// See LICENSE for license details. #include "mmap.h" #include "atomic.h" #include "pk.h" #include "boot.h" #include "bits.h" #include "mtrap.h" #include #include typedef struct { uintptr_t addr; size_t length; file_t* file; size_t offset; unsigned refcnt; int prot; } vmr_t; #define MAX_VMR (RISCV_PGSIZE / sizeof(vmr_t)) static spinlock_t vm_lock = SPINLOCK_INIT; static vmr_t* vmrs; uintptr_t first_free_paddr; static uintptr_t first_free_page; static size_t next_free_page; static size_t free_pages; int demand_paging = 1; // unless -p flag is given static uintptr_t __page_alloc() { kassert(next_free_page != free_pages); uintptr_t addr = first_free_page + RISCV_PGSIZE * next_free_page++; memset((void*)addr, 0, RISCV_PGSIZE); return addr; } static vmr_t* __vmr_alloc(uintptr_t addr, size_t length, file_t* file, size_t offset, unsigned refcnt, int prot) { if (!vmrs) { spinlock_lock(&vm_lock); if (!vmrs) { vmr_t* page = (vmr_t*)__page_alloc(); mb(); vmrs = page; } spinlock_unlock(&vm_lock); } mb(); for (vmr_t* v = vmrs; v < vmrs + MAX_VMR; v++) { if (v->refcnt == 0) { if (file) file_incref(file); v->addr = addr; v->length = length; v->file = file; v->offset = offset; v->refcnt = refcnt; v->prot = prot; return v; } } return NULL; } static void __vmr_decref(vmr_t* v, unsigned dec) { if ((v->refcnt -= dec) == 0) { if (v->file) file_decref(v->file); } } static size_t pte_ppn(pte_t pte) { return pte >> PTE_PPN_SHIFT; } static uintptr_t ppn(uintptr_t addr) { return addr >> RISCV_PGSHIFT; } static size_t pt_idx(uintptr_t addr, int level) { size_t idx = addr >> (RISCV_PGLEVEL_BITS*level + RISCV_PGSHIFT); return idx & ((1 << RISCV_PGLEVEL_BITS) - 1); } static pte_t* __walk_create(uintptr_t addr); static pte_t* __attribute__((noinline)) __continue_walk_create(uintptr_t addr, pte_t* pte) { *pte = ptd_create(ppn(__page_alloc())); return __walk_create(addr); } static pte_t* __walk_internal(uintptr_t addr, int create) { pte_t* t = root_page_table; for (int i = (VA_BITS - RISCV_PGSHIFT) / RISCV_PGLEVEL_BITS - 1; i > 0; i--) { size_t idx = pt_idx(addr, i); if (unlikely(!(t[idx] & PTE_V))) return create ? __continue_walk_create(addr, &t[idx]) : 0; t = (pte_t*)(pte_ppn(t[idx]) << RISCV_PGSHIFT); } return &t[pt_idx(addr, 0)]; } static pte_t* __walk(uintptr_t addr) { return __walk_internal(addr, 0); } static pte_t* __walk_create(uintptr_t addr) { return __walk_internal(addr, 1); } static int __va_avail(uintptr_t vaddr) { pte_t* pte = __walk(vaddr); return pte == 0 || *pte == 0; } static uintptr_t __vm_alloc(size_t npage) { uintptr_t start = current.brk, end = current.mmap_max - npage*RISCV_PGSIZE; for (uintptr_t a = start; a <= end; a += RISCV_PGSIZE) { if (!__va_avail(a)) continue; uintptr_t first = a, last = a + (npage-1) * RISCV_PGSIZE; for (a = last; a > first && __va_avail(a); a -= RISCV_PGSIZE) ; if (a > first) continue; return a; } return 0; } static inline pte_t prot_to_type(int prot, int user) { pte_t pte = 0; if (prot & PROT_READ) pte |= PTE_R | PTE_A; if (prot & PROT_WRITE) pte |= PTE_W | PTE_D; if (prot & PROT_EXEC) pte |= PTE_X | PTE_A; if (pte == 0) pte = PTE_R; if (user) pte |= PTE_U; return pte; } int __valid_user_range(uintptr_t vaddr, size_t len) { if (vaddr + len < vaddr) return 0; return vaddr + len <= current.mmap_max; } static int __handle_page_fault(uintptr_t vaddr, int prot) { uintptr_t vpn = vaddr >> RISCV_PGSHIFT; vaddr = vpn << RISCV_PGSHIFT; pte_t* pte = __walk(vaddr); if (pte == 0 || *pte == 0 || !