

We reserve the right to change the content of this manual without prior notice. The information contained
herein is believed to be accurate as of the date of publication, however, B&R makes no warranty, expressed
or implied, with regards to the products or the documentation contained within this document. B&R shall not
be liable in the event if incidental or consequential damages in connection with or arising from the furnishing,
performance or use of these products. The software names, hardware names and trademarks used in this
document are registered by the respective companies.

Copyright © B&R – Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
1/46

POWERLINK IP-Core
Generic Documentation

Date: July 30, 2012

Project Number: AT-B0-000002

POWERLINK IP-Core
Generic Documentation

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
2/46

I Versions

 Version Date Comment Edited by

 0.1 Jul 30, 2012 First Edition Joerg Zelenka

 0.2 Dec 7, 2010 Added Asynchronous 8/16bit Parallel Interface
Added openMAC IP-core
Added feature to SPI
Added system description information
Omit PDO Descriptors

Zelenka Joerg

 0.3 Jan 10, 2011 Extend documentation of openMAC

Added wake up functionality

Zelenka Joerg

 0.4 Mar 21, 2011 Extend documentation of openMAC Internal Bus Memory Mapped
Master

Zelenka Joerg

 0.5 May 6, 2011 Changes in 8/16bit Parallel interface Zelenka Joerg

 0.6 Aug 1, 2011 Added setup/hold time for 8/16bit Parallel interface Zelenka Joerg

 0.7 Sep 7, 2011 Revised openMAC section (renamed to openMAC Ethernet)

Added description of new Internal Bus Memory Mapped Master

Zelenka Joerg

 0.8 Nov 21, 2011 Added Time Synchronization feature

Added PDI Interface definition

Zelenka Joerg

 0.9 Nov 29, 2011 Added openMAC DMA observer feature Zelenka Joerg

 1.0 Dec 14, 2011 Revised documentation

Converted to official POWERLINK IP-Core Generic Documentation

Zelenka Joerg

 1.1 Dec 20, 2011 Changed double buffer switch Zelenka Joerg

 1.2 Jan 11, 2012 Changed MAC Cmp register layout Mair Thomas

 1.3 Jul 30, 2012 Revised 8/16bit Parallel interface timing Zelenka Joerg

Table 1: Versions

II Safety Notices

Safety notices in this document are organized as follows:

 Safety notice Description

 Danger! Disregarding the safety regulations and guidelines can be life-threatening.

 Warning! Disregarding the safety regulations and guidelines can result in severe injury or heavy damage to mate-
rial.

 Caution! Disregarding the safety regulations and guidelines can result in injury or damage to material.

 Information: Important information used to prevent errors.

 Example: Functionality is described with an example to prevent errors.

Table 2: Safety notices

POWERLINK IP-Core
Generic Documentation

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
3/46

III Table of Contents

1 Introduction ... 5

2 Design Considerations ... 6
2.1 System Overview .. 6
2.2 System Configuration .. 7

3 IP-Core Architecture ... 9
3.1 POWERLINK... 9

3.1.1 Clock Sinks ... 9
3.2 OpenMAC Ethernet ... 9

3.2.1 MAC (openMAC) ... 10
3.2.1.1 DPR... 11
3.2.1.2 RX Packet Filter .. 11
3.2.1.3 Auto-Response Ability ... 12
3.2.1.4 Timer ... 12
3.2.1.5 DMA .. 13
3.2.1.5.1 Observer .. 13

3.2.2 Packet Buffer (BUF) .. 14
3.2.3 Internal Bus Memory Mapped Master (MAC_DMA) .. 14

3.2.3.1 Architecture Design ... 14
3.2.3.2 Performance Consideration ... 16

3.2.4 HUB (openHUB) ... 16
3.2.5 Anti-Distortion-Filter (openFILTER) ... 16
3.2.6 Phy Management (openMAC MII) ... 17

3.3 Process Data Interface ... 17
3.3.1 SYNC IRQ Generator.. 18
3.3.2 Synchronizer ... 19
3.3.3 Triple Buffer Logic ... 20
3.3.4 Time Synchronization.. 22

3.4 Asynchronous 8/16bit Parallel Interface ... 22
3.4.1 General Description .. 23
3.4.2 Timing Specification .. 24

3.5 SPI .. 25
3.5.1 Communication Protocol ... 26
3.5.2 Finite State Machine (FSM) .. 29
3.5.3 Wake Up ... 30

3.6 I/O Port .. 30

4 Interface Definition ... 31
4.1 POWERLINK... 31
4.2 OpenMAC ... 31

4.2.1 MAC Timer Compare Register (CMP)... 32
4.2.2 MAC Register (REG)... 33

4.2.2.1 openMAC IRQ table .. 33
4.2.2.2 openMAC DMA Observer .. 33

4.2.3 MAC Buffer (BUF) ... 34
4.3 Process Data Interface (PDI PCP/AP) .. 34

4.3.1 Control and Status Register .. 34
4.3.1.1 Magic Number Register (MAGIC) ... 35
4.3.1.2 FPGA Revision Register (FPGA_REV) ... 35
4.3.1.3 Embedded Memory Block (DPRAM) ... 35
4.3.1.4 Double-Buffered Embedded Memory Block for Time Synchronization (2x DPRAM TIME_SYNC) 35
4.3.1.5 Time After Synchronization Interrupt (TIME_AFTER_SYNC) ... 36
4.3.1.6 Control Register of Asynchronous IR Signal (ASYNC_IRQ_CTRL) .. 36
4.3.1.7 Event Acknowledge (EVENT_ACK) .. 36
4.3.1.8 Transmit PDO Message Buffer Size Register (TXPDO_ BUF_SIZE).. 36

POWERLINK IP-Core
Generic Documentation

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
4/46

4.3.1.9 Transmit PDO Message Buffer Address Register (TXPDO_ BUF_ADRS) ... 36
4.3.1.10 Receive PDO Message Buffer Size Register (RXPDOi_ BUF_SIZE) ... 37
4.3.1.11 Receive PDO Message Buffer Address Register (RXPDOi_BUF_ADRS) .. 37
4.3.1.12 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF1_SIZE) 37
4.3.1.13 Asynchronous Message Transmit Buffer Address Register (ASYNC_TX_BUF1_ADRS) 37
4.3.1.14 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF1_SIZE) 37
4.3.1.15 Asynchronous Message Receive Buffer Address Register (ASYNC_RX_BUF1_ADRS)...................... 37
4.3.1.16 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF2_SIZE) 38
4.3.1.17 Asynchronous Message Transmit Buffer Address Register (ASYNC_TX_BUF2_ADRS) 38
4.3.1.18 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF2_SIZE) 38
4.3.1.19 Asynchronous Message Receive Buffer Address Register (ASYNC_RX_BUF2_ADRS)...................... 38
4.3.1.20 Transmit PDO Acknowledge Buffer (TXPDO_ACK) .. 38
4.3.1.21 Receive PDO Acknowledge Buffer (RXPDO_ACK) .. 38
4.3.1.22 Control Register of Synchronous IR Signal (SYNC_IRQ_CTRL) .. 39
4.3.1.23 LED Control (LED_CNTRL) .. 39
4.3.1.24 LED Configuration (LED_CNFG)... 40

4.4 I/O Port (SMP)... 40

5 Definitions and Abbreviations ... 42

6 References .. 43

7 Figure Index .. 44

8 Table Index .. 45

9 Index .. 46

POWERLINK IP-Core
Generic Documentation Introduction

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
5/46

1 Introduction

This documentation introduces the functionality of the POWERLINK IP-Core without any FPGA-vendor
specific definitions or considerations.

Please note that the generic documentation nature is indicated in the file name by the suffix
“_Generic”. If you require platform-dependent information, refer to the POWERLINK IP-Core doc-
umentation specific to the FPGA-vendors –refer to the suffix in the filename as well!

In Fig. 1 the POWERLINK IP-Core is visualized with its various configuration possibilities. The POWER-
LINK IP-Core includes the POWERLINK-specific MAC-layer components (openMAC and openHUB) and
application interface IP-cores (Direct I/O and Process Data Interface).
Note that the POWERLINK IP-Core does not include the POWERLINK Communication Processor (PCP),
as well as the Application Processor (AP), however, these can interface to the POWERLINK IP-Core via
internal bus interfaces easily.

POWERLINK IP-Core

PDI

8 / 16 bit parallel interface

SPI

Internal Bus

o
p

e
n

H
U

B RMII/MII

RMII/MII

PHY

PHY

AP
PCP

Internal Bus

Internal Bus

DIRECT

I/O
GPIOInternal Bus

openMAC RMII

Fig. 1: POWERLINK IP-Core Block Diagram

POWERLINK IP-Core
Generic Documentation Design Considerations

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
6/46

2 Design Considerations

The POWERLINK IP-core has to encapsulate all necessary components to run a POWERLINK device on
an FPGA. The POWERLINK IP-cores execute the following tasks:

 Communication over Ethernet (IEEE 802.3) with 100Mbps half-duplex

 POWERLINK specific hardware acceleration to serve highest performance (e.g. low response delay)

 Flexible network topology with two Ethernet ports

 Data interface for data exchange to application specific components

 Simple user configuration via GUI in FPGA development tools

 Sparse resources in FPGA

2.1 System Overview

The POWERLINK IP-core is built up depending on the configuration (generics). Independent of the con-
figuration case the communication part of the POWERLINK IP is the same and consists of the following
components:

 openMAC

 openHUB

 openFILTER

 DPRAM (packet buffer) or DMA (packet buffer not within the IP-core)

 Optional RMII to MII converter

Fig. 2 shows the Configuration Case using a Process Data Interface to an internal/external AP. The PDI
includes a SYNC device that is responsible for the synchronization of the AP. It can generate IRQ by
software or time-triggered by the openMAC. The last possibility is recommended for very low jitter syn-
chronization tasks.
The data exchange between PCP and AP is done via the DPRAM. This memory type allows a simultane-
ous access to the content by the PCP respectively AP. The process data is exchanged via the TripleLogic
additionally. This logic ensures that the consumer can access the most current and not locked data at the
moment. “Locked data” means that the consumer is using this virtual buffer, thus the producer may not
access.
The PCP respectively AP takes the role as consumer and producer depending on the type of process da-
ta – refer to Tab. 1.

Tab. 1: Producer/Consumer Definition

Process Data Objects Producer Consumer

RX PCP AP

TX AP PCP

Fig. 3 shows the second Configuration Case that instantiates an I/O Port device for simple I/O port appli-
cations. Beside the I/O registers – containing the input and output data – an I/O Latch is used. This allows
inputting data by a strobe respectively validating output data by a valid flag.

