

We reserve the right to change the content of this manual without prior notice. The information contained
herein is believed to be accurate as of the date of publication, however, B&R makes no warranty, expressed
or implied, with regards to the products or the documentation contained within this document. B&R shall not
be liable in the event if incidental or consequential damages in connection with or arising from the furnishing,
performance or use of these products. The software names, hardware names and trademarks used in this
document are registered by the respective companies.

Copyright © B&R – Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
1/37

openMAC & Components
Documentation

Date: September 7, 2011

openMAC & Components
Documentation

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
2/37

I Versions
 Version Date Comment Edited by

 1.0 --/04/2009 Creation Zelenka Joerg

 1.1 --/05/2009 Phy Management Core, Register structure Zelenka Joerg

 1.2 --/09/2009 Completely reworked chapter 1 – 3

Deleted chapter 4 (Ethernet driver), added chapter Application note

Zelenka Joerg

 1.3 09/02/2010 Changed template Zelenka Joerg

 1.4 15/06/2010 Changes in Avalon bus interface (2.6)

Added Packet buffer management (3.2.3)

Added Get TX/RX buffer base (3.2.7.5/6)

Zelenka Joerg

 1.5 19/08/2010 Changed Requirements to Features (2.1)

Added features (2.1)

Added generics “TxDel” and “TxSyncOn” (Tab. 8)

Avalon slave interface mapping

Zelenka Joerg

 1.6 07/09/2011 Removed Avalon bus specific content (moved to POWERLINK IP-
core documentation)

Changed openMAC block diagram

Zelenka Joerg

Table 1: Versions

II License
Copyright (c) 2010, B&R
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distri-
bution.

• Neither the name of B&R, Eggelsberg nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

openMAC & Components
Documentation

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
3/37

III Table of Contents

1 Introduction..................................... ..5
1.1 About this document ...5
1.2 About openMAC..5

2 IP-Cores... ..7
2.1 Features ..7
2.2 OpenMAC ...7

2.2.1 Interface.. 7
2.2.1.1 Descriptor block .. 7
2.2.1.2 TX/RX control/status registers... 10

2.2.2 Receive filters ... 11
2.2.3 Timing ... 13

2.2.3.1 Slave interface .. 13
2.2.3.2 Master interface (DMA) ... 14

2.2.4 Port/generic map... 14
2.3 Phy management core..15

2.3.1 Serial management interface (SMI) .. 16
2.3.2 Interface.. 16
2.3.3 Timing ... 17
2.3.4 Port map ... 18

2.4 OpenHUB..18
2.4.1 Port/generic map... 19

2.5 OpenFILTER...20
2.5.1 Port map ... 20

3 HAL Ethernet driver.............................. ..21
3.1 Features ..21

3.1.1 Time stamp ... 21
3.1.2 Packet filters ... 21
3.1.3 Auto response... 22

3.2 Ethernet driver ..23
3.2.1 Files .. 23
3.2.2 IRQ subroutines .. 24
3.2.3 Basic API functions ... 24

3.2.3.1 omethMiiControl .. 24
3.2.3.2 omethInit ... 24
3.2.3.3 omethCreate ... 24
3.2.3.4 omethHookCreate ... 26
3.2.3.5 omethFilterCreate.. 27
3.2.3.6 omethTransmit .. 27
3.2.3.7 omethStart... 27
3.2.3.8 omethStop... 27
3.2.3.9 omethPeriodic ... 27
3.2.3.10 omethDestroy.. 28

3.2.4 Filter manipulation... 28
3.2.4.1 omethFilterSetPattern ... 28
3.2.4.2 omethFilterSetArgument ... 28

3.2.5 Auto response functionality ... 28
3.2.5.1 omethResponseInit ... 28
3.2.5.2 omethResponseSet... 28
3.2.5.3 omethResponseDisable .. 28
3.2.5.4 omethResponseEnable ... 28

3.2.6 Other API functions... 28
3.2.6.1 omethGetHandler.. 28
3.2.6.2 omethPhyInfo .. 29
3.2.6.3 omethHookSetFunction... 29

openMAC & Components
Documentation

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
4/37

3.2.6.4 omethGetTimestamp... 29
3.2.6.5 omethGetTxBufBase... 29
3.2.6.6 omethGetRxBufBase... 29
3.2.6.7 omethStatistics.. 29
3.2.6.8 omethSetSCNM .. 29

3.2.7 Ethernet packet structure .. 30

4 Application note31
4.1 FPGA design with two soft-core CPUs ...31
4.2 FPGA for communication tasks only...31

5 Figure Index35

6 Table Index...................................... ..36

7 Index37

openMAC & Components
Documentation Introduction

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
5/37

1 Introduction

1.1 About this document

This document describes structure and function of the openMAC, openFILTER, openHUB and its HAL
driver (HAL ... Hardware Abstraction Layer).

Important:
This documentation only describes the IP-Core openM AC from a generic view. If you require fur-
ther information for the specific usage with Altera Nios II or Xilinx Microblaze, please refer to the
corresponding documentation of the POWERLINK IP-Cor e!

Using the specific features of this MAC allow very short response times in EPL networks.
In chapter 4 there are given some examples to show how to integrate the whole openMAC-solution into
common applications.

1.2 About openMAC

This chapter gives an overview on the MAC’s features and itself. At Fig. 1 you can see the openMAC’s
structure (OpenMAC.vhd), ports to a processor bus and to the Reduced Media Independent Interface
(RMII). The Mac includes a full transmitter (TX) and receiver (RX) – therefore its full-duplex ability is en-
abled. All frames will be fetched or stored from or into a memory via the included DMA. The Mac’s de-
scriptors are located in a Dual Port Ram (DPR, 16/16) to set the frame buffer’s locations. This memory is
accessible over a memory mapped slave interface.
To enable the hardware acceleration ability, a packet filter is included. This component compares the first
31 Bytes of a received packet and starts a transmission of a defined frame from the memory after the In-
ter Package Gap (960ns, 100Mbps) or a configured delay. It is possible to configure 16 different packet
filters and set for every filter the “Auto-Response Feature”.
Every received and transmitted packet gets a time stamp from a 32 Bit Counter and can be read from the
descriptor-memory. The Counter value can be used to generate time-dependent interrupts.
The openMAC is equipped with one RMII and can be connected to an external Phy directly. Optionally a
three-port (or bigger) hub can be used (OpenHUB.vhd) to attach more Phys.
Every used Phy can be configured and monitored via the Serial Management Interface with the Phy Man-
agement Interface Core (OpenMAC_PHYMI.vhd). The HAL driver automatically detects the connected
Phys on the SMI bus-line.
It is recommended to use the provided distortion filter (OpenFILTER.vhd) to lock out noise from the con-
nected network. This core should be positioned between the Mac and the Phy or between the Mac and
the Hub.

