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Abstract -- This paper presents OPC UA PubSub        
over Time-Sensitive Networking (TSN) with the      
VxWorks real-time operating system. We describe      
TSN features in VxWorks and the integration of        
open62541, an open source OPC UA project.       
Further, we evaluate the real-time performance of       
the system and present test results for time-aware        
scheduling and IEEE1588 time synchronization. 

I. INTRODUCTION 

The advent of OPC UA PubSub in 2018 enabled OPC          
UA as a standard protocol for interoperability       
between high performance embedded devices in      
industrial real-time applications. While this market      
has been dominated by vendor or industry specific        
fieldbus technologies for decades, OPC UA PubSub       
in combination with Time-Sensitive Networking     
(TSN) provides cost savings and makes the       
connection to Industrial Internet of Things (IIoT)       
possible. 

A typical use case for TSN is isochronous data         
transmission, that is, when packets are sent cyclic and         
with constant delay. For example, a sensor device in         
a control network sends new readings to the        
controller in every control loop cycle. OPC UA        
PubSub was designed particularly for this type of        
communication and adds very little protocol      
overhead. Furthermore, adding TSN allows for both       
hard real-time and competing best effort traffic to        
coexist on the same wires. 

Typical Key Performance Indicators (KPIs) for      
industrial real-time applications are: 

● Time synchronization convergence and    
stability 

● Cycle time 
● Packet delay variation (jitter) 
● Interrupt latency 

In realistic test scenarios KPIs should be measured on         
heavily loaded systems. A loaded system is one        
where competition exists for both CPU resources and        
network bandwidth between the OPC UA PubSub       
application and other applications on the device. 

Previous publications on OPC UA over TSN evaluate        
performance when running on the Linux operating       
system [2] [3]. In this paper we describe the test          
process and present performance results when      
running on the VxWorks real-time operating system       
(RTOS). VxWorks, from Wind River Systems, is one        
of the most commonly used RTOSs. It operates in the          
Industrial, A&D, Space, Medical, Consumer and      
Telecom markets with billions of devices deployed       
over the last 30+ years. Table 1. lists the TSN related           
standards applied in this paper. 
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Table 1. 

Standard Description 

IEEE 1588-2008 Precision Time Protocol 

IEEE 802.1AS Timing and 
Synchronization for 
Time-Sensitive 
Applications 
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A. OPC UA Implementation 

Several stacks were evaluated before selecting an       
OPC UA implementation for integration with      
VxWorks TSN. The open62541 project at      
https://open62541.org provides a portable OPC UA      
stack written in ANSI-C which meets RTOS       
requirements. These requirements include: 

● A non-GPL license that can be used with a         
commercial software license 

● Multi-threading support 
● Scalable 
● Deterministic 
● Secure 

The open62541 project is maintained by several       
academic institutions and commercial enterprises.     
The source code is licensed under MPL 2.0 (Mozilla         
Public License Version 2.0). Because it meets the        
requirements, open62541 was chosen for the      
VxWorks TSN integration effort. 

B. Time Synchronization 

Naturally, the prerequisite for TSN is that all devices         
on the network must keep synchronized time in order         
to transmit scheduled traffic. This is achieved by        
using the Precision Time Protocol (PTP) on the        
network. The PTP protocol, also known as       
IEEE1588, holds the time in a network device        
register and uses it to generate receive- and transmit         
timestamps. The effect of varying queuing delays is        
therefore minimized, and a synchronization accuracy      
of under one microsecond can be achieved. 

Two open source implementations of PTP with       
permissive licenses are available with VxWorks: 

● PTPd (https://github.com/ptpd/ptpd) 
● gPTP (https://github.com/Avnu/gptp) 

gPTP implements the 802.1AS standard, which is an        
adaption profile of IEEE1588 geared towards      
industrial and automotive TSN applications. 

C. Time-Aware Scheduling 

The time-aware scheduler (TAS) is defined in the        
IEEE 802.1Qbv standard and was designed to       
separate Ethernet transmission into repeating time      
cycles of a fixed length. Each cycle can be divided          
into time slices, where each time slice is assigned to          
one or more traffic classes (TCs). During a time slice,          
802.1Qbv capable hardware grants exclusive use to       
the transmission medium for those traffic classes that        
have been assigned to it. Figure 1 shows an example          
with two time slices per cycle and one TC per time           
slice. Typically, the VLAN priority bits are used to         
map the frame to a particular traffic class. 