POWERLINK IP-Core
Generic Documentation Design Considerations

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
7/46

POWERLINK IP-core

PDICOM

openHUB

openMAC

PHY1 PHY2

openFILTER openFILTER

DPRAM

TripleLogic

DPRAM or

DMA

TripleLogic

Internal Bus to PCP

SYNC

External/Internal Interface to AP

(Avalon, SPI or 8/16bit Parallel)

Fig. 2: POWERLINK IP-core System Overview Configuration Case 1

POWERLINK IP-core

PORTIOCOM

openHUB

openMAC

PHY1 PHY2

openFILTER openFILTER

I/O Register

DPRAM or

DMA

Internal Bus to PCP

I/O Latch

Application I/O

Fig. 3: POWERLINK IP-core Sysrem Overview Configuration Case 2

2.2 System Configuration

The POWERLINK IP-core can be configured to different architectures applicable for different applications
and interface types:

POWERLINK IP-Core
Generic Documentation Design Considerations

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
8/46

Only PCP Configuration (Fig. 3)

 Port I/O
- General Port I/O Interface
- Port I/O Interface for ADC / DAC (using I/O Latch)

PCP + AP Configuration (Fig. 2)

 PDI with internal bus to AP

 PDI with external bus to AP
- External MCU or DSP
- 8/16bit parallel bus interface
- SPI

Depending on the user’s choice the GUI enables to insert different values to scale the POWERLINK IP:

 Number of RPDO (necessary for cross traffic ability)

 TPDO/RPDO size

 Asynchronous buffer size

 External parallel port data width

 SPI configuration (clock polarity/phase)

These configuration values are used to calculate all necessary generics for the POWERLINK IP-core and
the instantiated components. For instance the number of RPDO is required to calculate the amount of re-
ceive buffers used by the openMAC.

Tab. 2: Available Configurations

Nr Configuration openMAC
1
 PDI PORTIO

1 Simple I/O (no AP)

2 Internal AP
2

3 External AP (e.g. MCU or DSP)
3

4 openMAC only

1
 OpenMAC is mandatory for every configuration.

2
 The Internal AP Interface uses an Internal Bus.

3
 The External AP Interface can be configured to use an 8/16bit parallel port or SPI.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
9/46

3 IP-Core Architecture

This chapter describes the architecture and functionality of the IP-cores included in the POWERLINK IP-
core package. The description should give an idea of the functionality and will not specify every single
component or block in the HDL design. This approach enables hardware and software designers to de-
velop further components/features, build test benches/cases and debug malfunctions.

3.1 POWERLINK

The POWERLINK IP core is simply the top level (powerlink.vhd) that interconnects all necessary compo-
nents for a given application. For instance a simple I/O POWERLINK slave does not need a DPR for PDO
exchange, since there is no AP present. In contrast a POWERLINK slave with an external AP connected
via SPI will require other IPs than an internal AP.

The generation of the POWERLINK IP-core is controlled by generics, which enable or disable associated
components for generation. Furthermore some minor signal assignments (e.g. high-active to low-active
conversation) and clock synchronizations are done. Thus every single component (e.g. openMAC or PDI)
can be used without the POWERLINK IP-core, what requires further considerations for configuration by
the designer.

Tab. 2 gives an overview of the used components depending on the application. Fig. 2 and Fig. 3 show
the architecture of the POWERLINK IP depending on the configuration.

3.1.1 Clock Sinks

The POWERLINK IP-core requires several specific clock signals described in Tab. 3. It is mandatory to
connect clk50 with a 50MHz clock signal and clkEth with a 100MHz clock signal. Clk50 and clkEth must
by synchronous.

Tab. 3: Clock signals

Clock name Frequency [MHz] Description

clk50 50 This clock must be driven by a 50MHz source. It is used for openMAC,
openHUB, openFILTER and all components synchronous to the Ethernet
interface.

clkEth 100 This clock is necessary if the IP-core is used in combination with RMII. The
openMAC’s TX-signals are latched with the falling edge.

If MII is used, this clock signal is not connected. Note: It is recommended
to use RMII!

m_clk External memory
controller

This clock drives the master logic for the packet transfer handling. It is
highly recommended to connect this clock signal with the same that is
used by the connected memory controller!

4

pkt_clk Any The packet clock signal is directly connected to the DPRAM of the packet
buffer.

clkPcp Any The clkPcp signal can be driven by any frequency. clkPcp is connected to
the PCP side of the PDI.

clkAp Any clkAp can be connected to a clock signal with any frequency.

3.2 OpenMAC Ethernet

The openMAC Ethernet IP-core (openMAC_Ethernet.vhd) is a top-level component that instantiates the
necessary parts to create the MAC-layer. It includes the following components:

 openMAC (OpenMAC.vhd)

 Phy management (OpenMAC_PHYMI.vhd)

4
 This enables highest performance possible with the applied memory technology.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
10/46

 Phy activity generator (OpenMAC_phyAct.vhd)

 openHUB (OpenHUB.vhd)

 openFILTER (OpenFILTER.vhd)

 RMII to MII converter (rmii2mii.vhd)

 openMAC timer compare unit (OpenMAC_cmp.vhd)

 Packet Buffer DPRAM (OpenMAC_DPR_*.vhd)

 openMAC DMA master for internal bus interface (openMAC_DMAmaster.vhd)
- Memory Mapped Master handling logic for internal bus (master_handler.vhd)
- openMAC DMA handling logic (dma_handler.vhd)

 minor library components (e.g. sync)

Overview

Fig. 4 shows the overview of the openMAC Ethernet IP-core configuration. The main part of this IP is the
openMAC itself, a MAC with hardware accelerations designed for Industrial Ethernet’s real-time require-
ments. Via an RMII the MAC is connected to a 3-port hub (openHUB) that allows two Ethernet phys for
flexibility. In between an “anti-distortion-filter” (openFILTER) is used to lock out distortions on the network
accessing the node. Since the filter is instantiated twice any disturbance is prevented from propagating
around the network.
The openMAC itself provides a high-accurate timer, which is used for packet time stamps and forwarded
to a timer-compare-unit (CMP). The received and to be transmitted packets are transferred in three differ-
ent manners:

 RX and TX to/from Packet BUF

 TX from Packet BUF and RX via internal bus

 RX and TX via internal bus
In order to configure and monitor the external Ethernet phys the Serial Management Interface (SMI) is
used. The “openMAC MII” component does the communication to every connected phy.

OPENMAC_Ethernet IP-core

CMP

R

R

R

R

R

S

In
te

rn
a

l
B

u
s
 t
o

 P
C

P

E
th

e
rn

e
t
In

te
rf

a
c
e

 (
P

h
y
s
)

o
p

e
n

M
A

C

openHUB

openFILTER

openFILTER

openMAC MII

Internal Bus

Memory mapped Slave

R
Reduced Media Independent

Interface (RMII)

S
Serial Management Interface

(SMI)

Unspecific Interconnection

MM

Master

OR

Packet

BUF

Internal Bus

Memory Mapped Master

D
M

A

Fig. 4: OpenMAC IP-core – overview

3.2.1 MAC (openMAC)

The openMAC component provides a 100Mbps half-duplex Ethernet interface like a general MAC. Fur-
thermore extra features are implemented to allow hard-real time possibility (Industrial Ethernet).

The following components are integrated to enable hard-real time applications:

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
11/46

 Ethernet RX Packet Filter (first 31 octets):
OpenMAC provides 16 independent RX filters that observes the first 31 octets in any kind of Ethernet
message. This allows a high flexibility of filter configuration.

 Auto-Response Ability starts TX after IPG
5
 (adjustable):

Every filter can start the transmission of a specific packet after the reception of a matched message.

 32bit Timer for time-stamps (resolution 20ns):
Every packet that is received and every packet that was transmitted gets a 32bit time-stamp.

Information:

In order to get a more detailed documentation about openMAC, openHUB, openMAC MII and
openFILTER please refer to “openMAC & Components Documentation” (openMAC.pdf)!

Internal Bus

Memory Mapped

R
Reduced Media Independent

Interface (RMII)

S
Serial Management Interface

(SMI)

Unspecific Interconnection

R

openMAC

R
E

G

TX

Packet Filter

DPR

16/16

RX

DMA

Timer

DPR

16/32

Fig. 5: OpenMAC Block diagram

3.2.1.1 DPR

The openMAC component includes two different DPR necessary for the RX Packet Filter and the de-
scriptors (TX/RX). The filter patterns are stored in a DPR with different data width on the ports – the MAC-
internal port is equipped with 32bit data width. The filter DPR’s data flow is only unidirectional, thus the fil-
ter patterns set to the DPR are not readable.
The descriptor storage is done in a DPR with 16bit data width on both sides.
Both DPR are driven in only one clock domain of 50MHz (RMII Clock).

3.2.1.2 RX Packet Filter

OpenMAC provides 16 independent RX packet filters that observe the first 31 octets in an Ethernet pack-
et. The observation is started after the SFD

6
 beginning with the destination MAC address. Thus the filter

can verify the MAC addresses (destination and source), the Ethernet Type/Length field and the first 17
bytes of the Ethernet frame payload.

5
 IPG: Inter Package Gap (960ns in case of 100Mbps)

6
 SFD: Start of Frame Delimiter

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
12/46

Filtering is done simultaneously by comparing the received data with the filters in the order starting at filter
0 to 15. When one enabled filter matches to the received data, the filter number is written to the used de-
scriptor. If two or more enabled filters match to the RX data, the filter with the lowest number (zero to 15)
will signalize the match event. If no filter matches to the received data, the MAC’s DMA stops its transfer.

Information:

 In order to clarify the RX flow the following list is introduced:

 An Ethernet packet arrives with correct Preamble and SFD.

 The openMAC’s DMA starts to transfer data to a free RX descriptor and filters simultaneously.

 After the reception of 31 octets the matching results are verified in the order of filter numbers.

 The matching filter with the lowest filter number is written to the used RX descriptor.

 The reception is cancelled if no filter matches.

Since the matching information is known after receiving 31 octets, the MAC’s DMA transfers at least 32
bytes (word transfers) of an out-filtered packet to the memory. This approach avoids the necessity of ad-
ditional resources (packet buffering) and will not be recognizable by the PCP.

After a packet was completely received (enabled filter matches) and the CRC

7
 is correct, an IRQ will be

generated. When the filter is used for auto-response ability the IRQ will be generated as well.

3.2.1.3 Auto-Response Ability

In order to serve a fixed low-latency response every filter can start the transmission of a packet. The filter
must be enabled and associated with a TX descriptor that point to a valid or addressable TX packet buff-
er. In addition the IPG can be increased for some ticks (32bit) the specific TX descriptor.

Example:

For filter number 4 the following assumption is taken:

 Match with the POWERLINK frame PReq

 Enabled for auto-response

 Set to TX descriptor number 10

 Enabled
For the associated descriptor number 10 the following assumption is taken:

 Points to a TX buffer that stores the auto-response packet (PRes)

 The IPG is not increased

 Owner is the MAC (owner bit is set)

When the MAC receives a PReq frame filter number 4 will signal a match. The PReq packet will be
forwarded by the DMA. If the CRC is correct a free RX descriptor will point to the location of the
stored PReq in the memory. After the IPG the MAC automatically starts the transmission of the
associated packet (PRes, TX descriptor number 10).