openMAC & Components
Documentation Introduction

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
6/37

R
M
II

H
o
s
t
In
te
rf
a
c
e

G
e
n
e
ri
c
 S
y
s
te
m
 I
n
te
rc
o
n
n
e
c
ti
o
n

Fig. 1: Block diagram openMAC

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
7/37

2 IP-Cores
This chapter should give an overview on the free IP-Cores
OpenMAC.vhd (openMAC, 2.2)
OpenMAC_PHYMI.vhd (Phy Management, 2.3)
OpenHUB.vhd (openHub, 2.4)
OpenMAC_DPR_???.vhd (Dual Port RAM for MAC, depends on your chip-architecture Altera/Xilinx)

2.1 Features

The following requirements are fulfilled by the IP-Cores:

• sparse resources in FPGA
• full- and half- duplex 100Mbps MAC
• RMII (reduced media independent interface)
• 3-port hub (openHUB)
• 16 RX filters with the ability to start a transmission
• First 31 bytes are filtered by the RX filters
• auto-response feature
• low through-put time
• 32bit free-running timer for time-stamps (RX and TX) and IRQ generation
• Distortion filter (openFILTER)

The following features are added:

• IPG of auto-response packets are adjustable (necessary for Poll-Response Chaining)
• FPGA-internal TX/RX packet buffer (Altera Nios II systems only)
• Timer-triggered packet transmission (beneficial for low SoC jitter by POWERLINK MN)

2.2 OpenMAC

2.2.1 Interface

The openMAC’s interface to the CPU includes descriptors, one status and one command register. It is
important to connect the Mac’s Clk port to a 50MHz Clk-signal.

2.2.1.1 Descriptor block

Every descriptor includes information about the received- or (to be) transmitted packets, like the address
to the buffer, the packets length and some status flags. The TX- and RX-descriptors are located in the
MAC’s dual-port-RAM, which enables fast access (without CPU-control) by the MAC with the RMII Ref-
CLK (50MHz). This block has a size of 512 Bytes and is divided into TX- and RX-descriptors (refer to
Tab. 1). The openMAC supports 16 TX- and 16 RX-descriptors.

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
8/37

Tab. 1: DPR TX- and RX-descriptor block

Ram_Base + 0x5fc Time Stamp

Ram_Base + 0x5f8 Tx Start time

Ram_Base + 0x5f4 Frame Pointer

Ram_Base + 0x5f0

Tx Desc. 15

Tx Status Tx Frame length

…

Ram_Base + 0x50C Time Stamp

Ram_Base + 0x508 Tx Start time

Ram_Base + 0x504 Frame Pointer

Ram_Base + 0x500

Tx Desc. 0

Tx Status Tx Frame length

Ram_Base + 0x4FC Time Stamp

Ram_Base + 0x4F8 -

Ram_Base + 0x4F4 Frame Pointer

Ram_Base + 0x4F0

Rx Desc. 15

Rx Status Rx Frame length

….

Ram_Base + 0x40C Time Stamp

Ram_Base + 0x408 -

Ram_Base + 0x404 Frame Pointer

Ram_Base + 0x400

Rx Desc. 0

Rx Status Rx Frame length

The TX start time (in TX descriptor) is used to start a transmission at a given time (32bit MAC time).

Tab. 2: TX-descriptor status register

Start Time … If this bit is set to one, TX starts at the given time.
Del … frame is delayed by the value in Tx Start time (plus the IPG)
Written ... Is one, if transmission is finished and the MAC is ready.
Last ... Is one, if this descriptor is the last one in list (of the 16 descriptors).
Owner ... Is one, if MAC is the owner of this descriptor. Otherwise (zero) the MAC has no access.
Tx Collisions Count ... Includes the MAC’s tries on sending a packet.

Tab. 3: RX-descriptor status register

Align Error … Is one, if the Ethernet frame ending was not aligned to a byte.

15 14 13 12 11 10 9 8 7 6 5 4 3..0

-
Start

Time
- Del - Written Last Owner - - - -

Tx

Collision Count

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - -
Align

Error
Hub-Port Last Owner Filter Number

Noise

Error

Preamb

Error

Over

Size

Crc

Error

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
9/37

Last, Owner ... refer to Tab. 2: TX-descriptor status register
Filter Number ... links to the filter, which passes through the packet
Hub-Port … If the openHub is connected to the Mac, then these 2 Bits represents the Hub’s port, where
the packet was received.
Noise Error ... Is one, if the MAC notices invalid signals on the RX data line (Crs_Dv was asserted shorter
than 64 Bits!)
Preamb Error ... Is one, if the preamble was not correct.
Over Size ... Is one, if the received frame was cut, because the buffer was smaller than the message.
Crc Error ... Is one, if a check sum error occurs.
The Hub-Port value can be as follows:
1 to 3 … packet was received on this port (should not be the internal port to the Mac)
0 … error / no hub connected

The available buffer length of a RX-descriptor may be set to maximal 1518 Bytes (Basic Ethernet) or
2048, because of the receive counter. It should be set to an even number and before using this descrip-
tor. The RX-length includes the CRC-field (4 Bytes), so the CPU needs to subtract by itself.
If the RX-length was exceeded (e.g. length was set to 512 Bytes, but a packet with 1024 Bytes was re-
ceived) the status flag OvMax (in the RX-descriptor’s status register) will be set. The odd data won’t be
written to the RAM, but the MAC performs a CRC control and sets the CRC-Error bit if necessary.
The application needs to pay attention on the TX-packet-length. In case of Tx Frame Length shorter than
60 Bytes, the MAC sends an invalid frame with the set length. Thus, the application must set the mini-
mum length of 60 Bytes and set the padding bytes to zero.
The frame pointer (valid for TX and RX) needs to point on a word address (word alignment!).
After transmission the TX frame length is set to the sent bytes or to the byte number, when the collision
occurs (e.g. collision with the first byte => Col = 0).
The time stamp register will be set by starting the TX preamble or receiving the SOF (start of frame). The
value’s source is a free-running 32 bit counter (50MHz). When collisions are allowed the time of the last
try is recorded in the time stamp.
In the TX-descriptor status register the bits 8 and 9 (and also 11 to 15) will be set to zero, after success-
fully sending a frame. When writing on the descriptor the bit “Written” will be set. So it is possible to rec-
ognize the TX-packets end independent of the Owner bit.