Time Specific Departure (TSD) is a variant of TAS         
where, instead of assigning a traffic class to each         
frame, the application (or network stack) programs       
the requested launch time into the packet descriptor.        
TSN capable hardware will then hold the packet in         
the transmit queue until the PTP time has reached the          
launch time before sending it. Figure 2 shows an         
example where the launch time of the isochronous        
data is 70 µs into the TSN cycle. 
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IEEE 802.1Qbv Enhancements for 
Scheduled Traffic 

IEEE 802.1Qbu Frame Preemption 

IEEE 802.3br Interspersing Express 
Traffic 
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In this paper we use TSD to control time-aware         
scheduling. There are two reasons for this choice.        
First, it gives the user exact control over when the          
OPC UA packet shall be sent. Second, TSD, allows         
us to evaluate the effect of frame preemption        
(802.1Qbu/802.3br) on the maximum receive packet      
jitter. 

Previous Ethernet standards do not allow a frame to         
interrupt an already transmitting frame. This means if        
competing best-effort packets have begun     
transmission at the moment the real-time OPC UA        
packet must be sent, the real-time packet is delayed.         
Since the typical Maximum Transfer Unit (MTU) on        
an Ethernet network is 1500 Bytes this delay is up to           
12 µs on a 1 Gb/s link. On a 100 Mb/s link the delay              
is up to 120 µs. To overcome the inherent problem          
with competing traffic, two new standards were       
developed, 802.1Qbu (Frame Preemption) and     
802.3br (Interspersing Express Traffic). These     
standards allow preemption of an already transmitting       
Ethernet frame by a higher priority (express) frame.        
Figure 3 shows how the preempted frame continues        
after the express frame has completed transmission.       
802.1Qbu and 802.3br are not supported on legacy        
Ethernet hardware. 

 

D. TSN Implementation 

Any operating system must be configured to enable        
Time-Sensitive Networking features and connect the      
OPC UA PubSub application to the requested cycle        
time and transmit schedule. In VxWorks we used the         
following TSN features to perform the      
measurements: 

● TSN interrupt and affinity 
● TSN streams 
● SO_X_QBV and SO_X_STACK_IDX 

TSN interrupt and affinity 

Usually, IEEE1588 hardware can generate either      
one-shot or periodic interrupts based on the PTP        
clock. The network devices have their internal clocks        
synchronised by the PTP protocol, so we can use the          
clock interrupt to generate a synchronous event       
triggering isochronous OPC UA PubSub     
transmission. The example code snippet below shows       
how to use the VxWorks API to configure a periodic          
tick timer based on the 1588 VxWorks interrupt. The         
timer will expire every 250 µs and call the user          
defined routine usrTsnClockIsr.  

cid = tsnClockIdGet("enetc",0,0); 

if (cid != 0) 

{ 

  ret = tsnTimerAllocate (cid); 

  if (ret == OK) 

  { 

    ret = tsnClockConnect (cid, 

                   usrTsnClockIsr, 0); 

    if (ret == OK) 

      ret = tsnClockRateSet(cid, 250); 

  } 

} 

Note that while open62541 can be adapted to transmit         
packets directly in the interrupt service routine (ISR),        
we decided to only use the ISR to signal a          
semaphore. This mimics a realistic RTOS      
programming scenario. The semaphore will unblock      
the OPC UA PubSub publisher task which in turn         
prepares the OPC UA packet for transmission.       

3 



 

Affinity of the TSN interrupt can be controlled with         
the VxWorks API tsnClockIntReroute. This API      
selects the CPU core that will process the TSN         
interrupt. In order to minimize interrupt and task        
latency, it is recommended to use the same core for          
the ISR and the OPC UA publisher and isolate this          
core from other interrupts and tasks. 

TSN streams 

TSN streams are used to configure TSN scheduling in         
VxWorks. The network stack is aware of TSN        
streams and will apply scheduling parameters to       
outgoing packets as defined by the stream.       
Additionally, the network stack will apply VLAN       
tag, PCP bits and MAC address according to the TSN          
stream. TSN streams can be created by a        
programming API or by a special tool called        
tsnconfig which takes a JSON formatted file as input.         
For the tests in this paper we used the following          
configuration file: 

{ 

  "schedule" : { 

    "cycle_time" : 250000 , 

    "start_sec" : 0 , 

    "start_nsec" : 0 

  }, 

  "stream_objects" : [ 

    { 

      "stream" : { 

        "name" : "flow1" , 

        "dst_mac" : "01:00:5E:00:00:01" , 

        "vid" : 3000 , 

        "pcp" : 7 , 

        "tclass" : 7 , 

        "tx_time" : { 

          "offset" : 200000 

        } 

      } 

    } 

  ] 

} 

The schedule object defines the TSN schedule cycle        
time in nanoseconds and the schedule start time (0         
means immediately). A list of streams is defined by         

the object stream_objects, where each stream object       
is defined by: 

● Name (ascii string) 
● Destination MAC address 
● VLAN id 
● PCP bits 
● Traffic class 
● Tx time 

Tx time defines the offset into the schedule when this          
TSN stream transmits (launch time). The JSON file        
supports many other configuration parameters which      
are not discussed here. 