__valid_user_range(vaddr, 1)) return -1; else if (!(*pte & PTE_V)) { uintptr_t ppn = vpn + (first_free_paddr / RISCV_PGSIZE); vmr_t* v = (vmr_t*)*pte; *pte = pte_create(ppn, prot_to_type(PROT_READ|PROT_WRITE, 0)); flush_tlb(); if (v->file) { size_t flen = MIN(RISCV_PGSIZE, v->length - (vaddr - v->addr)); ssize_t ret = file_pread(v->file, (void*)vaddr, flen, vaddr - v->addr + v->offset); kassert(ret > 0); if (ret < RISCV_PGSIZE) memset((void*)vaddr + ret, 0, RISCV_PGSIZE - ret); } else memset((void*)vaddr, 0, RISCV_PGSIZE); __vmr_decref(v, 1); *pte = pte_create(ppn, prot_to_type(v->prot, 1)); } pte_t perms = pte_create(0, prot_to_type(prot, 1)); if ((*pte & perms) != perms) return -1; flush_tlb(); return 0; } int handle_page_fault(uintptr_t vaddr, int prot) { spinlock_lock(&vm_lock); int ret = __handle_page_fault(vaddr, prot); spinlock_unlock(&vm_lock); return ret; } static void __do_munmap(uintptr_t addr, size_t len) { for (uintptr_t a = addr; a < addr + len; a += RISCV_PGSIZE) { pte_t* pte = __walk(a); if (pte == 0 || *pte == 0) continue; if (!(*pte & PTE_V)) __vmr_decref((vmr_t*)*pte, 1); *pte = 0; } flush_tlb(); // TODO: shootdown } uintptr_t __do_mmap(uintptr_t addr, size_t length, int prot, int flags, file_t* f, off_t offset) { size_t npage = (length-1)/RISCV_PGSIZE+1; if (flags & MAP_FIXED) { if ((addr & (RISCV_PGSIZE-1)) || !__valid_user_range(addr, length)) return (uintptr_t)-1; } else if ((addr = __vm_alloc(npage)) == 0) return (uintptr_t)-1; vmr_t* v = __vmr_alloc(addr, length, f, offset, npage, prot); if (!v) return (uintptr_t)-1; for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) { pte_t* pte = __walk_create(a); kassert(pte); if (*pte) __do_munmap(a, RISCV_PGSIZE); *pte = (pte_t)v; } if (!demand_paging || (flags & MAP_POPULATE)) for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) kassert(__handle_page_fault(a, prot) == 0); return addr; } int do_munmap(uintptr_t addr, size_t length) { if ((addr & (RISCV_PGSIZE-1)) || !__valid_user_range(addr, length)) return -EINVAL; spinlock_lock(&vm_lock); __do_munmap(addr, length); spinlock_unlock(&vm_lock); return 0; } uintptr_t do_mmap(uintptr_t addr, size_t length, int prot, int flags, int fd, off_t offset) { if (!(flags & MAP_PRIVATE) || length == 0 || (offset & (RISCV_PGSIZE-1))) return -EINVAL; file_t* f = NULL; if (!