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
10/37

2.2.1.2 TX/RX control/status registers

TX control/status registers (all addresses access to the same register with different functions)

Tab. 4: TX control/status registers
 Register Base + 0 Rd Read TX Status

15 14 13 12 11..8 7 6 5 4 3..0

IE - Half - Int. Pending Run - Tx Idle - Descriptor Pointer

 Register Base + 0 Wr TX Control

15 14 13 12 11..8 7 6 5 4 3..0

IE - Half - - Run - - - -

 Register Base + 2 Wr Set Bit sets Bits to one

15 14 13 12 11..8 7 6 5 4 3..0

IE - Half - - Run - - - -

 Register Base + 4 Wr Clr Bit clears Bits to zero

15 14 13 12 11..9 8 7 6 5 4 3..0

IE - Half - -
Dec

Int
Run - - - -

 Register Base + 6 Wr set TX descriptor pointer

15 14 13 … 8 7 6 5 4 3..0

- Set IPG Inter Package Gap / 20ns - - - - Descriptor Pointer

Assert “Set IPG” bit when setting the IPG Value!

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
11/37

RX control/status registers (all addresses access to the same register with different functions)

Tab. 5: RX control/status registers
 Register Base + 8 Rd Read RX Status

15 14 13 12 11..8 7 6 5 4 3..0

IE - - - Int. Pending Run - Rx idle Lost Descriptor Pointer

 Register Base + 8 Wr RX Control

15 14 13 12 11..8 7 6 5 4 3..0

IE - - - - Run - - - -

 Register Base + 10 Wr Set Bit sets bits to one

15 14 13 12 11..8 7 6 5 4 3..0

IE - - - - Run - - - -

 Register Base + 12 Wr Clear Bit clears bits to zero

15 14 13 12 11..9 8 7 6 5 4 3..0

IE - - - -
Dec

Int
Run - - Lost -

 Register Base + 14 Wr set RX descriptor pointer

15 14 13 12 11..8 7 6 5 4 3..0

- - - - - - - - - Descriptor Pointer

The Descriptor Pointer may only be set when the Run bit is set to zero!
To set the MAC into Half-Duplex-Mode the Half bit should be set to one. In this mode collisions are possi-
ble.
An interrupt (TX) occurs when the first transmission try was successful or 16 collisions happened. With
setting the Run bit to one, the transmitter and receiver are enabled.
The IE bit should be set to one to enable interrupts. When an interrupt occurs the Int Pending field will be
incremented (per interrupt). To acknowledge the interrupt, the CPU needs to access via Clear Bit and set
Dec Int. this will decrement the Interrupt Pending field. The interrupt will be set until the Int Pending field
is zero or the IE bit is cleared. This logic makes sure to not lose any interrupt or execute it twice.
After the Interrupt was acknowledged, the descriptor pointer will be set to the next descriptor, which may
be owned by the MAC (to send the packet or copy the next received frame into its buffer).
The bit Lost will be set, when a frame was received, but the Run bit was set to zero or there was no de-
scriptor for the MAC available (every Owner was zero).
The idle bits (TX and RX) are set to one, if there is no transmission or reception active.

2.2.2 Receive filters

The openMAC contains 16 different filters for filtering the incoming packets. The filter is able to compare
the first 31 Bytes after the Start of Frame Delimiter (SFD).
The filtering is done with a value and a mask and will be calculated in the following way:

Match = (rxdata[30..0] xor filterValue[30..0]) and filterMask[30..0]

When Match is zero, the packet fits to the filter; otherwise the packet will be checked with the next filter.
When the packet does not match with any given filter, the packet won’t be received by the MAC.

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
12/37

Tab. 6: filter structure

 Addr + 0 Addr + 1

 31..24 (+0) 23..16 (+1)

Ram_Base + 0x1FE Command 15

Ram_Base + 0x1FC Maske_15 [30] Wert_15 [30]

….

 Maske_15 [n] Wert_15 [n]

…..

Ram_Base + 0x3C0 Maske_15 [0] Wert_15 [0]

….

Ram_Base + 0x04E Command 1

Ram_Base + 0x04C Maske_1[30] Wert_1 [30]

….

 Maske_1 [n] Wert_1 [n]

…..

Ram_Base + 0x040 Maske_1 [0] Wert_1 [0]

Ram_Base + 0x03E Command 0

Ram_Base + 0x03C Maske_0 [30] Wert_0 [30]

….

 Maske_0 [n] Wert_0 [n]

Ram_Base + 0x002 Maske_0 [1] Wert_0 [1]

Ram_Base + 0x000 Maske_0 [0] Wert_0 [0]

The MAC is using the RMII Interface, so per Clock only two bits are transmitted. Therefore the filter needs
to be executed within 4 clocks. In one clock 4 filters will be compared with the received packet.
The processing starts after the 31st received byte with filter 0. After the first match, the filter number will
be set in the RX-descriptor (refer to Tab. 3), if there is a free RX-buffer.
It is impossible to read the filter image directly, so the CPU needs to read from the copy in the memory.
The filter is realized with a 16x32 bit RAM block. The 16 bit site is connected to the openMAC’s core and
the 32 bit site is connected to interpretation logic.
When the received message fits to the filter the command register (refer to Tab. 7) will be interpreted.

Tab. 7: filter command register (0…15)

7 6 5 4 3..0

Tx_Enable Filter On - - Tx Desc. #

Filter On is set to 1, if the filter value and mask is valid.

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
13/37

When the filter’s Tx_Enable bit is set, the packet of the descriptor (Tx Desc. #, bit 3 to 0) will be sent im-
mediately, when its owner bit (refer to Tab. 2) is set to one (MAC is the owner); otherwise there won’t be
a transmission.
Examples:
When the filter should pass through broadcasts, the first six bytes need to be 0xFF of the filter-value and
mask.
When all filter-mask bytes are set to 0x00 and the Filter On bit is set, then the filter will pass through all
received packets to the MAC. If this filter is the first entry, all packets will be executed.

