#define preprocessing directive unless the second definition is an object-like macro
definition and the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are
identical.

There shall be white-space between the identifier and the replacement list in the definition
of an object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation of a function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be more arguments in the invocation than there are
parameters in the macro definition (excluding the ...). There shall exist a)
preprocessing token that terminates the invocation.

The identifier _ VA ARGS__ shall occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following the define is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list

166 Language §6.10.3

10

11

12

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name'’")

to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive. The replacement list is then rescanned for more macro names
as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-listyy:) replacement-list new-line
define identifier Iparen ...) replacement-list new-line
define identifier Iparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a
function call. The parameters are specified by the optional list of identifiers, whose scope
extends from their declaration in the identifier list until the new-line character that
terminates the #define preprocessing directive. Each subsequent instance of the
function-like macro name followed by a (as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition
(an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of
left and right parenthesis preprocessing tokens. Within the sequence of preprocessing
tokens making up an invocation of a function-like macro, new-line is considered a normal
white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives,? the behavior is undefined.

If there is a . . . in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:

171) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

172) Despite the name, a non-directive is a preprocessing directive.

§6.10.3 Language 167

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

the variable arguments. The number of arguments so combined is such that, following
merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the . . .).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a # or ## preprocessing token or followed by a ## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

An identifier _ VA ARGS__ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The # operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each "
and \ character of a character constant or string literal (including the delimiting ®
characters), except that it is implementation-defined whether a \ character is inserted
before the \ character beginning a universal character name. If the replacement that
results is not a valid character string literal, the behavior is undefined. The character
string literal corresponding to an empty argument is "*. The order of evaluation of # and
operators is unspecified.

168 Language §6.10.3.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.10.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a ## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced by a placemarker preprocessing token
instead.*"®)

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non-placemarker preprocessing token results in the non-placemarker preprocessing token.
If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

EXAMPLE In the following fragment:

#define hash hash # ## #

#define mkstr(a) # a

#define in between(a) mkstr(a)

#define join(c, d) in between(c hash hash d)

char pl[]l = join(x, y); // equivalentto
// char pl]l = "x ## y";

The expansion produces, at various stages:
join(x, y)
in between(x hash hash y)
in between(x ## y)
mkstr(x ## y)
"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not the ## operator.

173) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

86.10.3.3 Language 169

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ##
processing has taken place, all placemarker preprocessing tokens are removed. The
resulting preprocessing token sequence is then rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file’s preprocessing tokens), it is not replaced.
Furthermore, if any nested replacements encounter the name of the macro being replaced,
it is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example,
given the following macro definitions:

#define f(a) a*g
##define g(a) £ (a)

the invocation
£(2) (9)
may expand to either
2*£(9)
or
2*%9*g
Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #unde £
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.
EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100

170 Language 86.10.3.5

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))
The parentheses ensure that the arguments and the resulting expression are bound properly.
EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x

#define x 2
#define g £
#define z z [0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int

#define q(x) b4
#define r(x,y) x ## vy
#define str(x) # x

f(y+1l) + £(£(z)) % t(t(g) (0) + t)(1);
g(x+(3,4)-w) | h 5) &m
(£) “m(m) ;
p() ilqO1 = { g(1), r(2,3), r(4,), r(,5), r(,) };
char c[2]1[6] = { str(hello), str() };

results in

£(2 * (y+1)) + £(2 * (£(2 * (z[0])))) % £(2 * (0)) + t(1);
£(2 * (2+(3,4)-0,1)) | £(2 * (~ 5)) & £(2 * (0,1))"m(0,1);
int i[1 = { 1, 23, 4, 5, };

char c[2]1[6] = { "hello", "" };

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

86.10.3.5 Language 171

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

debug (1, 2);

fputs (str (strncmp ("abc\0d", "abc", '\4') // this goes away
== 0) str(: @\n), s);

#include xstr (INCFILE(2) .h)

glue (HIGH, LOW) ;

xglue (HIGH, LOW)

results in
printf(llxll II1II Il= %d’ xll Il2ll Il= %Sll’ xl, x2) ;
fputs(
"strncmp (\"abc\\0d4\", \"abc\", '\\4') == 0" ": @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello"™ ", world"
or, after concatenation of the character string literals,

printf ("xl= %d, x2= %s", x1, x2);

fputs(
"strncmp (\"abc\\0d4\", \"abc\", '\\4') == 0: @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"
Space around the # and ## tokens in the macro definition is optional.
EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(I4I5)I t(6II7)I t(8I9I)I
t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[1 = { 123, 45, 67, 89,
10, 11, 12, };