3.2.1.4 Timer

The openMAC includes a free-running 32bit timer that is used for time stamp generation (for RX and TX
frames). The RX time stamp is set by the MAC at the reception of the SFD. For TX packets the time
stamp of the associated descriptor is set at the beginning of the preamble. If a collision occurs, the time
stamp of the last try is stored in the descriptor.
The 32bit timer value is provided at the port map of the openMAC’s entity (Mac_Zeit) as an output and
can be used for time-triggered interrupts. The benefit of using the MAC’s timer is to enable very low jitter

7
 CRC: Cyclic Redundancy Check (Ethernet uses 4 bytes, openMAC checks the CRC)

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
13/46

synchronization to the network. The time stamps of the received/transmitted packets can be used as a
reference.

3.2.1.5 DMA

The openMAC’s DMA is used to transfer RX/TX data. Since the implementation has no temporary buffer
included, the data arrival latency must not exceed a certain limitation. Otherwise the current data is lost
(RX) or the MAC sends old data (latched with DMA_Ack).
The MAC’s DMA is connected to a simple master interface with the following signals:

 Dma_Req (Request)

 Dma_Rw (Write/Read Request)

 Dma_Ack (Acknowledge)

 Dma_Addr, Dma_Din and Dma_Dout

 Dma_Rd_Done and Dma_Wr_Done
The DMA starts the transfer by asserting Dma_Req and Dma_Rw (‘1’ = Read). For a write transfer the
data is set synchronously to Dma_Dout. For a read transfer the slave must set the data to Dma_Din.
When the slave asserts Dma_Ack the transfer is finished.
Fig. 6 shows the timing of a read transfer. It is important that the read data is set for at least one cycle af-
ter the assertion of Dma_Ack. The address is set synchronously with the read request.
Fig. 7 shows the write transfer timing. The DMA sets the valid data synchronously with the request and
the associated address.
The signals Dma_Rd_Done and Dma_Wr_Done are asserted for one cycle to signalize that a write or
read transfer is finished, which implicitly means that a RX or TX packet ends.

Fig. 6: DMA read transfer

Fig. 7: DMA write transfer

8

As already mentioned the DMA transfers must occur within a certain time limit.

Information:

When the MAC is configured to half-duplex, every 8
th

 cycle a new DMA transfer is initiated.
In case of full-duplex mode every 4

th
 cycle a new request will be asserted if TX and RX are active

simultaneously.
If these limitations are not satisfied, corrupted data is transmitted to the network respectively the
received data is incorrect!

3.2.1.5.1 Observer

In order to debug a failing DMA transfer the Dma_Req_Overflow output port is introduced, which is as-
serted by the DMA at the last possible acknowledge cycle. The DMA handler logic (dma_handler.vhd)
combines the Dma_Req_Overflow with the Dma_Reg signal in order to detect a DMA transfer error. In
case of an error a register is set, which can be accessed by the CPU for debugging purpose (refer to
4.2.2.2).

8
 DMA write transfer: Dma_Dout is valid until next Dma_Req assertion.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
14/46

3.2.2 Packet Buffer (BUF)

In order to be independent of external memory types and the system’s interconnection, an internal packet
buffer is used. This allows low-latency access to the packet storage by the MAC, which is essential for TX
packets.
The packet buffer is implemented as a dual-ported memory with independent clock sources at both ports.
This allows simultaneous and low-latency access by the MAC and the PCP. Nevertheless the PCP must
not access to packets that are locked by the associated descriptor (owner bit).
Due to the ability of independent clock sources at the two ports, the PCP can access with its defined
clock rate without any synchronization latencies introduced.
The usage of the packet buffer is optional, depending on the generic set (useIntPacketBuf_g and userx-
IntPacketBuf_g).

3.2.3 Internal Bus Memory Mapped Master (MAC_DMA)

The system designer has the possibility to store RX and/or TX packets in memory locations other than the
provided dedicated packet buffer (BUF, 3.2.2). The reason for this is to reduce FPGA resource utilization
(memory blocks), which enables smaller FPGA sizes. However, it has to be ensured that the memory’s
read latency is static, which is valid for FPGA-internal memory blocks and external SRAM devices. Fur-
thermore, other master devices connected to the memory affect the access latency as well, which has to
be considered in the design. The Internal Bus Memory Mapped Master logic is able to transfer data with
single beat or burst transfers, which has to be defined by generics.

Important:

Only use the Internal Bus Memory Mapped Master interface if the connected memory is either
FPGA-internal or external SRAM (with 10 ns speed grade). In addition the number of master de-
vices connected to the shared memory and the arbitration algorithm has to be defined carefully.
If the connected memory device is e.g. SDRAM, it is not recommended to store TX packets in that
kind of memory.

9
 RX packets may be stored in dynamic RAM types, however, the designer has to

verify the system’s stability.
Also note that the openMAC software driver implementation assumes that the packets are linked
to the heap section of the system.

The Internal Bus Memory Mapped Master logic is implemented in the file openMAC_DMAmaster.vhd and
is instantiated by the openMAC_Ethernet.vhd component depending on the generic set. The master and
DMA handler logic is implemented in the master_handler.vhd and dma_handler.vhd file respectively.

3.2.3.1 Architecture Design

In order to achieve highest performance in the context of the FPGA design, the clock domain crossing is
tightly coupled to the openMAC DMA component. Due to this approach the connected memory controller
is allowed to be located in any different clock domain compared to the openMAC clock (RMII, 50 MHz),
which eliminates the need of clock domain crossing logic or even clock crossing bridges.
The architectural design is visualized in Fig. 8, which assumes RX and TX packet transfers via the Inter-
nal Bus Memory Mapped Master logic (no packet buffer selected by the user, 3.2.2). The packet transfer
handling is divided into two handlers, which are located in the respective clock domain. The DMA handler
is coupled to the openMAC DMA interface, which performs with the RMII clock (50 MHz). The master
handler is located in the other clock domain, which is coupled to the memory controller’s clock signal. In
order to transfer data to different clock domains two approaches are chosen:

 2-stage synchronizer (SYNC)

 Dual clocked FIFO

9
 Dynamic RAM types have to refresh their data content, which introduces long access latency to the host

(e.g. CPU or DMA).

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
15/46

The dual clocked FIFO is applied to the RX and TX packet data transfer, which enables highest through-
put (without considering delays introduced by interconnect or memory) from/to the memory respectively.
The 2-stage synchronizer are implemented with two chained flip-flops avoiding metastability. The SYNC
instance is used to transfer the write/read base address from the openMAC DMA to the master handler.
Furthermore, the DMA and master handler communication via the synchronizers.
Note that the necessary synchronization between the DMA and master handler introduces a certain delay
(refer to 3.2.3.2), which only affects the beginning of the packet transfer. Afterwards the master handler
tries to fill the TX FIFO to a certain limit, which ensures presence of TX data to openMAC (avoiding FIFO
underflow). In the opposite direction (RX), the master handler tries to empty the RX FIFO continuously,
which avoids FIFO overflow.

DMA handler

The DMA handler decodes the qualifiers asserted by the openMAC DMA (e.g. dma_req and dma_rw),
and communicates them via the synchronizers to the master handler. In addition the handler controls the
write port of the RX- and the read port of the TX FIFO. The handler is able to decode the very first DMA
request (TX or RX respectively) and capture the openMAC’s DMA address presented on its interface port.
This value is forwarded via the synchronizers to the master handler.

Master handler

The master handler is a more complex logic compared to the DMA handler, however, the master handler
complies to the Altera Avalon Interface Specification [2]. The logic can be configured to perform burst
transfers (TX and/or RX) of any specified size.
The master handler uses one link for write- and read-transfers, to reduce the complexity of the Internal
Bus interconnect network, however, the handler considers the read access (TX data) having the highest
priority. This means in fact that the TX FIFO is filled to a certain limit before the RX FIFO is emptied com-
pletely, however, it avoids TX FIFO underflows, and thus corrupted data to be transmitted to the network.

Information:

Note that the data stored in the RX FIFO is always copied to the memory completely, however, de-
pending on the system’s performance the last words (e.g. CRC32 of Ethernet frame) of a received
frame might be copied after the transmission of a packet (e.g. auto-response). Nevertheless, this
issue can be neglected since the delay is shorter than the reaction time of the host (e.g. interrupt
latency).

The TX FIFO is filled to a certain level independent of the TX packet length, hence, the Internal Bus
Memory Mapped Master reads data which is not part of the TX buffer. However, since the openMAC
DMA requests for the correct data length, the unnecessary data patterns are dumped by the master han-
dler by asserting an asynchronous reset signal connected to the TX FIFO. This avoids the transfer of in-
correct TX data words in subsequent packet transfers.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
16/46

R
Reduced Media Independent

Interface (RMII)

Unspecific Interconnection

Internal Bus

Memory Mapped Master

o
p

e
n

M
A

C

D
M

A

R
Master

Handler

RX

FSM

TX

FSM

DMA

Handler

Dual Clocked TX FIFO

Dual Clocked RX FIFO

S
Y

N
C

RMII (50 MHz)

Clock Domain

Memory Controller

Clock Domain

Fig. 8: Block diagram Internal Bus Memory Mapped Master

3.2.3.2 Performance Consideration

The ability to store TX and RX packets in external memory devices enables the system designer to re-
duce costs, since the FPGA size can be reduced. Nevertheless the choice of the used external memory
type and the interface affects the performance of the DMA functionality of openMAC. Generally the follow-
ing rules apply:

OpenMAC DMA performance rule:

 Always use low-latency and deterministic memory technologies (SRAM) for TX packet storage!

 If you want to use dynamic memory (e.g. SDRAM), it is impossible to store TX packets external-
ly. Otherwise the system will fail randomly by transmitting corrupted Ethernet packets.

 Always use SRAM with 10 ns speed grade and at least a data width of 16 bit.

3.2.4 HUB (openHUB)

It is common to provide at least two Ethernet ports for industrial applications to allow flexible cabling of
several nodes without any other equipment (e.g. extra hubs). The openHUB component integrates a low-
latency RMII hub into the same FPGA, thus no extra IC is necessary! Since RMII is used the hub imple-
mentation requires very sparse resources (about 60 LEs and no M9Ks in Cyclone 4).
OpenHUB can be configured to a 3-port-hub (one port used for openMAC, the other two used for phys) or
be equipped with more ports, however, the utilization increases accordingly.
During runtime the hub allows the following extra features:

 Enable/disable certain hub port:
This ability is currently not used in the implementation, thus, every port is enabled.

 Provide port number of currently received frame:
The port number is forwarded to the openMAC’s receive descriptor and thus can be read back by the
PCP.