2.2.3 Timing

The openMAC has one slave-interface that is connected to the internal DPRs (filter and descriptors) and
to the control/status registers. The Mac’s DMA (direct memory access) has access over a simple master-
interface. It is crucial to consider the following timing requirements!
The following figures were taken with Altera Quartus II Signal Tap and edited afterwards. X stands for
don’t care or invalid!

2.2.3.1 Slave interface

When reading from openMAC the output data is valid after one cycle (refer to Fig. 2).
When performing a write instruction all signals (address, data, write, byte enable) can be asserted syn-
chronously with Sel_Ram/Sel_Cont (refer to Fig. 3).

Fig. 2: read from openMAC
*) second read: one cycle S_Dout is data from last read

Fig. 3: write to openMAC

CAUTION:
The write cycle’s length should be only one clock, otherwise more IRQs (refer to Tab. 4 and Tab. 5
– “dec Int”) will be acknowledged within one write instruction!

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
14/37

2.2.3.2 Master interface (DMA)

The DMA starts the access with asserting the Dma_Req signal, Dma_Rw (Read = 1, Write = 0),
Dma_Addr (word addresses!) and Dma_Dout (Write access). This condition is held until the Dma_Ack
signal is set.
When the DMA performs read commands (send packet) the data (Dma_Din) should be valid one cycle af-
ter Dma_Ack was set. So, Dma_Ack should be asserted only one cycle. Please refer to Fig. 4!
In case of DMA write accesses (receive packet) the data (Dma_Dout) is valid when the Dma_Req signal
is set. The data is held until the next DMA Request follows. Please refer to Fig. 5!
If using the Mac in half-duplex mode, every 8th cycle (50MHz) will be a new DMA write/read access (the
first DMA Read Request starts earlier – therefore it is longer). If the Mac is set to full-duplex mode, every
4th cycle a new request starts when simultaneous read and write is necessary (send packet and receive
packet at the same time).

Fig. 4: DMA read access

Fig. 5: DMA write access
*) out data valid till next Dma_Req

2.2.4 Port/generic map

Tab. 8: generic map openMAC

Generic Description

HighAdr The highest address bit in the Dma_Addr vector.

Note: The DMA can only address 1GB, because in case of Auto Response Packets the 30th and 31st bits will be

masked alternately with zero or one (refer to 3.2.5.2).

Timer Enables the internal Mac Timer for using time stamp feature, time-dependent IRQ generation, timer-triggered

TX (TxSyncOn) and auto-response delay (TxDel)

TxSyncOn Enables the time-triggered packet transmission (HAL: omethStartTime)

Caution: needs the Timer!

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
15/37

TxDel Enables to adjust the IPG of auto-response packets (adjustable for every filter)

Caution: needs the Timer!

Simulate Is necessary to simulate the openMAC

Tab. 9: port map openMAC

Port Description

nRes Low active synchronous reset signal

Clk The Clock signal for the MAC. Must be 50MHz (±25ppm) and synchronous to the Phys RefClk.

S_nWr Low active write signal

Sel_Ram Selects the filter and descriptor memory range (DPR)

Sel_Cont Selects the Mac’s status and control registers for TX and RX

S_nBe Low active Byte Enable vector. S_nBe(1) = 0 selects s_Din(16 downto 8)

S_Adr Word address

S_Din In data

S_Dout Out data

nTx_Int Low active TX interrupt. Is ‘1’ as long as no IRQ is pending.

nRx_Int Low active RX interrupt. Is ‘1’ as long as no IRQ is pending.

nTx_BegInt Not yet supported.

Dma_Req DMA access request signal

Dma_Rw Read DMA access (TX packet) when signal is ‘1’. Otherwise Write access (RX packet)

Dma_Ack DMA acknowledge signal

Dma_Addr DMA address vector

Dma_Dout DMA out data

Dma_Din DMA in data

rRx_Dat RMII receive half-nibble

rCrs_Dv RMII Carrier Sense / Data Valid

rTx_Dat RMII transmit half-nibble

rTx_En RMII Transmit Enable

Hub_Rx Connected to the openHub (2.4) to detect the hub port of the RX packet

Mac_Zeit Outputs the free running 32bit MAC Timer

2.3 Phy management core

The Physical Interface (Phy) is identified, configured and controlled with SMI (serial management inter-
face, IEEE 802.3). It is possible to address 32 different Phys.

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
16/37

2.3.1 Serial management interface (SMI)

The transmission is done over a two-wire-connection with a clock wire and a pull-up data line. So every
Phy’s SMI can be connected to one line (Attention: Phys’ Hardware Address must be different to each
other!). The data exchange starts with 32 bits preamble (PRE) and two start bits (ST). The operation code
(OP) decides a write or read command. The next 10 bits includes the (unique) Phy’s address (PHYAD)
and the register address (REGAD). After that, there are two bits for turn around (TA) and then the date
will be transmitted (16 bit, MSBit first).

Fig. 6: Serial Management Interface

To get further information about the SMI protocol, please refer to
http://www.smsc.com/main/anpdf/an79.pdf.

2.3.2 Interface

Before the Core writes data to the Phy, the data register, the Phy Address and Register Number need to
be set to the desired values. To start a transmission set the control register to the value 0x5002 (write
command) or 0x6000 (read command), masked with Phy Address and Register Number.

e.g. send to Phy 0x15 (1 0101bin) Mii-Register 0x01 (0 0001bin): 0x5002 OR 0x0A84 = 0x5A86

Tab. 10: Mii-core status registers (RegBase + 0) (r ead)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - nRst - - - - - - Busy

nRst … the Reset-Signal state (0 … reset)
Busy … If a transmission (SMI) is active, the Busy flag is 1.

Tab. 11: Mii-core control registers (RegBase + 0) (write)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1
01 Write

10 Read
Phy Address [4..0] Register Number [4..0]

1 Write

0 Read
0

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
17/37

Tab. 12: Mii-core data register (RegBase + 2) (read /write)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MII Read /Write Data [15..0]

Tab. 13: Mii-core reset command register (RegBase + 4) (write)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - nRst - - - - - - -

nRst … Controls the nReset pin of the Phy(s) (0 … reset, 1 … active)

2.3.3 Timing

The Mii Core’s slave interface has the same timing requirements like the openMAC’s slave interface (re-
fer to 2.2.3.1).