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ LIKE (1-1)
#define OBJ LIKE /* whitespace */ (1-1) /* other */
#define FUNC_ LIKE (a) (a)
#define FUNC_LIKE(a) (/* notethe white space */ \
a /* other stuff on this line

*/)
But the following redefinitions are invalid:
#define OBJ LIKE (0) // different token sequence
#define OBJ LIKE (1 - 1) // different white space

#define FUNC LIKE(b) (a) // different parameter usage
#define FUNC LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

172 Language 86.10.3.5

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

#define debug(...) fprintf(stderr, = VA ARGS)
#define showlist(...) puts(# VA ARGS)
#define report(test, ...) ((test)?puts(#test):\

printf(VA ARGS))
debug ("Flag") ;
debug ("X = %d\n", x);
showlist (The first, second, and third items.);
report (x>y, "x is %d but y is %d4d", x, y);

results in

fprintf (stderr, "Flag");
fprintf (stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y) ?puts ("x>y") :
printf("x is %d but y is %4d", x, y));

6.10.4 Line control

Constraints

The string literal of a #1ine directive, if present, shall be a character string literal.
Semantics

The line number of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

A preprocessing directive of the form
line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

A preprocessing directive of the form
line digit-sequence "s-char-sequenceqgp" new-line

sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after 1ine on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

§6.10.4 Language 173

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.10.5 Error directive

Semantics

A preprocessing directive of the form
error pp-tokensyp; new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive

Semantics

A preprocessing directive of the form
pragma pp-tokensgy new-line

where the preprocessing token STDC does not immediately follow pragma in the
directive (prior to any macro replacement)'’® causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

If the preprocessing token STDC does immediately follow pragma in the directive (prior
to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms'”® whose meanings are described
elsewhere:

#pragma STDC FP CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX LIMITED RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the cX LIMITED RANGE pragma (7.3.4).

174) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (where sTDC immediately follows pragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

175) See “future language directions” (6.11.8).

174 Language 86.10.6

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.10.7 Null directive

Semantics

A preprocessing directive of the form
new-line

has no effect.

6.10.8 Predefined macro names

The values of the predefined macros listed in the following subclauses®’® (except for
_ _FILE and LINE) remain constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a
#define or a #undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

The implementation shall not predefine the macro __eplusplus, nor shall it define it
in any standard header.

Forward references: standard headers (7.1.2).
6.10.8.1 Mandatory macros
The following macro names shall be defined by the implementation:

_ _DATE _ The date of translation of the preprocessing translation unit: a character
string literal of the form "Mmm dd yyyy", where the names of the
months are the same as those generated by the asctime function, and the
first character of dd is a space character if the value is less than 10. If the
date of translation is not available, an implementation-defined valid date
shall be supplied.

_FILE _ The presumed name of the current source file (a character string literal).1"")

_LINE _ The presumed line number (within the current source file) of the current

source line (an integer constant).1’”)

___STDC__ The integer constant 1, intended to indicate a conforming implementation.

___STDC HOSTED _ The integer constant 1 if the implementation is a hosted
implementation or the integer constant 0 if it is not.

176) See “future language directions” (6.11.9).

177) The presumed source file name and line number can be changed by the #1ine directive.

§6.10.8.1 Language 175

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

__STDC VERSION _ The integer constant 201ymmz.’®

___TIME _ The time of translation of the preprocessing translation unit: a character
string literal of the form "hh:mm:ss" as in the time generated by the
asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.27.3.1).
6.10.8.2 Environment macros
The following macro names are conditionally defined by the implementation:

___STDC ISO 10646 _ An integer constant of the form yyyymmIL (for example,
199712L). If this symbol is defined, then every character in the Unicode
required set, when stored in an object of type wchar t, has the same
value as the short identifier of that character. The Unicode required set
consists of all the characters that are defined by ISO/IEC 10646, along with
all amendments and technical corrigenda, as of the specified year and
month. If some other encoding is used, the macro shall not be defined and
the actual encoding used is implementation-defined.