3.2.5 Anti-Distortion-Filter (openFILTER)

Components for industrial environment must consider distortions and avoid errors. The POWERLINK IP-
core is equipped with one Anti-Distortion-Filter per Ethernet phy to prevent distortion propagation to the
POWERLINK node and across the whole network.
The openFILTER implementation requires very sparse FPGA resources (about 60 LEs and no M9Ks in
Cyclone 4). The filter simply monitors the RX Data Valid line from the phy (Crsdv) and forwards the state
as long as no condition is violated:

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
17/46

 Minimum packet length (8+64 bytes, 5.12µs)

 Maximum packet length (2048 bytes
10

, 163.84µs)

 Minimum IPG (8 bytes, 0.64µs)

It has to be mentioned that the filter implementation does not use any buffering mechanism, thus there is
no complete protection against distortions. However, openMAC does no interpretation of invalid packets
too.

3.2.6 Phy Management (openMAC MII)

The Ethernet phys connected to the POWERLINK IP-core have to be configured for the certain applica-
tion. This is done via dedicated configuration and status registers predefined by IEEE 802.3. These regis-
ters are stored physically in the Ethernet phys and are accessible via a serial management interface
(SMI). The openMAC MII core enables the communication to the connected phy(s) via a predefined pro-
tocol.
Regularly all available Ethernet phys are interconnected to a bus on the PCB, but some evaluation board
manufacturers connect the SMI of every phy to the FPGA separately. However, it is essential to set dif-
ferent hardware addresses to the phys, since only one openMAC MII core is used to communicate with
several phys.
The openMAC MII component drives no interrupt line to the PCP therefore polling is necessary.

3.3 Process Data Interface

The Process Data Interface IP-core (PDI) includes the following features (refer to Fig. 9):

 PDO data exchange via triple buffer implementation (“3Buffer PDO Logic” and “1-to-3”)

 Simultaneous access from PCP and AP side

 Synchronizer considering arbitrary clock ratios between PCP and AP domain (and vice versa)

 Synchronization Interrupt Request Generator (“SYNC IRQ”)

The overview in Fig. 9 gives the structure of the PDI core. The Asynchronous TX/RX Buffers are imple-
mented as simple buffers in the DPRAM. Thus the software design must consider data coherency in this
memory regions.
The T/RPDO buffers are implemented as triple-virtual-buffers to avoid data access on the same content
from different ports (PCP/AP) by hardware. The “3Buffer T/RPDO Logic” manages the virtual PDO buffer
access from consumer and producer side (PCP or AP respectively). This logic is implemented in the PCP
clock domain to achieve immediate virtual buffer switching (one cycle delay) on the PCP side of the PDI.
A buffer switch-over command from the AP side must cross a synchronizer chain (two stages) to the PCP
clock domain and vice versa. Thus in total 3 PCP clock cycles + 2 AP clock cycles are required to initiate
a virtual buffer change.
The Control/Status Register is not mapped to the DPRAM (except some PCP/AP shared registers), since
the PCP and AP must access different functions (e.g. PCP triggers IRQ and AP does acknowledgment).

10

 Ethernet maximum packet length is set to 8+1518 bytes, however the set limit allows to reduce HW com-
plexity.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
18/46

PDI IP-core

Control/Status Reg TPDO0 Async TX/RX BufferRPDOi

Address Decoder

POWERLINK Communication Processor (PCP)

Control/Status Reg TPDO0 Async TX/RX BufferRPDOi

Address Decoder

Application Processor (AP)

DPRAMSynchronizer
CLK PCP

CLK AP

3Buffer

TPDO

Logic

3Buffer

RPDOi

Logic

SYNC

IRQ

Generator

1-to-3 1-to-3

1-to-3 1-to-3

Fig. 9: PDI IP-core architecture overview

3.3.1 SYNC IRQ Generator

In order to synchronize the AP to the POWERLINK network there are several approaches possible de-
pending on the application.
In general the synchronization to the SoC achieves the lowest possible jitter (equal to the SoC jitter on the
network). If the synchronization to the SoC is not required, other packets (e.g. SoA) can be used for the
AP SYNC IRQ.

The SYNC IRQ Generator allows two modes to synchronize the AP:

 MAC timer:
The MAC timer (free-running 32bit counter, driven with 50MHz) is compared to the CMP_VAL_TOG

11
.

When the values match, a signal is toggled. The toggling signal is transferred to the AP’s clock domain
and triggers the AP IRQ.

 Software:
If the application does not require synchronizing with very low jitter, the PCP can trigger the SYNC
IRQ by software.

Fig. 10 shows the structure of the SYNC IRQ generation, which is implemented in the AP clock domain.
The PCP signals are synchronized via a 2-stage synchronizer chain (two FF) to avoid metastable circuits.
Depending on the mode signal – which is set in the Control/Status register in the PCP – the IRQ is as-
serted by the “Set” signal (software IRQ).
The other possibility – in order to generate a low-jitter SYNC IRQ to the AP – is to use the InIrq. InIrq is
connected to the toggle port of the MAC Timer Compare unit and triggers the OutIrq signal.

11

 Refer to 4.2.1

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
19/46

Independently of the selected mode the AP should acknowledge an asserted IRQ by writing to the Con-
trol/Status register. Otherwise the FSM gets stuck in the “wait4ack” state – refer to the FSM in Fig. 11.

CLK AP

CLK PCP

mode

inIrq

set

outIrq

ack

FSM

S
y
n

c
h

ro
n

iz
e

r

Fig. 10: SYNC IRQ Generator

wait4event

setIrq

wait4ack

Mode = 0 and Set = 1

or

Mode = 1 and InIrq = 1

Rst = 1

Ack = 1

Fig. 11: SYNC IRQ Generator - FSM

3.3.2 Synchronizer

The synchronizers used in the PDI are built out of 2-stage flip flop chains. This approach is valid for sig-
nals, which smoothly change their states (refer to Fig. 12). In order to transfer a pulsing signal further
considerations are required:
The pulse signal is asserted during the source clock cycle. When the destination clock rate is faster a
simple 2-stage synchronizer is possible. If the destination clock cycle is longer than the source, the syn-
chronizer will not recognize the pulse confidently. Thus the pulse has to be converted into a level chang-
ing signal (toggle). The toggling signal is transferred into the destination domain with a 2-stage synchro-
nizer. Afterwards an edge detector decodes the level change into a pulse – for the pulse transfer the any
output has to be used – valid for the destination clock domain.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
20/46

FF FF

dst clk

in out

dst rst

Fig. 12: Simple 2-stage Synchronizer

dst clk

dst rst

inPulse

src clk

src rst

any

FF FFtoggle
edge

detector
rising

falling

Fig. 13: 2-stage Synchronizer for pulse transfer

3.3.3 Triple Buffer Logic

The triple buffer logic is used to translate the input addresses (from the PCP respectively AP) to output
addresses used for the DPRAM. The DPRAM stores three virtual buffers, which are accessible from con-
sumer and producer side simultaneously. However, the consumer may not read from a virtual buffer that
is written by the producer. Thus the Triple Buffer Logic implements a locking mechanism to avoid access
to the same virtual buffer.
In order to change the virtual buffer the producer/consumer triggers a buffer change, what frees or vali-
dates a buffer and switches over to an unused one. Since the producer and consumer interface of the
Triple Buffer Logic may be located in different clock domains, the Triple Buffer Logic is located in the
PCP’s clock domain. Please consider that the PCP acts as producer for RPDO and as consumer for
TPDO.
Fig. 14 shows the System Overview of the Triple Buffer Mechanism. The system is divided into two pre-
sent clock domains. The output address (for PCP and AP) is calculated with an adder using the input ad-
dress as the first addend and the offset of the virtual buffer (constant) in the DPRAM as the second ad-
dend, which is selected by the Triple Buffer Logic.
As already mentioned the Triple Buffer Mechanism is implemented in the PCP’s clock domain, therefore
the trigger signal asserted by the AP and the select virtual buffer signal (SelVBuf) asserted by the PCP
are synchronized to the respective destination clock domain. The select virtual buffer signals are used in
the Control/Status register to read out the current selected virtual buffer – for debugging purpose only.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
21/46

PCP Trigger

PCP InAddr

VBufBase0

PCP OutAddr

PCP SelVBuf

VBufBase1

VBufBase2

AP InAddr

AP OutAddr

AP SelVBuf

VBufBase0

VBufBase1

VBufBase2

AP Trigger

Triple

Buffer

Mechanism

+

+

SYNC
PCP clk

AP clk

Fig. 14: Triple Buffer Logic System Overview

Variable
12

 definition

The Triple Buffer Mechanism uses two variables to select the next virtual buffer for the consum-
er/producer.

 VALID:
Is set by the producer and flags the most current data to the producer.

 LOCKED:
Is set by the consumer and tags the virtual buffer that is used by the consumer.

 CURRENT:
Is set by the producer and identifies the currently used virtual buffer by the producer.

Producer switch

When the producer sets the trigger signal, the Triple Buffer Mechanism has to decide which buffer has to
be selected next.
Assume the example in Tab. 4 to understand the decision reached by the producer:
Buffer zero is locked by the consumer for data processing purpose and buffer one is validated by the pro-
ducer. Thus the “next free virtual buffer” can be assigned to the CURRENT variable.

Tab. 4: Example – Decision LUT for "next free virtual buffer"

Variable VBuf2 VBuf1 VBuf0

LOCKED 0 0 1

12

 The expression “VARIABLE” used in this context is not equal to a variable used in VHDL.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
22/46

VALID 0 1 0

CURRENT 1 0 0

Out of the LUT (Tab. 4) the logic expression can be derived:
CURRENT <= NOT LOCKED AND NOT VALID

Consumer switch

When the consumer sets the trigger signal, the Triple Buffer Mechanism has to decide which buffer has to
be selected next.
For the consumer case it simply switches to the valid virtual buffer. In detail the consumer assigns the
LOCKED to the VALID variable.
If the consumer triggers a buffer change and the producer has not yet validated a new buffer, the con-
sumer will stay at the currently locked buffer, since there is no “newer” data available in the moment.

Consider special case

After the consumer has switched to the most current data – LOCKED equals VALID – the logic expres-
sion derived from Tab. 4 would fail. Thus the VHDL implementation uses a process with a VALID varia-
ble

13
 before CURRENT is assigned.

This design approach furthermore overcomes the case of buffer switch from consumer and producer at
the same time. The consumer will receive the just validated virtual buffer from the producer. Due to com-
pleteness it has to be mentioned that the producer will switch according to the example in Tab. 4.

3.3.4 Time Synchronization

In order to synchronize the POWERLINK node to the network an optional synchronization feature is add-
ed to the PDI. The component provides the following information to the AP:

 RELATIVE_TIME (source: SoC packet)

 NETTIME (source: SoC packet)

 TIME_AFTER_SYNC (generated by hardware counter)

The RELATIVE_TIME and the NETTIME is sourced by the latest SoC packet received, which is set by
the MN. The patterns have a size of 64 bits and are handled with a double buffering system, hence the
AP reads the data correctly within the SYNC interrupt context. The double buffers are switched by the
SYNC interrupt assertion.