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
18/37

2.3.4 Port map

Tab. 14: port map Mii-core

Port Description

Clk 50MHz Clock signal

nRst Low active synchronous reset

Addr Word address

Sel Select signal

nBe Low active Byte Enable vector. nBe(1) = 0 selects Data_In(16 downto 8)

nWr Low active write signal

Data_In Data in

Data_Out Data out

Mii_Clk Clock signal to the Phys’ serial management interface

Mii_Di Input signal from the Phys’ serial management interface

Mii_Do Output signal to the Phys’ serial management interface

Mii_Doe Output enable signal for tri-state buffer (‘0’ = output, ‘1’ = input)

nResetOut Low active reset signal to Phys

2.4 OpenHUB

The openHUB can be used to connect the openMAC to more than one Ethernet port (Phy). The ports
nRst and Clk can be connected to the Phy’s RMII Reference Clk (50MHz) and Reset.
The Generic Value “Ports” needs to be set to the number of needed ports. Its default and minimum value
is 3, values like 0 or 1 are useless.
The following ports need to be connected to the Phys / MAC:
RxDv, RxDat0, RxDat1, TxEn, TxDat0 and TxDat1
The following ports can be left open
internPort ... Sets the port connected to the MAC. Default value is 1
TransmitMask ... Can enable / disable the associated port by one / zero. Its default value is all ones.
ReceivePort ... Outputs the active port (0 = inactive Hub, 1...n = Ports)
The openHUB + openFILTER create the following delays: Mac to Phys = 3 Cycles // Phys to Mac = 12
Cycles

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
19/37

2.4.1 Port/generic map

Tab. 15: generic map openHUB

Generic Description

Ports Sets the amount of hub-ports. Should be 3 in case of a 2-port-hub (one port is reserved for Mac)

Tab. 16: port map openHUB

Port Description

nRst Low active synchronous reset

Clk 50MHz RMII Clock

RxDv RMII Carrier Sense / Data Valid from every Port

RxDat0/1 RMII RX Data from every Port

TxEn RMII TX Enable to every Port

TxDat0/1 RMII TX Data to every Port

internPort Should be set to the port connected to the Mac

TransmitMask Enable/disable the Hub’s ports (‘1’ = enabled, ‘0’ = disabled)

ReceivePort Outputs the port number of the currently received packet (0 = idle)

Connect this signal to the Mac’s Hub_Rx Port (convert to std_logic_vector!)

openMAC & Components
Documentation IP-Cores

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
20/37

2.5 OpenFILTER

The openFILTER core is used to avoid invalid Crs_Dv signals propagating to the MAC. If only one Phy is
used, openFILTER has to be inserted between MAC and Phy. If two Phys are connected to the MAC via
the openHUB, every Phy should be equipped with openFILTER. This approach prevents distortion propa-
gation across the whole network.
The signals nRst and Clk should be connected to the RMII Ref_Clk and Rst. The nCheckShortFrames
signal is low active.

Important:
The openFILTER is an optional (but recommended) add ition to openMAC. However, please don’t
confuse openFILTER with the packet filter functiona lity (2.2.2) of openMAC. OpenFILTER does not
observes the content of Ethernet packets!

2.5.1 Port map

Tab. 17: port map openFILTER

Port Description

nRst Low active synchronous reset

Clk 50MHz RMII Clk

nCheckShortFrames Low active control signal. Set to ‘0’

RxDvIn RMII Receive Carrier Sense / Data Valid (from Phy or Hub)

RxDatIn RMII Receive Data (from Phy or Hub)

RxDvOut RMII Receive Carrier Sense / Data Valid (to Mac)

RxDatOut RMII Receive Data (to Mac)

TxEnIn RMII Transmit Enable (from Mac)

TxDatIn RMII Transmit Data (from Mac)

TxEnOut RMII Transmit Enable (to Phy or Hub)

TxDatOut RMII Transmit Data (to Phy or Hub)

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
21/37

3 HAL Ethernet driver
The HAL driver (=Hardware Abstraction Layer) controls the openMAC- and Mii Core, and can be used for
every Ethernet application (TCP/IP, EPL, raw Ethernet …). In Fig. 7: block diagram, example for HAL us-
age you can see how the HAL driver can be included into an application (also have a look into chapter 4 -
Application note).

Fig. 7: block diagram, example for HAL usage

3.1 Features

3.1.1 Time stamp

For each received and sent packet a 32 Bit / 20ns timestamp is generated.

3.1.2 Packet filters

The MAC supports 16 packet filters with 31 byte filter and 31 byte mask for each filter.

The filters can be used to…

• determine the type of received frames (like the address-filter on conventional MACs)

Communication Stack (e.g. EPL)

openMAC

PHY

Mii

HAL Driver

TX RX
control

IR

hoo
k hoo

k hoo
k hoo

k

RX TX

PHY

openHUB

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
22/37

• transmit a dedicated packet directly after receiving a packet with defined format (with the defined
inter-frame gap of 960 ns)

• transmit a packet from the transmit queue directly after a packet with defined format

Tab. 18: filter example

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 30

Mask 00 00 00 00 00 00 00 00 00 00 00 00 FF FF FF 00 ... 00

Value Xx xx xx xx xx xx xx xx xx xx xx xx 88 AB 01 xx ... xx

Offset 12/13 = 0x88AB … Ethertype = EPL V2
Offset 14 = 0x01 … Message ID = Start Of Cyclic

Each incoming packet will be compared with all 16 filters (In the order as the filters were installed by the
application).
Only the bits will be compared where the respective mask bit is set. If a matching filter was found, a spe-
cific action will be performed.

3.1.3 Auto response

Triggered by a defined incoming packet the MAC can automatically transmit a packet after the minimum
frame gap of 960 ns.
This gives a constant and very short response time to EPL frames which require an immediate response
(PollRequest, IdentRequest, …)

Poll Request

Poll Response

IRQ

t960 ns + Phy delay
IRQ latency time (does not affect the response time)

MAC Rx

MAC Tx

CPU

Fig. 8: auto response

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
23/37

3.2 Ethernet driver

3.2.1 Files

Tab. 19: HAL Ethernet driver files

File Description

omethLib.c Driver Functions (not to be changed by the user)

omethLib.h Defines and Declarations (not to be changed by the user)

omethLib_target.h Target specific defines

OMETH_HW_MODE

Defines the type of the used CPU, mode 0/1 are general modes for big/little endian systems

OMETH_MAKE_NONCACHABLE(ptr)

Defines a function to make a pointer ‘non-cacheable’. The file omethLib.c will use the defined func-

tion for non-cacheable access to the FPGA registers and to the receive packets.