___STDC MB MIGHT NEQ WC _ The integer constant 1, intended to indicate that, in
the encoding for wchar t, a member of the basic character set need not
have a code value equal to its value when used as the lone character in an
integer character constant.

___STDC_UTF 16 _ The integer constant 1, intended to indicate that values of type
charlé t are UTF-16 encoded. If some other encoding is used, the
macro shall not be defined and the actual encoding used is implementation-
defined.

__STDC_UTF 32 _ The integer constant 1, intended to indicate that values of type
char32 t are UTF-32 encoded. If some other encoding is used, the
macro shall not be defined and the actual encoding used is implementation-
defined.

Forward references: common definitions (7.19), unicode utilities (7.28).

178) This macro was not specified in ISO/IEC 9899:1990 and was specified as 199409L in
ISO/IEC 9899/AMD1:1995 and as 199901L in ISO/IEC 9899:1999. The intention is that this will
remain an integer constant of type long int that is increased with each revision of this International
Standard.

176 Language §6.10.8.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.10.8.3 Conditional feature macros
The following macro names are conditionally defined by the implementation:

___STDC ANALYZABLE _ The integer constant 1, intended to indicate conformance to
the specifications in annex L (Analyzability).

___STDC IEC 559 The integer constant 1, intended to indicate conformance to the
specifications in annex F (IEC 60559 floating-point arithmetic).

___STDC IEC 559 COMPLEX _ The integer constant 1, intended to indicate
adherence to the specifications in annex G (IEC 60559 compatible complex
arithmetic).

___STDC LIB EXT1 _ The integer constant 201ymmL, intended to indicate support
for the extensions defined in annex K (Bounds-checking interfaces).t”®

___STDC NO ATOMICS _ The integer constant 1, intended to indicate that the
implementation does not support atomic types (including the Atomic
type qualifier) and the <stdatomic.h> header.

___STDC NO COMPLEX_ _ The integer constant 1, intended to indicate that the
implementation does not support complex types or the <complex.h>
header.

___STDC NO THREADS The integer constant 1, intended to indicate that the
implementation does not support the <threads.h> header.

__STDC NO VLA _ The integer constant 1, intended to indicate that the
implementation does not support variable length arrays or variably
modified types.

An implementation that defines = STDC NO COMPLEX _ shall not define
__STDC IEC 559 COMPLEX

179) The intention is that this will remain an integer constant of type long int that is increased with
each revision of this International Standard.

§6.10.8.3 Language 177

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

6.10.9 Pragma operator

Semantics

A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, |
deleting the leading and trailing double-quotes, replacing each escape sequence \" by a
double-quote, and replacing each escape sequence \\ by a single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they were the pp-tokens in a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

EXAMPLE A directive of the form:
#pragma listing on "..\listing.dir"
can also be expressed as:
_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LISTING(x) PRAGMA (listing on #x)
#define PRAGMA (x) Pragma (#x)

LISTING (..\listing.dir)

178 Language §6.10.9

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with
greater range, precision, or both than long double.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the static storage-
class specifier is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters
(considering each universal character name or extended source character as a single
character) is an obsolescent feature that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.6 Function declarators

The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.7 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.8 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.
6.11.9 Predefined macro names

Macro names beginning with STDC_ are reserved for future standardization.

§6.11.9 Language 179

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

7. Library
7.1 Introduction
7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null
character. The term multibyte string is sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. A pointer to a string is a pointer to its initial (lowest addressed)
character. The length of a string is the number of bytes preceding the null character and
the value of a string is the sequence of the values of the contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequences.’® It is represented in the text and examples by a period, but
may be changed by the setlocale function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including
the first null wide character. A pointer to a wide string is a pointer to its initial (lowest
addressed) wide character. The length of a wide string is the number of wide characters
preceding the null wide character and the value of a wide string is the sequence of code
values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
character.'8%)

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

180) The functions that make use of the decimal-point character are the numeric conversion functions
(7.22.1, 7.29.4.1) and the formatted input/output functions (7.21.6, 7.29.2).