(flags & MAP_ANONYMOUS) && (f = file_get(fd)) == NULL) return -EBADF; spinlock_lock(&vm_lock); addr = __do_mmap(addr, length, prot, flags, f, offset); if (addr < current.brk_max) current.brk_max = addr; spinlock_unlock(&vm_lock); if (f) file_decref(f); return addr; } uintptr_t __do_brk(size_t addr) { uintptr_t newbrk = addr; if (addr < current.brk_min) newbrk = current.brk_min; else if (addr > current.brk_max) newbrk = current.brk_max; if (current.brk == 0) current.brk = ROUNDUP(current.brk_min, RISCV_PGSIZE); uintptr_t newbrk_page = ROUNDUP(newbrk, RISCV_PGSIZE); if (current.brk > newbrk_page) __do_munmap(newbrk_page, current.brk - newbrk_page); else if (current.brk < newbrk_page) kassert(__do_mmap(current.brk, newbrk_page - current.brk, -1, MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) == current.brk); current.brk = newbrk_page; return newbrk; } uintptr_t do_brk(size_t addr) { spinlock_lock(&vm_lock); addr = __do_brk(addr); spinlock_unlock(&vm_lock); return addr; } uintptr_t do_mremap(uintptr_t addr, size_t old_size, size_t new_size, int flags) { return -ENOSYS; } uintptr_t do_mprotect(uintptr_t addr, size_t length, int prot) { uintptr_t res = 0; if ((addr) & (RISCV_PGSIZE-1)) return -EINVAL; spinlock_lock(&vm_lock); for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) { pte_t* pte = __walk(a); if (pte == 0 || *pte == 0) { res = -ENOMEM; break; } if (!(*pte & PTE_V)) { vmr_t* v = (vmr_t*)*pte; if((v->prot ^ prot) & ~v->prot){ //TODO:look at file to find perms res = -EACCES; break; } v->prot = prot; } else { if (!(*pte & PTE_U) || ((prot & PROT_READ) && !(*pte & PTE_R)) || ((prot & PROT_WRITE) && !(*pte & PTE_W)) || ((prot & PROT_EXEC) && !(*pte & PTE_X))) { //TODO:look at file to find perms res = -EACCES; break; } *pte = pte_create(pte_ppn(*pte), prot_to_type(prot, 1)); } } spinlock_unlock(&vm_lock); flush_tlb(); return res; } void __map_kernel_range(uintptr_t vaddr, uintptr_t paddr, size_t len, int prot) { uintptr_t n = ROUNDUP(len, RISCV_PGSIZE) / RISCV_PGSIZE; uintptr_t offset = paddr - vaddr; for (uintptr_t a = vaddr, i = 0; i < n; i++, a += RISCV_PGSIZE) { pte_t* pte = __walk_create(a); kassert(pte); *pte = pte_create((a + offset) >> RISCV_PGSHIFT, prot_to_type(prot, 0)); } } void populate_mapping(const void* start, size_t size, int prot) { uintptr_t a0 = ROUNDDOWN((uintptr_t)start, RISCV_PGSIZE); for (uintptr_t a = a0; a < (uintptr_t)start+size; a += RISCV_PGSIZE) { if (prot & PROT_WRITE) atomic_add((int*)a, 0); else atomic_read((int*)a); } } uintptr_t pk_vm_init() { // HTIF address signedness and va2pa macro both cap memory size to 2 GiB mem_size = MIN(mem_size, 1U << 31); size_t mem_pages = mem_size >> RISCV_PGSHIFT; free_pages = MAX(8, mem_pages >> (RISCV_PGLEVEL_BITS-1)); extern char _end; first_free_page = ROUNDUP((uintptr_t)&_end, RISCV_PGSIZE); first_free_paddr = first_free_page + free_pages * RISCV_PGSIZE; root_page_table = (void*)__page_alloc(); __map_kernel_range(DRAM_BASE, DRAM_BASE, first_free_paddr - DRAM_BASE, PROT_READ|PROT_WRITE|PROT_EXEC); current.mmap_max = current.brk_max = MIN(DRAM_BASE, mem_size - (first_free_paddr - DRAM_BASE)); size_t stack_size = MIN(mem_pages >> 5, 2048) * RISCV_PGSIZE; size_t stack_bottom = __do_mmap(current.mmap_max - stack_size, stack_size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, 0, 0); kassert(stack_bottom != (uintptr_t)-1); current.stack_top = stack_bottom + stack_size; flush_tlb(); write_csr(sptbr, ((uintptr_t)root_page_table >> RISCV_PGSHIFT) | SATP_MODE_CHOICE); uintptr_t kernel_stack_top = __page_alloc() + RISCV_PGSIZE; return kernel_stack_top; }