If the CPU has no data cache no function has to be defined:

#define OMETH_MAKE_NONCACHABLE(ptr) (ptr)

!! Attention !!

Transmit packets are managed by the user. Therefore the user has to make sure that packets

passed to a transmit function are non-cacheable.

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
24/37

3.2.2 IRQ subroutines

The user has to connect the Ethernet driver to the IRQ system of the CPU. Generally the RX IRQ should
have the higher priority than the TX IRQ. Every received packet that matches a filter generates a RX in-
terrupt!
Every transmitted packet (sent with omethTransmit & Co or auto response) generates a TX interrupt! If
the TxIrqHandler is executing an “auto response” occurred interrupt, the user’s free function won’t be
called . If the TxIrqHandler is executing an “user sent” occurred interrupt (sent with omethTransmit & Co)
the user’s free function is called .

Tab. 20: IRQ handlers

omethRxIrqHandler

omethTxIrqHandler

To be used if the IRQ is generated by only 1 MAC and the used system is able to pass an

user argument to the IRQ routine.

As argument the handle to the driver instance (returned by omethCreate) has to be passed to

the IRQ routine.

omethRxIrqHandlerMux

omethTxIrqHandlerMux

To be used if the IRQ is generated by more than 1 MAC or the system does not support

arguments to IRQ subroutines.

omethRxTxIrqHandler Has to be used if one IRQ is used for RX and TX.

As argument the handle to the driver instance (returned by omethCreate) has to be passed to

the IRQ routine. Furthermore the priority (sequence of execution) has to be set.

3.2.3 Basic API functions

At least this set of basic API functions is required to receive and transmit frames on the Ethernet inter-
face. To implement Ethernet Powerlink also the extended API functions are required.

3.2.3.1 omethMiiControl

Function to activate or reset the Ethernet Phys.
(Per default the Phy nReset pin is 0 … Phys are in reset state)
Before initializing the Ethernet driver (omethCreate) the application has to make sure the used Phys are
active and available. Depending on the type of Phy after activation it may take some time until the Mii in-
terface of the Phys is ready. This delay must be implemented by the user.

3.2.3.2 omethInit

The function has to be called at start up of the system. All driver internal variables and instance refer-
ences will be cleared.
(The function will not ‘free’ any previously allocated resources)

3.2.3.3 omethCreate

omethCreate initializes an Ethernet driver instance.
The parameters are passed by a structure which will be copied to internal memory (the same structure
can be used to initialize other instances later) – refer to Tab. 21.

Tab. 21: instance configuration type „ometh_config_ typ“

Element Description / Value

macType OMETH_MAC_TYPE_01

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
25/37

Mode Combination of

OMETH_MODE_HALFDUPLEX

OMETH_MODE_FULLDUPLEX

OMETH_MODE_100

OMETH_MODE_DIS_AUTO_NEG

OMETH_MODE_PHY_LIST

(enables the elements phyCount and phyList)

OMETH_MODE_SET_RES_IPG

Adapter The user defines the adapter number for the Ethernet interface. Each instance has to be initialized

with an unique number.

pRamBase Pointer to MAC Descriptor/Filter Registers

pRegBase Pointer to MAC Control Registers

pBufBase Pointer to MAC internal packet buffer (on-chip memory)

rxBuffers Number of used RX buffers (up to 16)

rxMtu Maximum MTU of incoming packets. Packets exceeding this size will be discarded.

Maximum Packet Size = MTU + 18 (DstMAC, SrcMAC, Ethertype, CRC)

pPhyBase Pointer to phy management port:

All phys on this port are assigned to this driver instance, except the element mode contains

OMETH_MODE_PHY_LIST, in this case only the listed phys will be assigned to this instance.

This dedicated phyList is required if the same pPhyBase is used for phys which do not belong to this

driver instance.

phyCount Only valid if mode contains OMETH_MODE_PHY_LIST:

Number of valid entries in phyList

phyList Only valid if mode contains OMETH_MODE_PHY_LIST:

Array with up to 8 phy addresses of the phys which are assigned to this driver instance.

responseIpg Inter Package Gap (available when mode contains OMETH_MODE_SET_RES_IPG):

This value changes the Mac’s IPG and should be given in [ns]. Values lower than 140ns will result in

IPG = 140ns

For each used RX buffer a packet will be allocated. The next incoming frame matching one of the in-
stalled filters will be stored to the next free packet in the queue.

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Fig. 9: receive queue after omethCreate with rxBuff ers=4

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
26/37

3.2.3.4 omethHookCreate

To be able to receive packets the user has to create hooks (call backs) which will be called by the IRQ
subroutine.
If ‘maxPending=0’ the hook is not allowed to queue the received packet. The processing of the packet
data has to be done directly in the hook. After terminating the hook function the received packet will be
passed back to the receive queue.
If ‘maxPending > 0’ the hook allocates its own pool of packets.
When receiving a packet which belongs to the hook the IRQ subroutine will pass the packet to the hook
function.
The hook function can decide whether it wants to queue the packet (return 0) or do pass the packet di-
rectly back to the receive queue (return -1).
If the hook has queued the packet the next free packet of the hook’s packet pool will be used to replace
the current descriptor in the receive queue (Because all descriptors of the receive queue have to be
linked to free packets at all time!)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free)

Rx Hook

Packet P6 (free)

hookFct
{
….

}

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P1 (free)

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free)

Rx Hook

Packet P6 (free)

hookFct
{
….

}

Fig. 10: buffers after omethHookCreate(…, &hookFct, 2)

The following example shows what happens if a packet for this RX hook is received and the hook function
has been queued the packet:

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct
{
….

}

IRQ subroutine calls hookFct() which
queues the packet for the background task

Background Task

Packet P1 (in use)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct
{
….