Information:

If the SYNC interrupt is not confirmed by the AP before the subsequent interrupt assertion, the
double buffer is not switched! Hence the AP has to react within the SYNC interrupt period!

The TIME_AFTER_SYNC pattern refers to a 16 bit counter which is reset by the SYNC interrupt edge.
The AP has to read out that register, which refers to the time between the assertion of the interrupt and
the read-out event. This delay is necessary for correct node synchronization. The time base for that timer
value is determined by the AP clock rate (e.g. 50 MHz refers to 20 ns per tick).

For further information refer to [3].

3.4 Asynchronous 8/16bit Parallel Interface

In order to provide high performance access to the PDI from external MCUs the AP-side of the PDI is
connected to the 8/16bit Parallel Interface IP. This parallel interface is asynchronous and uses common
signals provided by many MCUs (with external bus feature) on the market.

13

 The expression “variable” used in this context is equal to the variable usage in VHDL.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
23/46

POWERLINK IP-Core

PDI

External

8/16bit

Interface

Async 8/16bit MCU

Fig. 15: Asynchronous 8/16bit Parallel Interface Overview

The external interface is mapped to the Internal Bus Interface signals of the PDI. Thus from the MCU’s
point of view the PDI works like a SRAM component with a predefined timing specification.

Features

The Asynchronous 8/16bit Parallel Interface supports several features as follows:

 Asynchronous 8 or 16bit address-/data-bus interface (SRAM-like)

 Low- or high-active control signals (e.g. CS)

 Little or Big Endian

The configuration is done via generics!

3.4.1 General Description

The Asynchronous 8/16bit Parallel Interface allows to connect external MCUs to the AP side of the PDI
by converting the external bus to the Internal Bus signals. The IP converts the 8 or 16bit data width to
32bit by generating the appropriate address-, byte enable- and data signals.
The IP-core has synchronizer chains included for all input signals. The input data is captured by register
that uses the WR signal as clock. The register value is transferred to the AP clock domain (by synchro-
nizer) and assigned to the writedata signal vector depending on the address (byteenable and address).
The write signal is asserted (pulse) by an edge detector, which is sensitive to the falling write edge. The
optional ACK signal is assigned to the output-enable signal for the tri-state buffer or to the write strobe.

External 8/16bit Parallel Interface IP-core

CS

WR

RD

ADDR

BE

chipselect

write

writedata

read

address

byteenable

readdata

REG

ACK

DATA

Address

Logic

Edge Det

S
y
n

c
h

ro
n

iz
e

r

Timeout

Cnt

X to 32

OR

Fig. 16: Asynchronous 8/16bit Parallel Interface IP-core

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
24/46

Information:

The READY signal is optional, since the interface’s timing is fixed after synthesis.

3.4.2 Timing Specification

Tab. 5: Timing Specification of Asynchronous 8/16bit MCU Interface

Symbol Value Comment

Min Max

tSC 0ns - The CS signal has to be asserted before or with write or read
signals.

tHC 0ns - The CS signal has to be deasserted after or with write or read
signals.

tPWR 20ns - Write pulse

Note: The WR signal can be hold for a certain time to insert wait-
states.

tSD 5 ns - Data Setup to Write End

tHD 2 ns - Data Hold from Write End

tAA 60ns 80ns Address access time after the data bus is driven with valid data.

tOHA 20ns 40ns Valid output data to be held on the data bus (before changing to
HIGH Z).

tWAD 40ns 60ns ACK signal assertion after Write END

tARD 20ns - ACK signal assertion duration for read

tAWR 20ns 20ns ACK signal assertion duration for write

tIWR 20ns - Idle time after write access before subsequent write or read

tIRD 40ns - Idle time after read access before subsequent write or read

WR

CS

RD

ADDR, BE

DATA

VALID ADDRESS

AND BE

DATAIN VALID

tPWR

tSD tHD

tIWR

tSC

tHC

1

2

3b

3a

ACK

tWAD tAWR

4

NEXT ADDRESS AND BEDon’t care

Fig. 17: Write Access Timing

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
25/46

WR

CS

RD

ADDR, BE

DATA

VALID ADDRESS AND BE

DATA VALID

tSC tHC1

NEXT ADDRESS

AND BE
Don’t care

2

4a

tARD

tOHA

tIRD

ACK

3

4b

tAA

Fig. 18: Read Access Timing

3.5 SPI

The PDI is accessible via a common serial interface – SPI. The POWERLINK IP-core acts as a SPI slave
by providing the content of the PDI’s memory content.
The SPI slave is able to receive/transmit 8 bit data frames. The SPI frames are used to address the PDI
and transfer data.

Features

The SPI PDI core implements the following features:

 Slave only

 8bit data

 Support of all four modes (CPOL = 0 or 1 and CPHA = 0 or 1)

 Shift direction: MSB first only

PDI

A
D

D
R

R
E

G

D
A

T
A

R
E

G

FSM

AP

cs

sck

miso

mosi

SPI

Fig. 19: SPI IP-core architecture overview

Data Transmission

SPI is build up with a Master and Slave shift register in a ring connection. The SPI Master drives a clock
signal that controls shifting and capturing of the SPI devices. Depending on the mode the data is captured
respectively shifted at the rising or falling edge. The four different modes are selected with CPOL and
CPHA.
The data transmission is armed by the SPI Master, which asserts the SPI Select (SS) signal. This triggers
the MISO and MOSI data lines to exit the High ‘Z’ level and enter logical states. The SPI clock (SCK) con-

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
26/46

trols the shift registers and capturing of the SPI Master and Slave. After a frame is transferred the SPI
Master deasserts the SPI Select (SS) signal or initiates another SPI transfer.

Fig. 20: SPI timing [1]

3.5.1 Communication Protocol

The communication via SPI requires coding the address and data into single SPI frames. Due to the high
address range of the PDI the SPI core stores the address (ADDR(14..0)) and reuse it as long as they are
unchanged. In case of single write/read transfers the address bits 4 to 0 are transmitted before the final
data transfer.
In order to reduce the overhead a sequence of write/read transfers can be initiated. Independent of the
write/read command the address register is incremented after each write/read!

The protocol differs between two types of frames:

 Command Frame

 Data Frame

Command Frame (Master to Slave)

The command frame controls the SPI FSM and sets e.g. the higher address register.
The general structure is shown in the following. For the CMD CODE meaning refer to Tab. 6.

CMD Frame

7 6 5 4 3 2 1 0

CMD(2..0) PAYLOAD(4..0)

Tab. 6: Command Frame Codes

CMD CMD NAME PAYLOAD Description

0b100 HIGHADDR ADDR(14..10) Sets the higher five address bits to the address register.

0b101 MIDADDR ADDR(9..5) Sets the middle five address bits to the address register.

0b110 WR ADDR(4..0) Sets the lower five address bits to the address register.
The following frame must include the data to be written!

0b111 RD ADDR(4..0) Sets the lower five address bits to the address register.
The following frame includes the read data!

0b001 WRSQ BYTES Initiates a write sequence of BYTES+1. The address
register is incremented by one.
Note: BYTES represents values 0 to 31

0b010 RDSQ BYTES Initiates a read sequence of BYTES+1. The address
register is incremented by one.
Note: BYTES represents values 0 to 31

0b011 LOWADDR ADDR(4..0) Sets the lower five address bits to the address register.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
27/46

0b000 IDLE X Idle command (FSM does no interpretation)

Data Frame

After a WR (0b110) or RD (0b111) command frame the following frame must be a data frame with the fol-
lowing structure. After the transfer of a data frame the address register is incremented by 1 byte!

DATA Frame

7 6 5 4 3 2 1 0

DATA(7..0)

Full-Duplex

SPI supports full duplex data transfer, since the master and slave shift in and out data simultaneously.
However the SPI slave IP-core does not use this feature and simply shifts out old data if there is no trans-
fer to the master required. Depending on the protocol the master must interpret the content as data or
not.

Data Flow

After reset the address register (ADDR REG) of the SPI core is set to zero. Depending on the write or
read address the SPI master must set the higher address bits to the required value.
The following examples show some practicable scenarios. In Fig. 21, Fig. 22 and Fig. 23 the data flow is
visualized.
In order to avoid double-addressing

14
 the software driver should store and consider an address shadow

register!

Examples:

The SPI core ADDR REG is set to 0x0000. The SPI master wants to write data to 0x0004:

 CMD Frame “WR” with ADDR(4..0) = 0b00100

 Data Frame from SPI master

The SPI core ADDR REG is set to 0x0000. The SPI master wants to write data to 0x2800:

 CMD Frame “HIGHADDR” with ADDR(14..10) = 0b01010

 CMD Frame “WR” with ADDR(4..0) = 0b00000

 Data Frame from SPI master

The SPI core ADDR REG is set to 0x3000. The SPI master wants to read data from 0x308F:

 CMD Frame “MIDADDR” with ADDR(9..5) = 0b00100

 CMD Frame “RD” with ADDR(4..0) = 0b01111

 Data Frame from SPI slave

The SPI core ADDR REG is set to 0x308F. The SPI master wants to read data from 0x3090:

 CMD Frame “RD” with ADDR(4..0) = 0b10000

 Data Frame from SPI slave

The SPI core ADDR REG is set to 0x100F. The SPI master wants to write 10 bytes starting at
0x1000:

 CMD Frame “LOWADDR” with ADDR(4..0) = 0b00000

 CMD Frame “WRSQ” with BYTES = (10-1)

 1
st

 Data Frame from SPI master

14

 Double-addressing means in this context to write to the slave parts of the address twice.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
28/46

 2
nd

 Data Frame from SPI master

 …

 10
th

 Data Frame from SPI master

The SPI core ADDR REQ is set to 0x200C. The SPI master wants to read 32 bytes starting at
0x2000:

 CMD Frame “LOWADDR” with ADDR(4..0) = 0b00000

 CMD Frame “RDSQ” with BYTES = (32-1)

 1
st

 Data Frame from SPI slave

 2
nd

 Data Frame from SPI slave

 …

 32
nd

 Data Frame from SPI slave

The SPI core ADDR REQ is set to 0x300F. This SPI master wants to write 48 bytes starting at
0x3000:

 CMD Frame “LOWADDR” with ADDR(4..0) = 0b00000

 CMD Frame “WRSQ” with BYTES = (32-1)

 1
st

 Data Frame from SPI master

 2
nd

 Data Frame from SPI master

 …

 32
nd

 Data Frame from SPI master

 CMD Frame “WRSQ” with BYTES = (16-1)

 33
rd

 Data Frame from SPI master

 34
th

 Data Frame from SPI master

 …

 48
th

 Data Frame from SPI master

Information:

In case of a read command (SPI Master reads from SPI Slave - Fig. 23) the SPI Master must send
an IDLE command (CMD = 0b000) in order to not confuse the SPI PDI FSM!

