

We reserve the right to change the content of this manual without prior notice. The information contained
herein is believed to be accurate as of the date of publication, however, B&R makes no warranty, expressed
or implied, with regards to the products or the documentation contained within this document. B&R shall not
be liable in the event if incidental or consequential damages in connection with or arising from the furnishing,
performance or use of these products. The software names, hardware names and trademarks used in this
document are registered by the respective companies.

Copyright © B&R – Subject to change without notice
omethlib.doc

December 23, 2013
1/20

openMAC Driver (omethlib)
Documentation

Date: December 23, 2013

openMAC Driver (omethlib)
Documentation

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
2/20

I Versions

 Version Date Comment

 0.1 2013-12-23 Creation

Table 1: Versions

II License

Copyright (c) 2013, B&R
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distri-
bution.

 Neither the name of B&R, Eggelsberg nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

openMAC Driver (omethlib)
Documentation

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
3/20

III Table of Contents

1 HAL Ethernet driver .. 4
1.1 Features .. 4

1.1.1 Time stamp ... 4
1.1.2 Packet filters ... 4
1.1.3 Auto response ... 5

1.2 Ethernet driver .. 6
1.2.1 Files .. 6
1.2.2 IRQ subroutines .. 7
1.2.3 Basic API functions ... 7

1.2.3.1 omethMiiControl .. 7
1.2.3.2 omethInit ... 7
1.2.3.3 omethCreate ... 7
1.2.3.4 omethHookCreate ... 9
1.2.3.5 omethFilterCreate.. 10
1.2.3.6 omethTransmit .. 10
1.2.3.7 omethStart ... 10
1.2.3.8 omethStop ... 10
1.2.3.9 omethPeriodic ... 10
1.2.3.10 omethDestroy .. 11

1.2.4 Filter manipulation ... 11
1.2.4.1 omethFilterSetPattern ... 11
1.2.4.2 omethFilterSetArgument ... 11

1.2.5 Auto response functionality ... 11
1.2.5.1 omethResponseInit ... 11
1.2.5.2 omethResponseSet ... 11
1.2.5.3 omethResponseDisable .. 11
1.2.5.4 omethResponseEnable ... 11

1.2.6 Other API functions ... 11
1.2.6.1 omethGetHandler .. 11
1.2.6.2 omethPhyInfo .. 12
1.2.6.3 omethHookSetFunction ... 12
1.2.6.4 omethGetTimestamp ... 12
1.2.6.5 omethGetTxBufBase ... 12
1.2.6.6 omethGetRxBufBase... 12
1.2.6.7 omethStatistics .. 12
1.2.6.8 omethSetSCNM .. 12

1.2.7 Ethernet packet structure .. 13

2 Application note ... 14
2.1 FPGA design with two soft-core CPUs ... 14
2.2 FPGA for communication tasks only ... 14

3 Figure Index .. 18

4 Table Index .. 19

5 Index .. 20

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
4/20

1 HAL Ethernet driver

The HAL driver (=Hardware Abstraction Layer) controls the openMAC- and Mii Core, and can be used for
every Ethernet application (TCP/IP, EPL, raw Ethernet …). In Fig. 1: block diagram, example for HAL us-
age you can see how the HAL driver can be included into an application (also have a look into chapter 2 -
Application note).

Fig. 1: block diagram, example for HAL usage

1.1 Features

1.1.1 Time stamp

For each received and sent packet a 32 Bit / 20ns timestamp is generated.

1.1.2 Packet filters

The MAC supports 16 packet filters with 31 byte filter and 31 byte mask for each filter.

The filters can be used to…

 determine the type of received frames (like the address-filter on conventional MACs)

Communication Stack (e.g. EPL)

openMAC

PHY

Mii

HAL Driver

TX RX

control

IR

hoo
k hoo

k hoo
k hoo

k

RX TX

PHY

openHUB

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
5/20

 transmit a dedicated packet directly after receiving a packet with defined format (with the defined
inter-frame gap of 960 ns)

 transmit a packet from the transmit queue directly after a packet with defined format

Tab. 1: filter example

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 30

Mask 00 00 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 ... 00

Value Xx xx xx xx xx xx xx xx xx xx xx xx 88 AB 01 xx ... xx

Offset 12/13 = 0x88AB … Ethertype = EPL V2
Offset 14 = 0x01 … Message ID = Start Of Cyclic

Each incoming packet will be compared with all 16 filters (In the order as the filters were installed by the
application).
Only the bits will be compared where the respective mask bit is set. If a matching filter was found, a spe-
cific action will be performed.