}

IRQ subroutine calls hookFct() which
queues the packet for the background task

Background Task

Packet P1 (in use)

Fig. 11: buffers after a packet was queued by the b ackground task

If the RX hook does not have free packets anymore the hook function will not be passed to the back-
ground task, the packet remains in the RX descriptor for the next received packet.
This ensures that the RX queue is always complete.
Even if the background task of one hook does not free the packets (because of an application error or be-
cause of leak of CPU performance) the other hooks still will get packets.
After processing the packet the background task has to free the packet (pass back to hook).

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
27/37

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct
{
….

}

IRQ subroutine calls hookFct() which
queues the packet for the background task

Background Task

Packet P1 (free)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct
{
….

}

IRQ subroutine calls hookFct() which
queues the packet for the background task

Background Task

Packet P1 (free)

Fig. 12: buffers after a background task has proces sed packet

3.2.3.5 omethFilterCreate

A hook can receive packets matching one ore more packet filters. With omethFilterCreate the user has to
define these filters.
The parameter ‘arg’ will be passed to the hook to allow a efficient demultiplexing if more than 1 filters are
linked to the same hook.

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct(arg , …)
{
….

}Packet P1 (free)

Filter 1 (arg = x)

Filter 2 (arg = y)

Filter 3 (arg = z)

Rx Desc. 0

Rx Desc. 2

Rx Desc. 3

Rx Desc. 1

not used

Packet P2 (free)

Packet P3 (free)

Packet P4 (free)

Packet P5 (free) Rx Hook

Packet P6 (free)

hookFct(arg , …)
{
….

}Packet P1 (free)

Filter 1 (arg = x)

Filter 2 (arg = y)

Filter 3 (arg = z)

Fig. 13: filters and hooks

3.2.3.6 omethTransmit

Transmits a packet to the send queue of the MAC. The packet will be sent as soon as possible to the net-
work.
The user has to pass a function pointer to a free-function. A packet which was passed to the send queue
must not be changed until the driver has released the packet by calling the free-function.
!! Attention !!
If the CPU uses data cache the application has to make sure the packet is really transferred to the mem-
ory before calling omethTransmit.

3.2.3.7 omethStart

Start Ethernet driver. (Make sure the IRQ system is initialized before starting)

3.2.3.8 omethStop

Stop Ethernet driver.

3.2.3.9 omethPeriodic

The function must be called by the user cyclically.
It does the update of the PHY-Register image (see 3.2.6.2) and controls the Full/Half duplex mode of the
MAC depending on the connected communication partner.
Every call the function will retrieve maximum 1 phy register.
Example:
The function is called every 5 ms on a system with 2 interfaces and 4 Phys on each interface.
Total Phy ports : 8
Total Phy registers : 64 (the first 8 registers of each phy will be read)
The update cycle of the function omethPeriodic will be 5ms x 64 = 320 ms

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
28/37

3.2.3.10 omethDestroy

Stops the Ethernet driver and releases all allocated resources. Also resources allocated with
omethHookCreate, omethFilterCreate, … will be released.
After omethDestroy the interface can be initialized again with omethCreate

3.2.4 Filter manipulation

3.2.4.1 omethFilterSetPattern

Change filter pattern (mask and value) of an filter created with omethFilterCreate.

3.2.4.2 omethFilterSetArgument

Change the hook argument for an filter created with omethFilterCreate.

3.2.5 Auto response functionality

The following functions are required to handle the openMAC auto response feature.

3.2.5.1 omethResponseInit

The function has to be called before omethStart and prepares a defined filter entry for auto response
frames.
The response frame will be finally activated at the first call of omethResponseSet.

3.2.5.2 omethResponseSet

Passes a packet to the Ethernet driver which will be sent to the network if a received frame matches the
given filter.
After passing the packet to the driver, the packet has to be considered as ‘locked’, the user is not allowed
to change it until the driver passes the packet back to the user.
The return value can have the following values:

• OMETH_INVALID_PACKET : An error occurred (invalid filter passed, invalid packet passed)
• 0 : Function call successful
• > 0 : The driver passes a packet back to the user, the packet can be reused

The packet pointer will be masked alternately with 0x80000000, 0x40000000 or 0x00000000. So, the TX
packets should be located in memory space e.g. 0x00000000 - 0x3FFFFFFF!

3.2.5.3 omethResponseDisable

Disables the auto response feature. The user can continue passing packets to the driver with
omethResponseSet and will still get call backs on the given filter, only the frame transmission is disabled.

3.2.5.4 omethResponseEnable

Enable the auto response feature. The last packet passed with omethResponseSet will be activated for
auto response.

3.2.6 Other API functions

3.2.6.1 omethGetHandler

Retrieves the instance handle of an interface created with omethCreate based on the given adapter num-
ber.

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
29/37

3.2.6.2 omethPhyInfo

Retrieves the pointer to a PHY-Register image of the driver instance.

3.2.6.3 omethHookSetFunction

Change the call back function of a receive hook.

3.2.6.4 omethGetTimestamp

Get timestamp of a received packet (Resolution: 20ns)

3.2.6.5 omethGetTxBufBase

This function returns the MAC-internal TX buffer base address.

3.2.6.6 omethGetRxBufBase

This function returns the MAC-internal RX buffer base address.

3.2.6.7 omethStatistics

Retrieve the pointer to the statistics structure of the driver instance.

3.2.6.8 omethSetSCNM

Sets the SCNM (Slot Communication Network Mode).
By default all frames sent with omethTransmit will be sent to the network as soon as possible. The MAC
runs in collision mode, if collisions occur the MAC will repeat the packet.
The parameter hFilter can have the following values:

• 0: The MAC is set to collision mode (default mode after omethCreate)
• valid filter handle: The MAC will send packets passed with omethTransmit only after an incoming

frame matches the given filter. In case of collisions the MAC will NOT retry the transmission.
• OMETH_INVALID_FILTER: The send queue is disabled, packets passed with omethTransmit will

be queued but will not be sent to the network.

openMAC & Components
Documentation HAL Ethernet driver

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
30/37

3.2.7 Ethernet packet structure

The Ethernet packets for (to transmit to the network) and from the openMAC (to receive from the network)
have a structure defined in the omethlib.h file (ometh_packet_typ). It is recommended to use this type to
build Ethernet frames in your application. Before sending the packet with omethTransmit or setting an
auto-response frame with omethResponseSet, the length member need to be set to the Ethernet frame’s
length excluding the CRC field!