HIGHADDR MIDADDR

0xXX 0xXX

SPI Master

SPI Slave

ADDR REG

ADDR(14..10)

ADDR(9..5)

ADDR(4..0)

time

Fig. 21: SPI Data Flow – Addressing

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
29/46

WR DATA

0xXX 0xXX

SPI Master

SPI Slave

ADDR REG

ADDR(14..10)

ADDR(9..5)

time

ADDR(4..0)

PDI

ADDR

DATA

Fig. 22: SPI Data Flow – Write Data

RD IDLE

0xXX DATA

SPI Master

SPI Slave

ADDR REG

ADDR(14..10)

ADDR(9..5)

time

ADDR(4..0)

PDI

ADDR

DATA

Fig. 23: SPI Data Flow – Read Data

3.5.2 Finite State Machine (FSM)

The FSM controls the PDI access depending on the SPI data protocol (refer to 3.5.1). Furthermore a re-
set sequence is necessary to successfully wake up the SPI PDI. After reset the FSM stays in the reset
state until a dedicated SPI frame is received.
In the decode state the command of the SPI frame is interpreted.
Assume a “WRSQ” command which enters the waitwr state next. In the transition the variable writes is
set to the BYTE+1 pattern. The variable writes is decremented after every write and verified to repeat the
sequence (writes /= 0). In case of a simple “WR” or “RD” command the variable writes/reads respectively
are set to one.

POWERLINK IP-Core
Generic Documentation IP-Core Architecture

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
30/46

idle

decode

waitwr

wr

valid = 1

waitrd

rd

CMD = WR or CMD = WRSQ /

writes=BYTE+1

CMD = RD or CMD = RDSQ /

reads=BYTE+1

valid = 1

timeout

reads = reads - 1

addrReg = addrReg + 1

writes = writes – 1

addrReg = addrReg + 1

writes /= 0

reads /= 0 and

valid = 1

reset

CMD = WAKEUP

Rst = 1

reset1

CMD = WAKEUP1

Fig. 24: SPI FSM

3.5.3 Wake Up

The wake up functionality enables a defined boot sequence of the SPI slave. After hardware reset the
PDI SPI is in reset state (refer to Fig. 24) and waits for the wake up frame transmitted by the SPI master.
If the received frame is correctly decoded as WAKEUP frame, the PDI SPI is ready to use by entering the
idle state.

Wake Up Frame

The WAKEUP and WAKEUP1 frames are only valid in the reset state. If these frames are received in the
idle state, the FSM will interpret these commands as idle (since the highest three bits are zero).

WAKEUP Frame

7 6 5 4 3 2 1 0

0b000 0 0x3

WAKEUP1 Frame

7 6 5 4 3 2 1 0

0b000 0 0xA

3.6 I/O Port

TBD

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
31/46

4 Interface Definition

The Interface Definition is required to access different functionalities of the POWERLINK IP-core. This in-
formation is useful for software designer to develop device drivers.

4.1 POWERLINK

Depending on the configuration the POWERLINK IP-core consist of different Internal Bus Memory
Mapped Slave connections. Refer to Tab. 7 and its footnotes.

Tab. 7: Available Memory Mapped Interfaces

Nr Configuration openMAC
15

 PDI PORTIO

Memory Mapped Connection Points CMP REG BUF PCP AP SMP

1 Simple I/O (no AP)

2 Internal AP

3 External AP (e.g. MCU or DSP) for high data throughput
16

4 External AP (e.g. MCU or DSP) for low data throughput
17

The memory mapping of the mentioned Connection Points in Tab. 7 are described in detail on the follow-
ing pages.

In order to share a detailed description two examples are assumed in the following:

Example 1

An external AP is used (e.g. ARM MCU) connected to the POWERLINK IP-core via SPI – refer to Tab. 7 /
4 – to reduce PCB size. The POWERLINK component will include the openMAC interface (mandatory)
and the PDI connection points. The PDI PCP interface is connected to the Internal Bus. The PDI AP inter-
face uses the SPI protocol for data exchange to external components.

Example 2

An external AP is again available and should be connected via a 16bit parallel interface to achieve a
higher data throughput. In Tab. 7 the 3

rd
 entry has to be considered: Once again the mandatory

openMAC interfaces and the PCP connection point to the PDI are generated as Internal Bus Memory
Mapped Slave Interfaces. The AP port to the PDI uses a generic parallel interface protocol that is compat-
ible to most of the MCU available on the market.

4.2 OpenMAC

The openMAC IP is assembled to manage the Ethernet interfacing and POWERLINK specific hardware
acceleration. Beside general configuration and status registers the MAC uses TX and RX descriptor
blocks and RX filters. This functionality is accessible via the REG connection (4.2.2).
In order to achieve very low jitter synchronization a timer-triggered interrupt must be generated what is
realized with the MAC-timer and an additional compare unit accessible via CMP (4.2.1).
The packet buffer is realized with a DPRAM connected to the MAC and the second port is accessible via
the “BUF” interface (4.2.2.2).

15

 OpenMAC is mandatory for every configuration.
16

 For high data throughput to FPGA-external components it is recommended to use the parallel 8/16bit inter-
face configuration.
17

 For low data throughput it is sufficient to use SPI.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
32/46

4.2.1 MAC Timer Compare Register (CMP)

The CMP interface provides access to the MAC-timer compare unit to generate MAC-timer-triggered in-
terrupts. The compare unit is controlled via the CMP_CNTR and CMP_CNTR_TOG registers by write ac-
cesses.
Status and the current MAC time can be read out of the CMP interface.
Furthermore the CMP unit outputs a toggling signal that changes its level at a second compare value
match to the MAC-time. This toggling signal can be used for the AP synchronization.

In order to acknowledge the CMP_IRQ a write access to CMP_VAL_IRQ or CMP_VAL_TOG has to be
performed.

CMP write access

CMP (WR)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000C - - - CMP_CNTR_TOG

0x0008 CMP_VAL_TOG

0x0004 - - - CMP_CNTR

0x0000 CMP_VAL_IRQ

0x0004 CMP_CNTR
7 6 5 4 3 2 1 0

- EN_IRQ

Bit Name Default Description

0 EN_IRQ 0 0 = CMP IRQ is disabled, 1 = CMP IRQ is enabled

0x000C CMP_CNTR_TOG
7 6 5 4 3 2 1 0

- EN_ TOG

Bit Name Default Description

0 EN_TOG 0 0 = TOG IRQ is disabled, 1 = TOG IRQ is enabled

CMP read access

CMP (RD)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000C - - - CMP_STAT_TOG

0x0008 CMP_VAL_TOG

0x0004 - - - CMP_STAT

0x0000 MAC_TIME

0x0004 CMP_STAT
7 6 5 4 3 2 1 0

- IRQ EN_IRQ

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
33/46

Bit Name Default Description

0 EN_IRQ 0 0 = CMP is disabled, 1 = CMP is enabled

1 IRQ 0 0 = No IRQ, 1 = IRQ was generated due to MAC_TIME = CMP_VAL_IRQ

0x000C CMP_STAT
7 6 5 4 3 2 1 0

- TOG EN_TOG

Bit Name Default Description

0 EN_TOG 0 0 = CMP TOG is disabled, 1 = CMP TOG is enabled

1 TOG 0 Represents the level of TOG

4.2.2 MAC Register (REG)

The MAC register includes several registers and components as mentioned in Tab. 8.

Tab. 8: MAC offset mapping

Offset Component

0x0000 openMAC Control/Status Register

0x0800 openMAC filter DPRAM

0x0C00 openMAC descriptor DPRAM

0x1000 openMAC Phy management (MII)

0x1010 openMAC IRQ table

0x1020 openMAC DMA Observer

4.2.2.1 openMAC IRQ table

MAC_REG_BASE + 0x1010 openMAC IRQ table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- RX TX

Bit Name Default Description

0 TX 0 This bit represents a pending TX interrupt (1 = pending IRQ).

1 RX 0 This bit represents a pending RX interrupt (1 = pending IRQ).

4.2.2.2 openMAC DMA Observer

MAC_REG_BASE + 0x1020 openMAC IRQ table

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- RD - WR

Bit Name Default Description

0 WR 0 This bit is asserted if a DMA write error occurs.

Note: This bit holds the error state until a hardware reset is performed.

8 RD 0 This bit is asserted if a DMA read error occurs.

Note: This bit holds the error state until a hardware reset is performed.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
34/46

4.2.3 MAC Buffer (BUF)

The MAC Buffer interface “BUF” is directly mapped to the packet buffer DPRAM. In order to find the base
addresses of a packet the appropriate packet descriptor (including base address and further information)
must be read first.

4.3 Process Data Interface (PDI PCP/AP)

The Process Data Interface (PDI) provides the interface between the PCP and AP, and is defined as fol-
lows. Fig. 25 shows the memory mapping of the Control/Status Registers and the Asynchronous and
Process Data buffers.

Async Receive Buffer 2

Control and Status Registers

Async Transmit Buffer 2

Transmit PDO Buffer

Receive PDO0 Buffer

ASYNC_RX_BUF2_ADRS

0x0000

ASYNC_TX_BUF2_ADRS

RXPDO0_BUF_ADRS

TXPDO_BUF_ADRS

Receive PDO1 Buffer

Receive PDO2 Buffer

RXPDO1_BUF_ADRS

RXPDO2_BUF_ADRS

Async Receive Buffer 1

Async Transmit Buffer 1

ASYNC_RX_BUF1_ADRS

ASYNC_TX_BUF1_ADRS

Fig. 25: Memory Map

4.3.1 Control and Status Register

The following table shows the memory map of the control/status register. Note that the implementation at
hardware level is described only, hence, functionality provided by software are omitted.

Control Registers 0x0000

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000 MAGIC (RO)

0x0004 reserved FPGA_REV (RO)

0x0008
…

0x003C
DPRAM

0x0040
…

0x004C
2x DPRAM TIME_SYNC

0x0050 reserved TIME_AFTER_SYNC

0x0054 EVENT_ACK ASYNC_IRQ_CTRL

0x0058 TXPDO_BUF_ADRS (RO) TXPDO_BUF_SIZE (RO)

0x005C RXPDO0_BUF_ADRS (RO) RXPDO0_BUF_SIZE (RO)

0x0060 RXPDO1_BUF_ADRS (RO) RXPDO1_BUF_SIZE (RO)

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
35/46

0x0064 RXPDO2_BUF_ADRS (RO) RXPDO2_BUF_SIZE (RO)

0x0068 ASYNC_TX_BUF1_ADRS (RO) ASYNC_TX_BUF1_SIZE (RO)

0x006C ASYNC_RX_BUF1_ADRS (RO) ASYNC_RX_BUF1_SIZE (RO)

0x0070 ASYNC_TX_BUF2_ADRS (RO) ASYNC_TX_ BUF2_SIZE (RO)

0x0074 ASYNC_RX_BUF2_ADRS (RO) ASYNC_RX_ BUF2_SIZE (RO)

0x0078 reserved reserved

0x007C reserved reserved

0x0080 RXPDO0_ACK TXPDO_ACK

0x0084 RXPDO2_ACK RXPDO1_ACK

0x0088 reserved SYNC_IRQ_CTRL (PCP only)

0x008C reserved

0x0090 reserved

0x0094 LED_CNFG LED_CTRL

4.3.1.1 Magic Number Register (MAGIC)

0x0000 MAGIC (RO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x50435000 = “PCP\0”

This register contains a magic number which is used to identify a valid DPRAM memory block.