1.1.3 Auto response

Triggered by a defined incoming packet the MAC can automatically transmit a packet after the minimum
frame gap of 960 ns.
This gives a constant and very short response time to EPL frames which require an immediate response
(PollRequest, IdentRequest, …)

Poll Request

Poll Response

IRQ

t960 ns + Phy delay

IRQ latency time (does not affect the response time)

MAC Rx

MAC Tx

CPU

Fig. 2: auto response

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
6/20

1.2 Ethernet driver

1.2.1 Files

Tab. 2: HAL Ethernet driver files

File Description

omethLib.c Driver Functions (not to be changed by the user)

omethLib.h Defines and Declarations (not to be changed by the user)

omethLib_target.h Target specific defines

OMETH_HW_MODE

Defines the type of the used CPU, mode 0/1 are general modes for big/little endian systems

OMETH_MAKE_NONCACHABLE(ptr)

Defines a function to make a pointer ‘non-cacheable’. The file omethLib.c will use the defined func-

tion for non-cacheable access to the FPGA registers and to the receive packets.

If the CPU has no data cache no function has to be defined:

#define OMETH_MAKE_NONCACHABLE(ptr) (ptr)

!! Attention !!

Transmit packets are managed by the user. Therefore the user has to make sure that packets

passed to a transmit function are non-cacheable.

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
7/20

1.2.2 IRQ subroutines

The user has to connect the Ethernet driver to the IRQ system of the CPU. Generally the RX IRQ should
have the higher priority than the TX IRQ. Every received packet that matches a filter generates a RX in-
terrupt!
Every transmitted packet (sent with omethTransmit & Co or auto response) generates a TX interrupt! If
the TxIrqHandler is executing an “auto response” occurred interrupt, the user’s free function won’t be
called. If the TxIrqHandler is executing an “user sent” occurred interrupt (sent with omethTransmit & Co)
the user’s free function is called.

Tab. 3: IRQ handlers

omethRxIrqHandler

omethTxIrqHandler

To be used if the IRQ is generated by only 1 MAC and the used system is able to pass an

user argument to the IRQ routine.

As argument the handle to the driver instance (returned by omethCreate) has to be passed to

the IRQ routine.

omethRxIrqHandlerMux

omethTxIrqHandlerMux

To be used if the IRQ is generated by more than 1 MAC or the system does not support

arguments to IRQ subroutines.

omethRxTxIrqHandler Has to be used if one IRQ is used for RX and TX.

As argument the handle to the driver instance (returned by omethCreate) has to be passed to

the IRQ routine. Furthermore the priority (sequence of execution) has to be set.

1.2.3 Basic API functions

At least this set of basic API functions is required to receive and transmit frames on the Ethernet inter-
face. To implement Ethernet Powerlink also the extended API functions are required.

1.2.3.1 omethMiiControl

Function to activate or reset the Ethernet Phys.
(Per default the Phy nReset pin is 0 … Phys are in reset state)
Before initializing the Ethernet driver (omethCreate) the application has to make sure the used Phys are
active and available. Depending on the type of Phy after activation it may take some time until the Mii in-
terface of the Phys is ready. This delay must be implemented by the user.

1.2.3.2 omethInit

The function has to be called at start up of the system. All driver internal variables and instance refer-
ences will be cleared.
(The function will not ‘free’ any previously allocated resources)

1.2.3.3 omethCreate

omethCreate initializes an Ethernet driver instance.
The parameters are passed by a structure which will be copied to internal memory (the same structure
can be used to initialize other instances later) – refer to Tab. 4.

Tab. 4: instance configuration type „ometh_config_typ“

Element Description / Value

macType OMETH_MAC_TYPE_01

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
8/20

Mode Combination of

OMETH_MODE_HALFDUPLEX

OMETH_MODE_FULLDUPLEX

OMETH_MODE_100

OMETH_MODE_DIS_AUTO_NEG

OMETH_MODE_PHY_LIST

(enables the elements phyCount and phyList)

OMETH_MODE_SET_RES_IPG

Adapter The user defines the adapter number for the Ethernet interface. Each instance has to be initialized

with an unique number.

pRamBase Pointer to MAC Descriptor/Filter Registers

pRegBase Pointer to MAC Control Registers

pBufBase Pointer to MAC internal packet buffer (on-chip memory)

rxBuffers Number of used RX buffers (up to 16)

rxMtu Maximum MTU of incoming packets. Packets exceeding this size will be discarded.

Maximum Packet Size = MTU + 18 (DstMAC, SrcMAC, Ethertype, CRC)

pPhyBase Pointer to phy management port:

All phys on this port are assigned to this driver instance, except the element mode contains

OMETH_MODE_PHY_LIST, in this case only the listed phys will be assigned to this instance.