181) For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN MAX shall thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

180 Library §7.1.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header,
whose contents are made available by the #include preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

182)

The standard headers are'®?)
<assert.h> <math.h> <stdlib.h>
<complex.h> <setjmp.h> <stdnoreturn.h> |
<ctype.h> <signal.h> <string.h>
<errno.h> <stdalign.h> <tgmath.h>
<fenv.h> <stdarg.h> <threads.h>
<float.h> <stdatomic.h> <time.h>
<inttypes.h> <stdbool.h> <uchar.h>
<iso646.h> <stddef.h> <wchar.h>
<limits.h> <stdint.h> <wctype.h>
<locale.h> <stdio.h>

If a file with the same name as one of the above < and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in
a given scope, with no effect different from being included only once, except that the
effect of including <assert.h> depends on the definition of NDEBUG (see 7.2). If
used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared
or defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion
of the header or when any macro defined in the header is expanded.

Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

182) A header is not necessarily a source file, nor are the < and > delimited sequences in header names
necessarily valid source file names.

183) The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that
implementations need not support; see 6.10.8.3.

§7.1.2 Library 181

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Any declaration of a library function shall have external linkage.

A summary of the contents of the standard headers is given in annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

No

All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included;
unless explicitly stated otherwise (see 7.1.4).

All identifiers with external linkage in any of the following subclauses (including the
future library directions) and errno are always reserved for use as identifiers with
external linkage.'8

Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as a macro name and as an identifier with
file scope in the same name space if any of its associated headers is included.

other identifiers are reserved. If the program declares or defines an identifier in a

context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

If the program removes (with #unde£) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

184) The list of reserved identifiers with external linkage includes math errhandling, setjmp,

182

va_copy, and va_end.

Library §7.1.3

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer, or a pointer to non-modifiable storage when the corresponding
parameter is not const-qualified) or a type (after promotion) not expected by a function
with variable number of arguments, the behavior is undefined. If a function argument is
described as being an array, the pointer actually passed to the function shall have a value
such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid. Any function
declared in a header may be additionally implemented as a function-like macro defined in
the header, so if a library function is declared explicitly when its header is included, one
of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as
a macro.®) The use of #undef to remove any macro definition will also ensure that an
actual function is referred to. Any invocation of a library function that is implemented as
a macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments.’®® Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be called.'®”) All object-like macros listed as expanding to

185) This means that an implementation shall provide an actual function for each library function, even if it
also provides a macro for that function.

186) Such macros might not contain the sequence points that the corresponding function calls do.

187) Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUILTIN abs could be used to indicate generation of in-line code for the abs function. Thus, the
appropriate header could specify

#define abs(x) BUILTIN abs(x)
for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.

§7.14 Library 183

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

integer constant expressions shall additionally be suitable for use in #if preprocessing
directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static or thread storage duration.'88)

Unless explicitly stated otherwise in the detailed descriptions that follow, library
functions shall prevent data races as follows: A library function shall not directly or
indirectly access objects accessible by threads other than the current thread unless the
objects are accessed directly or indirectly via the function’s arguments. A library
function shall not directly or indirectly modify objects accessible by threads other than
the current thread unless the objects are accessed directly or indirectly via the function’s
non-const arguments.*®? Implementations may share their own internal objects between
threads if the objects are not visible to users and are protected against data races.

Unless otherwise specified, library functions shall perform all operations solely within the
current thread if those operations have effects that are visible to users.!%)

EXAMPLE The function atoi may be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* .. %/

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

188) Thus, a signal handler cannot, in general, call standard library functions.

189) This means, for example, that an implementation is not permitted to use a static object for internal
purposes without synchronization because it could cause a data race even in programs that do not
explicitly share objects between threads. Similarly, an implementation of memcpy is not permitted to |
copy bytes beyond the specified length of the destination object and then restore the original values |
because it could cause a data race if the program shared those bytes between threads.

190) This allows implementations to parallelize operations if there are no visible side effects.

184 Library §7.1.4

N1570

or

Committee Draft — April 12, 2011

#include <stdlib.

#undef atoi
const char *str;
/* .. %/

i = atoi(str);

#include <stdlib.

const char *str;
/* .. %/

i = (atoi) (str):;

— by explicit declaration

§7.1.4

h>

h>

extern int atoi(const char *);

const char *str;
/* .. %/

i = atoi(str);

Library

ISO/IEC 9899:201x

185

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

7.2 Diagnostics <assert.h>

The header <assert.h> defines the assert and static assert macros and
refers to another macro,

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the
point in the source file where <assert.h> is included, the assert macro is defined
simply as

#define assert(ignore) ((void)O0)

The assert macro is redefined according to the current state of NDEBUG each time that
<assert.h> isincluded.