4.3.1.2 FPGA Revision Register (FPGA_REV)

0x00004 FPGA_REV (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Revision Nr. of FPGA Configuration

This register shall be used by the AP software in order to recognize an FPGA configuration which does
not match the current software.

4.3.1.3 Embedded Memory Block (DPRAM)

0x0008 … 0x003C DPRAM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DPRAM

This register is mapped to FPGA memory, hence, the content is defined by the software implementation.

4.3.1.4 Double-Buffered Embedded Memory Block for Time Synchronization (2x DPRAM
TIME_SYNC)

0x0040 … 0x004C 2x DPRAM TIME_SYNC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2x DPRAM

This register is mapped to FPGA memory, hence, the content is defined by the software implementation.
In addition a double-buffer mechanism is implemented, which is controlled by the SYNC IRQ routed to the
AP. This realisation avoids invalid or corrupted data being read by the AP.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
36/46

4.3.1.5 Time After Synchronization Interrupt (TIME_AFTER_SYNC)

0x00050 TIME_AFTER_SYNC (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIME_AFTER_SYNC

The TIME_AFTER_SYNC field provides a 16 bit clock tick value elapsed since the SYNC_IRQ. The clock
ticks refer to the AP’s clock (e.g. 50 MHz leads to 20 ns clock ticks). Note that the value starts counting
when SYNC_INT is asserted and finally saturates at 0xFFFF, hence, the AP has to read out the value as
soon as possible and only once!

4.3.1.6 Control Register of Asynchronous IR Signal (ASYNC_IRQ_CTRL)

0x0054 ASYNC_IRQ_CTRL (AP only)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN -

The asynchronous IRQ control is only accessible by the AP.

Bit Name Default Description

15 EN 0 1 = Interrupt Mode, 0 = Polling Mode (IR signal deactivated)

4.3.1.7 Event Acknowledge (EVENT_ACK)

0x0056 EVENT_ACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - PL1 PL0 - - - - - GE

The EVENT_ACK register can be accessed by the PCP and the AP respectively. The PCP sets an event
by writing a ‘1’. The AP acknowledges the event by writing a ‘1’ to the respective bit. The asynchronous
interrupt is asserted if at least one of the event bits is set to ‘1’.
Example: In order to acknowledge the Event PL1 and SW, the AP has to write the pattern 0x0081.

Bit Name Default Description

0 GE 0 Generic event set by PCP

‘1’ = generic event occurred, ‘0’ = no event

Note: The AP has to read the registers EVENT_TYPE and EVENT_CODE, before
sending an acknowledge!

6 PL0 0 Phy 0 link down

‘1’ = Phy 0 link down event occurred, ‘0’ = no event

7 PL1 0 Phy 1 link down

‘1’ = Phy 1 link down event occurred, ‘0’ = no event

4.3.1.8 Transmit PDO Message Buffer Size Register (TXPDO_ BUF_SIZE)

0x0058 TXPDO_BUF_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the transmit PDO message buffer in Bytes.

4.3.1.9 Transmit PDO Message Buffer Address Register (TXPDO_ BUF_ADRS)

0x005A TXPDO_BUF_ADRS (RO)

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
37/46

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the transmit PDO message buffer in the DPRAM memory region.

4.3.1.10 Receive PDO Message Buffer Size Register (RXPDOi_ BUF_SIZE)

0x005C, 0x0060 and
0x0064

RXPDOi_BUF_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the receive PDO message buffer in Bytes. If RPDOi is not present, the size will be 0.

4.3.1.11 Receive PDO Message Buffer Address Register (RXPDOi_BUF_ADRS)

0x005E, 0x0062 and
0x0066

RXPDOi_BUF_ADRS (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the receive PDO message buffer in the DPRAM memory region. If RPDOi is not present,
the address will be 0.

4.3.1.12 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF1_SIZE)

0x0068 ASYNC_TX_BUF1_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the asynchronous transmit
18

 message buffer in Bytes.

4.3.1.13 Asynchronous Message Transmit Buffer Address Register
(ASYNC_TX_BUF1_ADRS)

0x006A ASYNC_TX_BUF1_ADRS (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the asynchronous transmit
18

 message buffer.

4.3.1.14 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF1_SIZE)

0x006C ASYNC_RX_BUF1_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the asynchronous receive
18

 message buffer in Bytes.

4.3.1.15 Asynchronous Message Receive Buffer Address Register
(ASYNC_RX_BUF1_ADRS)

0x006E ASYNC_RX_BUF1_ADRS (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the asynchronous receive
18

 message buffer.

18

 Seen from AP point of view.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
38/46

4.3.1.16 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF2_SIZE)

0x0070 ASYNC_TX_BUF2_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the asynchronous transmit
18

 message buffer in Bytes.

4.3.1.17 Asynchronous Message Transmit Buffer Address Register
(ASYNC_TX_BUF2_ADRS)

0x0072 ASYNC_TX_BUF2_ADRS (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the asynchronous transmit
18

 message buffer.

4.3.1.18 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF2_SIZE)

0x0074 ASYNC_RX_BUF2_SIZE (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIZE

The size of the asynchronous receive
18

 message buffer in Bytes.

4.3.1.19 Asynchronous Message Receive Buffer Address Register
(ASYNC_RX_BUF2_ADRS)

0x0076 ASYNC_RX_BUF2_ADRS (RO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRS

The address of the asynchronous receive
18

 message buffer.

4.3.1.20 Transmit PDO Acknowledge Buffer (TXPDO_ACK)

0x0080 TXPDO_ACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUFFER_ACK

This field is accessible by PCP and AP separately and controls the virtual buffer management.
A write access of either 8 or 16 bit will switch to the next valid (= latest updated) virtual buffer.
If reading the register’s content, the value represents the current used virtual buffer. However, it is not
necessary to read-back the currently used virtual buffer, only for debugging purpose.
0x0000 … virtual buffer 0
0x1111 … virtual buffer 1
0x2222 … virtual buffer 2

4.3.1.21 Receive PDO Acknowledge Buffer (RXPDO_ACK)

0x0082, 0x0084 and
0x0086

RXPDOi_ACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUFFER_ACK

This field is accessible by PCP and AP separately and controls the virtual buffer management.
A write access of either 8 or 16 bit will switch to the next valid (= latest updated) virtual buffer.
If reading the register’s content, the value represents the current used virtual buffer. However, it is not
necessary to read-back the currently used virtual buffer, only for debugging purpose.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
39/46

0x0000 … virtual buffer 0
0x1111 … virtual buffer 1
0x2222 … virtual buffer 2
0xFFFF … RXPDOi is not implemented (disabled by generics)

4.3.1.22 Control Register of Synchronous IR Signal (SYNC_IRQ_CTRL)

This register is accessible from PCP and AP side with different content!
AP side:

0x0088 SYNC_IRQ_CTRL (AP only)

7 6 5 4 3 2 1 0

- IRQ_ACK

0x0089 SYNC_IRQ_CTRL (AP only)

15 14 13 12 11 10 9 8

EN -

The IRQ_ACK bit has to be set, if an IRQ was generated by the PCP to the AP. This will acknowledge the
IRQ.

Bit Name Default Description

0 IRQ_ACK 0 Self-clearing bit! 1 = acknowledges IRQ

15 EN 0 1 = Interrupt Mode, 0 = Polling Mode (IR signal deactivated)

PCP side:

0x0088 SYNC_IRQ_CTRL (PCP only)

7 6 5 4 3 2 1 0

IRQ_EN IRQ_MODE - IRQ_SET

0x0089 SYNC_IRQ_CTRL (PCP only)

15 14 13 12 11 10 9 8

-

The IRQ_EN bit enables the IRQ generation for any mode. The IRQ_MODE bit sets the IRQ generation
source. The IRQ_SET bit is only available if IRQ_MODE = ‘0’. Otherwise any write to this bit will be ig-
nored by the PDI PCP side!

Bit Name Default Description

7 IRQ_EN 0 0 = IRQ disabled, 1 = IRQ enabled

6 IRQ_MODE 0 0 = IRQ is generated by IRQ_SET, 1 = IRQ is triggered by hardware

0 IRQ_SET 0 Self-clearing bit! 1 = generates IRQ

4.3.1.23 LED Control (LED_CNTRL)

0x0094 LED_CNTRL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - O1 O0 PA1 PL1 PA0 PL0 E S

The PCP and AP can read the state of the LEDs in the LED_CNTRL register. If the PCP or the AP writes
to this register and the respective force bit is set in LED_CNFG, the LED state is overruled. Note that the
AP can overrule the PCP.

Bit Name Default Description

0 S 0 POWERLINK Status LED (1=on, 0=off)

1 E 0 POWERLINK Error LED (1=on, 0=off)

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
40/46

2 PL0 0 Phy 0 link LED (1=on, 0=off)

3 PA0 0 Phy 0 activity LED (1=on, 0=off)

4 PL1 0 Phy 1 link LED (1=on, 0=off)

5 PA1 0 Phy 1 activity LED (1=on, 0=off)

6 O0 0 Optional LED0 (1=on, 0=off)

7 O1 0 Optional LED1 (1=on, 0=off)

4.3.1.24 LED Configuration (LED_CNFG)

0x0096 LED_CNFG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- LED_FORCE_EN0

0x0096 LED_FORCE_EN0

7 6 5 4 3 2 1 0

FO1 FO0 FPA1 FPL1 FPA0 FPL0 FE FS

The LED bits set in LED_CNTRL are only written to the outputs if the FORCE_LED register is set appro-
priately with the corresponding bit pattern. A force enable bit set to “1” of the AP will overwrite any related
bit set by the PCP in the LED_CNTRL.

Bit Name Default Description

0 FS 0
19

 Force enable of POWERLINK Status LED (1=on, 0=off)

1 FE 0
19

 Force enable of POWERLINK Error LED (1=on, 0=off)

2 FPL0 0 Force enable of Phy 0 link LED (1=on, 0=off)

3 FPA0 0 Force enable of Phy 0 activity LED (1=on, 0=off)

4 FPL1 0 Force enable of Phy 1 link LED (1=on, 0=off)

5 FPA1 0 Force enable of Phy 1 activity LED (1=on, 0=off)

6 FO0 0 Force enable of Optional LED0 (1=on, 0=off)

7 FO1 0 Force enable of Optional LED1 (1=on, 0=off)

4.4 I/O Port (SMP)

Every write and read access to/from the first 4 bytes will access the PORT registers only. The I/O Port di-
rection is configured via the x_pconfig input port of the IP-core.
If one writes data to a port configured as input, the written data is ignored!
If one reads data from a port configured as output, the read data must be ignored!