This dedicated phyList is required if the same pPhyBase is used for phys which do not belong to this

driver instance.

phyCount Only valid if mode contains OMETH_MODE_PHY_LIST:

Number of valid entries in phyList

phyList Only valid if mode contains OMETH_MODE_PHY_LIST:

Array with up to 8 phy addresses of the phys which are assigned to this driver instance.

responseIpg Inter Package Gap (available when mode contains OMETH_MODE_SET_RES_IPG):

This value changes the Mac’s IPG and should be given in [ns]. Values lower than 140ns will result in

IPG = 140ns

For each used RX buffer a packet will be allocated. The next incoming frame matching one of the in-
stalled filters will be stored to the next free packet in the queue.

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Fig. 3: receive queue after omethCreate with rxBuffers=4

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
9/20

1.2.3.4 omethHookCreate

To be able to receive packets the user has to create hooks (call backs) which will be called by the IRQ
subroutine.
If ‘maxPending=0’ the hook is not allowed to queue the received packet. The processing of the packet da-
ta has to be done directly in the hook. After terminating the hook function the received packet will be
passed back to the receive queue.
If ‘maxPending > 0’ the hook allocates its own pool of packets.
When receiving a packet which belongs to the hook the IRQ subroutine will pass the packet to the hook
function.
The hook function can decide whether it wants to queue the packet (return 0) or do pass the packet di-
rectly back to the receive queue (return -1).
If the hook has queued the packet the next free packet of the hook’s packet pool will be used to replace
the current descriptor in the receive queue (Because all descriptors of the receive queue have to be
linked to free packets at all time!)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free)

Rx Hook

Packet P6 (free)

hookFct

{

….

}

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free)

Rx Hook

Packet P6 (free)

hookFct

{

….

}

Fig. 4: buffers after omethHookCreate(…, &hookFct, 2)

The following example shows what happens if a packet for this RX hook is received and the hook function
has been queued the packet:

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct

{

….

}

IRQ subroutine calls hookFct() which

queues the packet for the background task

Background Task

Packet P1 (in use)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct

{

….

}

IRQ subroutine calls hookFct() which

queues the packet for the background task

Background Task

Packet P1 (in use)

Fig. 5: buffers after a packet was queued by the background task

If the RX hook does not have free packets anymore the hook function will not be passed to the back-
ground task, the packet remains in the RX descriptor for the next received packet.
This ensures that the RX queue is always complete.
Even if the background task of one hook does not free the packets (because of an application error or be-
cause of leak of CPU performance) the other hooks still will get packets.
After processing the packet the background task has to free the packet (pass back to hook).

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
10/20

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct

{

….

}

IRQ subroutine calls hookFct() which

queues the packet for the background task

Background Task

Packet P1 (free)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct

{

….

}

IRQ subroutine calls hookFct() which

queues the packet for the background task

Background Task

Packet P1 (free)

Fig. 6: buffers after a background task has processed packet

1.2.3.5 omethFilterCreate

A hook can receive packets matching one ore more packet filters. With omethFilterCreate the user has to
define these filters.
The parameter ‘arg’ will be passed to the hook to allow a efficient demultiplexing if more than 1 filters are
linked to the same hook.

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct(arg , …)

{

….

}Packet P1 (free)

Filter 1 (arg = x)

Filter 2 (arg = y)

Filter 3 (arg = z)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct(arg , …)

{

….

}Packet P1 (free)

Filter 1 (arg = x)

Filter 2 (arg = y)

Filter 3 (arg = z)

Fig. 7: filters and hooks

1.2.3.6 omethTransmit

Transmits a packet to the send queue of the MAC. The packet will be sent as soon as possible to the
network.
The user has to pass a function pointer to a free-function. A packet which was passed to the send queue
must not be changed until the driver has released the packet by calling the free-function.
!! Attention !!
If the CPU uses data cache the application has to make sure the packet is really transferred to the
memory before calling omethTransmit.

1.2.3.7 omethStart

Start Ethernet driver. (Make sure the IRQ system is initialized before starting)

1.2.3.8 omethStop

Stop Ethernet driver.