The assert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

The macro

static_ assert
expandsto Static assert
7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

#include <assert.h>
void assert (scalar expression) ;

Description

The assert macro puts diagnostic tests into programs; it expands to a void expression.
When it is executed, if expression (which shall have a scalar type) is false (that is,
compares equal to 0), the assert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, the source line
number, and the name of the enclosing function — the latter are respectively the values of
the preprocessing macros @ FILE and _ LINE _ and of the identifier
__func_) on the standard error stream in an implementation-defined format.1% It
then calls the abort function.

191) The message written might be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

186 Library §7.2.1.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Returns
The assert macro returns no value.

Forward references: the abort function (7.22.4.1).

§7.2.1.1 Library 187

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

7.3 Complex arithmetic <complex.h>
7.3.1 Introduction

The header <complex.h> defines macros and declares functions that support complex
arithmetic.%?

Implementations that define the macro _ STDC NO COMPLEX _ need not provide
this header nor support any of its facilities.

Each synopsis specifies a family of functions consisting of a principal function with one
or more double complex parameters and a double complex Or double return
value; and other functions with the same name but with £ and 1 suffixes which are
corresponding functions with £loat and long double parameters and return values.

The macro
complex

expands to _Complex; the macro
_Complex I

expands to a constant expression of type const float _Complex, with the value of
the imaginary unit.2*®

The macros
imaginary
and
_Imaginary I

are defined if and only if the implementation supports imaginary types;'®¥ if defined,
they expand to Imaginary and a constant expression of type const float
__Imaginary with the value of the imaginary unit.

The macro
I

expands to either Imaginary I or Complex I. If Imaginary I is not
defined, I shall expandto Complex I.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macros complex, imaginary, and I.

192) See “future library directions” (7.31.1).

193) The imaginary unit is a number i such that i> = —1.

194) A specification for imaginary types is in informative annex G.

188 Library §7.3.1

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

Forward references: IEC 60559-compatible complex arithmetic (annex G).
7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation may set errno but is
not required to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specifications of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part —0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 The cX LIMITED RANGE pragma
Synopsis

#include <complex.h>
#pragma STDC CX LIMITED RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX LIMITED RANGE pragma can be wused to inform the
implementation that (where the state is *““on”) the usual mathematical formulas are
acceptable.’®) The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external
declarations, the pragma takes effect from its occurrence until another
CX LIMITED RANGE pragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until
another CX LIMITED RANGE pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the

§7.34 Library 189

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state for the pragma is “off”.

7.3.5 Trigonometric functions
7.3.5.1 The cacos functions
Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl (long double complex z);

Description

The cacos functions compute the complex arc cosine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

Returns

The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, =] along the
real axis.

7.3.5.2 The casin functions
Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf (float complex z);

long double complex casinl (long double complex z);

Description

The casin functions compute the complex arc sine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-z/2,+x/2]

195) The purpose of the pragma is to allow the implementation to use the formulas:
(X +1iy) x (Uu+iv) = (Xu—yv) +i(yu+ xv)
(X +1iy) / (u+iv) = [(xu+ yv) +i(yu — xv)]J/(u? + v?)

| X +iy| =X+ Y2

where the programmer can determine they are safe.

190 Library §7.35.2

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

along the real axis.
7.3.5.3 The catan functions
Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf (float complex z);

long double complex catanl (long double complex z);

Description

The catan functions compute the complex arc tangent of z, with branch cuts outside the
interval [, +i] along the imaginary axis.

Returns

The catan functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-z/2,+7/2]
along the real axis.

7.3.5.4 The ccos functions
Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Description

The ccos functions compute the complex cosine of z.
Returns

The ccos functions return the complex cosine value.
7.3.5.5 The esin functions

Synopsis

#include <complex.h>

double complex csin(double complex z) ;

float complex csinf (float complex z);

long double complex csinl (long double complex z);

Description

The esin functions compute the complex sine of z.

§7.3.5.5 Library 191

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

Returns

The esin fu