Tab. 22: Ethernet packet struct

Member Description

length (4 bytes) The packets length without the checksum in bytes.

e.g. smallest Ethernet packet with crc is 64 bytes

=> set length to 60 bytes

dstMac (6 bytes) destination MAC address

srcMac (6 bytes) source MAC address

Ethertype (2 bytes) Ethernet type / length field

minData (min. 46 bytes) data field – the minimum length is 46 bytes (header is 14 bytes)

checkSum (4 bytes) packet’s checksum field

Don’t care this field; the MAC does it for the application.

//********** packet structure for ethernet frames ***********************
typedef struct
{
 unsigned long length; // frame length excluding checksum

 struct ometh_packet_data_typ
 {
 unsigned char dstMac[6];
 unsigned char srcMac[6];
 unsigned char ethertype[2];
 unsigned char minData[46]; // minimum number of data bytes for a standard EthFrame
 unsigned char checkSum[4];
 }data;
}ometh_packet_typ;

openMAC & Components
Documentation Application note

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
31/37

4 Application note
In order to show how the openMAC and its components (Hub, Filter, Drivers …) are used in an open-
Powerlink Controlled Node (Powerlink Slave), this chapter was inserted. It is recommended to follow this
reference to achieve high performance, because of very low response delays when using the openMAC.
For this reason the best way is to add a second CPU which processes application data and leave one
CPU for running the openPowerlink communication-stack. In Fig. 14 a generic design is shown of a “Two-
Processor System” using the openMAC (incl. openFILTER, openHUB …) as an interface to the Powerlink
network. The “Communication” CPU is used to control the MAC and execute the whole openPowerlink
Stack. Information can be exchanged through an interface (e.g. SPI, DPR, PCI, Mailbox, Mutex …). Sen-
sors, actuators and other I/Os can be connected to the second CPU to complete a Powerlink Controlled
Node.

4.1 FPGA design with two soft-core CPUs

If an FPGA (Field Programmable Gate Array) is used it is possible to integrate a Two-Processor System
into one chip to save circuit board area. Chip manufacturer (like Altera and Xilinx) provide Tool Chains
which can handle easily Multi-Processor applications.
The openMAC was designed to save area and chip resources, but the actual requirement depends on the
application! Refer to Fig. 15 – the “Communication” and “Application” CPU can be e.g. Nios II (Altera),
Microblaze (Xilinx) or any other soft-core processor.

4.2 FPGA for communication tasks only

If it is not possible to integrate the whole application into one chip, an external µprocessor/controller can
be connected to the FPGA including the “Communication” soft-core processor and openMAC. Refer to
Fig. 16.

openMAC & Components
Documentation Application note

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
32/37

Fig. 14: generic design approach

POWERLINK NETWORK

Application CPU

Communication CPU
• openPowerlink Stack

• openMAC HAL driver

open-
MAC

Interface e.g. SPI, DPR
…

Other I/Os Actuators Sensors

openHUB

A
pp

lic
at

io
n

se
ct

io
n

C
om

m
un

ic
at

io
n

se
ct

io
n

openMAC & Components
Documentation Application note

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
33/37

Fig. 15: FPGA design with two soft-core processors

POWERLINK NETWORK

FPGA

Application
CPU

Communica-
tion CPU

Other I/Os Actuators Sensors

Interface e.g. SPI, DPR
…

PHY PHY

openHUB

openMAC

openMAC & Components
Documentation Application note

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
34/37

Fig. 16: FPGA design for communication tasks only

POWERLINK NETWORK

FPGA

Application CPU
µP/C, DSP …

Interface e.g. SPI, DPR
…

Other I/Os Actuators Sensors

PHY PHY

openHUB

openMAC

Communicati-
on CPU

openMAC & Components
Documentation Figure Index

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
35/37

5 Figure Index
Fig. 1: Block diagram openMAC..6
Fig. 2: read from openMAC ...13
Fig. 3: write to openMAC ...13
Fig. 4: DMA read access ...14
Fig. 5: DMA write access...14
Fig. 6: Serial Management Interface ...16
Fig. 7: block diagram, example for HAL usage ...21
Fig. 8: auto response...22
Fig. 9: receive queue after omethCreate with rxBuffers=4..25
Fig. 10: buffers after omethHookCreate(…, &hookFct, 2)...26
Fig. 11: buffers after a packet was queued by the background task...26
Fig. 12: buffers after a background task has processed packet..27
Fig. 13: filters and hooks ...27
Fig. 14: generic design approach ..32
Fig. 15: FPGA design with two soft-core processors ..33
Fig. 16: FPGA design for communication tasks only...34

openMAC & Components
Documentation Table Index

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
36/37

6 Table Index
Tab. 1: DPR TX- and RX-descriptor block ..8
Tab. 2: TX-descriptor status register ...8
Tab. 3: RX-descriptor status register...8
Tab. 4: TX control/status registers...10
Tab. 5: RX control/status registers ..11
Tab. 6: filter structure...12
Tab. 7: filter command register (0…15)...12
Tab. 8: generic map openMAC..14
Tab. 9: port map openMAC ...15
Tab. 10: Mii-core status registers (RegBase + 0) (read) ...16
Tab. 11: Mii-core control registers (RegBase + 0) (write) ...16
Tab. 12: Mii-core data register (RegBase + 2) (read/write)...17
Tab. 13: Mii-core reset command register (RegBase + 4) (write) ...17
Tab. 14: port map Mii-core ..18
Tab. 15: generic map openHUB..19
Tab. 16: port map openHUB..19
Tab. 17: port map openFILTER...20
Tab. 18: filter example ...22
Tab. 19: HAL Ethernet driver files ...23
Tab. 20: IRQ handlers ...24
Tab. 21: instance configuration type „ometh_config_typ“ ...24
Tab. 22: Ethernet packet struct ...30

openMAC & Components
Documentation Index

Copyright © B&R - Subject to change without notice
docu_OpenMAC.doc

September 7, 2011
37/37

7 Index

F
Features..7
Figure Index..35

L
License..2
Listing Index..37

O
OpenFILTER...20
OpenHUB ...18
OpenMAC ...7

Auto Response..22
Control/Status register10

Descriptor ... 7
Ethernet packet structure 30
Filter Example .. 22
HAL Driver.. 21
Hook ... 25, 26, 27
Port/generics .. 14
Receive filters... 11
Timing... 13

T
Table Index .. 36
Table of Contents... 3

V
Versions ... 2