1.2.3.9 omethPeriodic

The function must be called by the user cyclically.
It does the update of the PHY-Register image (see 1.2.6.2) and controls the Full/Half duplex mode of the
MAC depending on the connected communication partner.
Every call the function will retrieve maximum 1 phy register.
Example:
The function is called every 5 ms on a system with 2 interfaces and 4 Phys on each interface.
Total Phy ports : 8
Total Phy registers : 64 (the first 8 registers of each phy will be read)
The update cycle of the function omethPeriodic will be 5ms x 64 = 320 ms

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
11/20

1.2.3.10 omethDestroy

Stops the Ethernet driver and releases all allocated resources. Also resources allocated with
omethHookCreate, omethFilterCreate, … will be released.
After omethDestroy the interface can be initialized again with omethCreate

1.2.4 Filter manipulation

1.2.4.1 omethFilterSetPattern

Change filter pattern (mask and value) of an filter created with omethFilterCreate.

1.2.4.2 omethFilterSetArgument

Change the hook argument for an filter created with omethFilterCreate.

1.2.5 Auto response functionality

The following functions are required to handle the openMAC auto response feature.

1.2.5.1 omethResponseInit

The function has to be called before omethStart and prepares a defined filter entry for auto response
frames.
The response frame will be finally activated at the first call of omethResponseSet.

1.2.5.2 omethResponseSet

Passes a packet to the Ethernet driver which will be sent to the network if a received frame matches the
given filter.
After passing the packet to the driver, the packet has to be considered as ‘locked’, the user is not allowed
to change it until the driver passes the packet back to the user.
The return value can have the following values:

 OMETH_INVALID_PACKET : An error occurred (invalid filter passed, invalid packet passed)

 0 : Function call successful

 > 0 : The driver passes a packet back to the user, the packet can be reused
The packet pointer will be masked alternately with 0x80000000, 0x40000000 or 0x00000000. So, the TX
packets should be located in memory space e.g. 0x00000000 - 0x3FFFFFFF!

1.2.5.3 omethResponseDisable

Disables the auto response feature. The user can continue passing packets to the driver with
omethResponseSet and will still get call backs on the given filter, only the frame transmission is disabled.

1.2.5.4 omethResponseEnable

Enable the auto response feature. The last packet passed with omethResponseSet will be activated for
auto response.

1.2.6 Other API functions

1.2.6.1 omethGetHandler

Retrieves the instance handle of an interface created with omethCreate based on the given adapter num-
ber.

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
12/20

1.2.6.2 omethPhyInfo

Retrieves the pointer to a PHY-Register image of the driver instance.

1.2.6.3 omethHookSetFunction

Change the call back function of a receive hook.

1.2.6.4 omethGetTimestamp

Get timestamp of a received packet (Resolution: 20ns)

1.2.6.5 omethGetTxBufBase

This function returns the MAC-internal TX buffer base address.

1.2.6.6 omethGetRxBufBase

This function returns the MAC-internal RX buffer base address.

1.2.6.7 omethStatistics

Retrieve the pointer to the statistics structure of the driver instance.

1.2.6.8 omethSetSCNM

Sets the SCNM (Slot Communication Network Mode).
By default all frames sent with omethTransmit will be sent to the network as soon as possible. The MAC
runs in collision mode, if collisions occur the MAC will repeat the packet.
The parameter hFilter can have the following values:

 0: The MAC is set to collision mode (default mode after omethCreate)

 valid filter handle: The MAC will send packets passed with omethTransmit only after an incoming
frame matches the given filter. In case of collisions the MAC will NOT retry the transmission.

 OMETH_INVALID_FILTER: The send queue is disabled, packets passed with omethTransmit will
be queued but will not be sent to the network.

openMAC Driver (omethlib)
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
13/20

1.2.7 Ethernet packet structure

The Ethernet packets for (to transmit to the network) and from the openMAC (to receive from the network)
have a structure defined in the omethlib.h file (ometh_packet_typ). It is recommended to use this type to
build Ethernet frames in your application. Before sending the packet with omethTransmit or setting an au-
to-response frame with omethResponseSet, the length member need to be set to the Ethernet frame’s
length excluding the CRC field!

Tab. 5: Ethernet packet struct

Member Description

length (4 bytes) The packets length without the checksum in bytes.

e.g. smallest Ethernet packet with crc is 64 bytes

=> set length to 60 bytes

dstMac (6 bytes) destination MAC address

srcMac (6 bytes) source MAC address

Ethertype (2 bytes) Ethernet type / length field

minData (min. 46 bytes) data field – the minimum length is 46 bytes (header is 14 bytes)

checkSum (4 bytes) packet’s checksum field

Don’t care this field; the MAC does it for the application.