SMP write access

SMP (WR)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000 PORTOUT3 PORTOUT2 PORTOUT1 PORTOUT0

0x0004 PORTEXTRA

19

 This bit is only for PCP side set to “1” per default.

POWERLINK IP-Core
Generic Documentation Interface Definition

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
41/46

Writing to one of the four PORTOUT registers will simply output the data pattern to the port if configured
as output.

0x0007 PORTEXTRA
7 6 5 4 3 2 1 0

PLK_OP - - - - - - -

Bit Name Default Description

7 PLK_OP 0 Links to the operational flag of the direct I/O interface. Set/reset this bit to
set/reset the operational pin. Read from this bit to obtain the pin’s state.

SMP read access

SMP (RD)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000 PORTIN3 PORTIN2 PORTIN1 PORTIN0

0x0004 PORTEXTRA - - PORTDIR

Reading from one of the four PORTIN registers will read the last latched data pattern if configured as in-
put.

0x0004 PORTDIR
7 6 5 4 3 2 1 0

- PORTDIR3 PORTDIR2 PORTDIR1 PORTDIR0

Bit Name Default Description

0 PORTDIR0 0 0 = Port is Output, 1 =Port is Input

1 PORTDIR1 0 0 = Port is Output, 1 =Port is Input

2 PORTDIR2 0 0 = Port is Output, 1 =Port is Input

3 PORTDIR3 0 0 = Port is Output, 1 =Port is Input

POWERLINK IP-Core
Generic Documentation Definitions and Abbreviations

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
42/46

5 Definitions and Abbreviations

AP Application Processor

BUF MAC-internal packet buffer

CMD Command

CMP Compare Unit

CN POWERLINK Controlled Node

DPR Dual Ported RAM

DPRAM Dual Ported RAM

FF Flip Flop

FPGA Field Programmable Gate Array

FSM Finite State Machine

GUI Graphical User Interface

IP Intellectual Property

IRQ Interrupt Request

MII Media Independent Interface

MN POWERLINK Managing Node

PCB Printed Circuit Board

PCP Powerlink Communication Processor

PDI Process Data Interface

PDO Process Data Object

PReq Poll Request (POWERLINK frame type)

PRes Poll Response (POWERLINK frame type)

RD Read

RDY Ready

RMII Reduced Media Independent Interface

RO Read Only

SDO Service Data Object

SMI Serial Management Interface (Ethernet phy register access)

SMP Simple I/O Port

SoA Start of Asynchronous (POWERLINK frame type)

SoC Start of Cyclic (POWERLINK frame type)

SPI Serial Peripheral Interface

SYNC Synchronization (Clock Domain Crossing)

WR Write

POWERLINK IP-Core
Generic Documentation References

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
43/46

6 References

[1] Wikipedia: “Serial Peripheral Interface Bus”
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
access: 2010-09-06

[2] Altera: “Avalon Interface Specification”
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
Version 11.0 (May 2011)

[3] FDS – openPOWERLINK Slave DevKit – Time Synchronization
Bernecker + Rainer
October 25, 2011

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

POWERLINK IP-Core
Generic Documentation Figure Index

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
44/46

7 Figure Index

Fig. 1: POWERLINK IP-Core Block Diagram .. 5
Fig. 2: POWERLINK IP-core System Overview Configuration Case 1 ... 7
Fig. 3: POWERLINK IP-core Sysrem Overview Configuration Case 2 ... 7
Fig. 4: OpenMAC IP-core – overview .. 10
Fig. 5: OpenMAC Block diagram ... 11
Fig. 6: DMA read transfer .. 13
Fig. 7: DMA write transfer .. 13
Fig. 8: Block diagram Internal Bus Memory Mapped Master .. 16
Fig. 9: PDI IP-core architecture overview .. 18
Fig. 10: SYNC IRQ Generator ... 19
Fig. 11: SYNC IRQ Generator - FSM .. 19
Fig. 12: Simple 2-stage Synchronizer ... 20
Fig. 13: 2-stage Synchronizer for pulse transfer ... 20
Fig. 14: Triple Buffer Logic System Overview ... 21
Fig. 15: Asynchronous 8/16bit Parallel Interface Overview ... 23
Fig. 16: Asynchronous 8/16bit Parallel Interface IP-core .. 23
Fig. 17: Write Access Timing ... 24
Fig. 18: Read Access Timing ... 25
Fig. 19: SPI IP-core architecture overview .. 25
Fig. 20: SPI timing [1] .. 26
Fig. 21: SPI Data Flow – Addressing .. 28
Fig. 22: SPI Data Flow – Write Data ... 29
Fig. 23: SPI Data Flow – Read Data ... 29
Fig. 24: SPI FSM ... 30
Fig. 25: Memory Map ... 34

POWERLINK IP-Core
Generic Documentation Table Index

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
45/46

8 Table Index

Tab. 1: Producer/Consumer Definition .. 6
Tab. 2: Available Configurations.. 8
Tab. 3: Clock signals ... 9
Tab. 4: Example – Decision LUT for "next free virtual buffer" ... 21
Tab. 5: Timing Specification of Asynchronous 8/16bit MCU Interface .. 24
Tab. 6: Command Frame Codes ... 26
Tab. 7: Available Memory Mapped Interfaces ... 31
Tab. 8: MAC offset mapping .. 33

POWERLINK IP-Core
Generic Documentation Index

Copyright © B&R - Subject to change without notice
POWERLINK-IP-Core_Generic.docx

July 30, 2012
46/46

9 Index

C

Clock ... 9

D

Definitions and Abbreviations 42
Design Considerations .. 6

F

Figure Index .. 44

I

Interface Definition .. 31
OpenMAC ... 31
PDI .. 34
POWERLINK IP .. 31
SMP... 40

Introduction ... 5
IP-Core Architecture ... 9

External 8/16bit Parallel Interface 22
I/O Port .. 30
POWERLINK ... 9
Process Data Interface.................................... 17
SPI ... 25

IRQ Generator .. 18

L

Listing Index .. 46

O

OpenMAC
BUF ... 34
CMP .. 32

REG .. 33
OpenMAC Ethernet .. 9

Internal Bus Memory Mapped Master 14
OpenMAC ... 10
Packet Buffer .. 14

R

References ... 43

S

Safety Notices .. 2
SPI ... 25

Command Frame ... 26
Command Frame Codes 26
Communication Protocol 26
Data Flow ... 27
Data Frame .. 27
FSM .. 29
HIGHADDR .. 26
MIDADDR ... 26
Wake Up ... 30

SYNC ... 18
FSM .. 19

Synchronizer .. 19

T

Table Index .. 45
Table of Contents ... 3
Triple Buffer Logic .. 20

CURRENT .. 21
LOCKED ... 21

V

Versions ... 2

	1 Introduction
	2 Design Considerations
	2.1 System Overview
	2.2 System Configuration

	3 IP-Core Architecture
	3.1 POWERLINK
	3.1.1 Clock Sinks

	3.2 OpenMAC Ethernet
	3.2.1 MAC (openMAC)
	3.2.1.1 DPR
	3.2.1.2 RX Packet Filter
	3.2.1.3 Auto-Response Ability
	3.2.1.4 Timer
	3.2.1.5 DMA
	3.2.1.5.1 Observer

	3.2.2 Packet Buffer (BUF)
	3.2.3 Internal Bus Memory Mapped Master (MAC_DMA)
	3.2.3.1 Architecture Design
	3.2.3.2 Performance Consideration

	3.2.4 HUB (openHUB)
	3.2.5 Anti-Distortion-Filter (openFILTER)
	3.2.6 Phy Management (openMAC MII)

	3.3 Process Data Interface
	3.3.1 SYNC IRQ Generator
	3.3.2 Synchronizer
	3.3.3 Triple Buffer Logic
	3.3.4 Time Synchronization

	3.4 Asynchronous 8/16bit Parallel Interface
	3.4.1 General Description
	3.4.2 Timing Specification

	3.5 SPI
	3.5.1 Communication Protocol
	3.5.2 Finite State Machine (FSM)
	3.5.3 Wake Up

	3.6 I/O Port

	4 Interface Definition
	4.1 POWERLINK
	4.2 OpenMAC
	4.2.1 MAC Timer Compare Register (CMP)
	4.2.2 MAC Register (REG)
	4.2.2.1 openMAC IRQ table
	4.2.2.2 openMAC DMA Observer

	4.2.3 MAC Buffer (BUF)

	4.3 Process Data Interface (PDI PCP/AP)
	4.3.1 Control and Status Register
	4.3.1.1 Magic Number Register (MAGIC)
	4.3.1.2 FPGA Revision Register (FPGA_REV)
	4.3.1.3 Embedded Memory Block (DPRAM)
	4.3.1.4 Double-Buffered Embedded Memory Block for Time Synchronization (2x DPRAM TIME_SYNC)
	4.3.1.5 Time After Synchronization Interrupt (TIME_AFTER_SYNC)
	4.3.1.6 Control Register of Asynchronous IR Signal (ASYNC_IRQ_CTRL)
	4.3.1.7 Event Acknowledge (EVENT_ACK)
	4.3.1.8 Transmit PDO Message Buffer Size Register (TXPDO_ BUF_SIZE)
	4.3.1.9 Transmit PDO Message Buffer Address Register (TXPDO_ BUF_ADRS)
	4.3.1.10 Receive PDO Message Buffer Size Register (RXPDOi_ BUF_SIZE)
	4.3.1.11 Receive PDO Message Buffer Address Register (RXPDOi_BUF_ADRS)
	4.3.1.12 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF1_SIZE)
	4.3.1.13 Asynchronous Message Transmit Buffer Address Register (ASYNC_TX_BUF1_ADRS)
	4.3.1.14 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF1_SIZE)
	4.3.1.15 Asynchronous Message Receive Buffer Address Register (ASYNC_RX_BUF1_ADRS)
	4.3.1.16 Asynchronous Message Transmit Buffer Size Register (ASYNC_TX_BUF2_SIZE)
	4.3.1.17 Asynchronous Message Transmit Buffer Address Register (ASYNC_TX_BUF2_ADRS)
	4.3.1.18 Asynchronous Message Receive Buffer Size Register (ASYNC_RX_BUF2_SIZE)
	4.3.1.19 Asynchronous Message Receive Buffer Address Register (ASYNC_RX_BUF2_ADRS)
	4.3.1.20 Transmit PDO Acknowledge Buffer (TXPDO_ACK)
	4.3.1.21 Receive PDO Acknowledge Buffer (RXPDO_ACK)
	4.3.1.22 Control Register of Synchronous IR Signal (SYNC_IRQ_CTRL)
	4.3.1.23 LED Control (LED_CNTRL)
	4.3.1.24 LED Configuration (LED_CNFG)

	4.4 I/O Port (SMP)

	5 Definitions and Abbreviations
	6 References
	7 Figure Index
	8 Table Index
	9 Index