//********** packet structure for ethernet frames ***********************
typedef struct
{
 unsigned long length; // frame length excluding checksum

 struct ometh_packet_data_typ
 {
 unsigned char dstMac[6];
 unsigned char srcMac[6];
 unsigned char ethertype[2];
 unsigned char minData[46]; // minimum number of data bytes for a standard EthFrame
 unsigned char checkSum[4];
 }data;
}ometh_packet_typ;

openMAC Driver (omethlib)
Documentation Application note

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
14/20

2 Application note

In order to show how the openMAC and its components (Hub, Filter, Drivers …) are used in an open-
Powerlink Controlled Node (Powerlink Slave), this chapter was inserted. It is recommended to follow this
reference to achieve high performance, because of very low response delays when using the openMAC.
For this reason the best way is to add a second CPU which processes application data and leave one
CPU for running the openPowerlink communication-stack. In Fig. 8 a generic design is shown of a “Two-
Processor System” using the openMAC (incl. openFILTER, openHUB …) as an interface to the Powerlink
network. The “Communication” CPU is used to control the MAC and execute the whole openPowerlink
Stack. Information can be exchanged through an interface (e.g. SPI, DPR, PCI, Mailbox, Mutex …). Sen-
sors, actuators and other I/Os can be connected to the second CPU to complete a Powerlink Controlled
Node.

2.1 FPGA design with two soft-core CPUs

If an FPGA (Field Programmable Gate Array) is used it is possible to integrate a Two-Processor System
into one chip to save circuit board area. Chip manufacturer (like Altera and Xilinx) provide Tool Chains
which can handle easily Multi-Processor applications.
The openMAC was designed to save area and chip resources, but the actual requirement depends on the
application! Refer to Fig. 9 – the “Communication” and “Application” CPU can be e.g. Nios II (Altera), Mi-
croblaze (Xilinx) or any other soft-core processor.

2.2 FPGA for communication tasks only

If it is not possible to integrate the whole application into one chip, an external µprocessor/controller can
be connected to the FPGA including the “Communication” soft-core processor and openMAC. Refer to
Fig. 10.

openMAC Driver (omethlib)
Documentation Application note

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
15/20

Fig. 8: generic design approach

POWERLINK NETWORK

Application CPU

Communication CPU
 openPowerlink Stack

 openMAC HAL driver

open-
MAC

Interface e.g. SPI, DPR
…

Other I/Os Actuators Sensors

openHUB

A
p
p

lic
a
ti
o

n
 s

e
c
ti
o

n

C
o
m

m
u
n

ic
a
ti
o
n
 s

e
c
ti
o
n

openMAC Driver (omethlib)
Documentation Application note

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
16/20

Fig. 9: FPGA design with two soft-core processors

POWERLINK NETWORK

FPGA

Application

CPU

Communica-
tion CPU

Other I/Os Actuators Sensors

Interface e.g. SPI, DPR
…

PHY

PHY

openHUB

openMAC

openMAC Driver (omethlib)
Documentation Application note

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
17/20

Fig. 10: FPGA design for communication tasks only

POWERLINK NETWORK

FPGA

Application CPU
µP/C, DSP …

Interface e.g. SPI, DPR
…

Other I/Os Actuators Sensors

PHY

PHY

openHUB

openMAC

Communicati-
on CPU

openMAC Driver (omethlib)
Documentation Figure Index

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
18/20

3 Figure Index

Fig. 1: block diagram, example for HAL usage ... 4
Fig. 2: auto response ... 5
Fig. 3: receive queue after omethCreate with rxBuffers=4 .. 8
Fig. 4: buffers after omethHookCreate(…, &hookFct, 2) ... 9
Fig. 5: buffers after a packet was queued by the background task ... 9
Fig. 6: buffers after a background task has processed packet .. 10
Fig. 7: filters and hooks ... 10
Fig. 8: generic design approach .. 15
Fig. 9: FPGA design with two soft-core processors .. 16
Fig. 10: FPGA design for communication tasks only... 17

openMAC Driver (omethlib)
Documentation Table Index

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
19/20

4 Table Index

Tab. 1: filter example ... 5
Tab. 2: HAL Ethernet driver files ... 6
Tab. 3: IRQ handlers ... 7
Tab. 4: instance configuration type „ometh_config_typ“ ... 7
Tab. 5: Ethernet packet struct ... 13

openMAC Driver (omethlib)
Documentation Index

Copyright © B&R - Subject to change without notice
omethlib.doc

December 23, 2013
20/20

5 Index

F

Figure Index .. 18

L

License.. 2
Listing Index .. 20

O

OpenMAC
Auto Response .. 5
Ethernet packet structure 13

Filter Example .. 5
HAL Driver .. 4
Hook ... 8, 9, 10

T

Table Index .. 19
Table of Contents ... 3

V

Versions ... 2