SO_X_QBV and 
SO_X_STACK_IDX 

The OPC UA PubSub over Ethernet implementation       
in open62541 uses a raw packet socket       
(AF_PACKET) for transmission. Integration was     
simple because VxWorks already supports the      
AF_PACKET socket domain. Connecting open62541     
to VxWorks TSN required a single code addition.        
The socket option SO_X_QBV was set on the OPC         
UA PubSub socket. In VxWorks, SO_X_QBV      
connects a socket to a TSN stream which means all          
data that is sent through the socket will be scheduled          
according to the stream. Another VxWorks socket       
option that optimizes latency is SO_X_STACK_IDX.      
This socket option locks a socket to a specific         
network stack instance which in turn can be        
affinitized to a specific core. In our tests we assign a           
dedicated network instance to the same core that        
processes the TSN interrupt and runs the OPC UA         
publisher task. The example code below shows how        
to use SO_X_QBV and SO_X_STACK_IDX: 

setsockopt (fd, SOL_SOCKET, SO_X_QBV, 

“flow1”, TSN_STREAMNAMSIZ); 

setsockopt(fd, SOL_SOCKET, SO_X_STACK_IDX, 

&stkIdx, sizeof(stkIdx)) 

II. TEST SETUP 
A. Hardware Setup 

Figure 4 shows the hardware setup used in the tests,          
consisting of two NXP LS1028A reference design       
boards. The LS1028A is a dual core ARM        
Cortex-A72 processor system running at 1.3 GHz.       
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The board carries an Ethernet controller (ENETC)       
and an Ethernet switch, both of which are TSN         
capable. In this test we use the ENETC to connect the           
boards peer to peer at a link speed of 1 Gb/s with a             
standard Ethernet cable. 

 

The first system is the VxWorks device under test         
(DUT) and runs the OPC UA publisher. The second         
system is the receiver and runs Wind River Linux.         
The receiver is any computer that supports PTP and         
is capable of capturing hardware timestamps of       
incoming packets. Specifically for PTP testing, we       
connected two intermediate Cisco IE-4000 industrial      
Ethernet switches between the two systems.  

B. Software setup 

The software used in the tests is listed in table 2. It            
consists of both Wind River proprietary software       
packages and Open Source packages. 

 

In addition to the software packages provided by the         
operating systems, we developed a receiver      
application for Linux called tsnPerfLxRx. This      
application captures all incoming OPC UA PubSub       
packets with their receive timestamps based on the        
IEEE1588 clock. The receiver will dump the packet        
log into a text file which can be used to analyze the            
performance of the DUT. For this purpose we        
developed a Python tool called tsnPerfAnalyzer      
which will compute packet delay and jitter for the         
OPC UA PubSub traffic. The tool will also plot         
graphs of test results. 

III. TEST RESULTS 
A. Precision Time Protocol 

The aim of initial testing was verification of time         
synchronization accuracy and stability for the      
IEEE1588 clock on the VxWorks device as       
controlled by PTP. Isochronous real-time     
communication with TSN relies on highly accurate       
network device clock synchronization. Depending on      
the type of industrial application, the required       
synchronization accuracy can be as low as 250 ns [5].          
The endpoints in industrial Ethernet networks are       
usually connected with PTP capable switches or       
bridged endpoints. Even if the PTP protocol allows        
for compensation of switch queueing delays, some       
degradation of synchronization accuracy is expected      
for each switch hop. In this paper we investigate the          
effect on synchronization accuracy by adding two       
intermediate switches. Figure 5 shows the test setup        
with two switches. We configured the PTP protocol        
such that the Linux device will become the master         
and the device under test will become the slave. 
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Table 2. 

Software package information 

VxWorks Version 

VxWorks 7 SR0660 

ptpd v2.3.1 

gPTP v1.0.0 

open62541 v1.1.2 

iperf3 v3.7 

  

Linux Version 

Wind River Linux LTS 19.45 Update 10 

ptp4l v2.0 

iperf3 v3.7 



 

 

We also tested the convergence time of clock        
synchronization, meaning the time it takes for a new         
network device to reach IEEE1588 clock      
synchronization to the master device. The      
convergence time includes both the time to determine        
the best master clock (BMC) as governed by the         
802.1AS protocol and the actual time to synchronize        
the time by tuning the IEEE1588 clock frequency.        
Convergence time is an essential factor for some TSN         
applications as it affects system startup and repair. 

Table 3. summarizes the test results for time        
synchronization. For 80000 samples taken over a       
22-hour period, the maximum offset was 29 ns with         
no switch hops and 37 ns with two switch hops. The           
offset is sampled by calculating the root mean square         
value (rms) of the offset of the last eight PTP sync           
messages received from the master. The convergence       
time was between 2 and 3 seconds in both cases. 

 

Figure 6 shows a histogram of synchronization       
accuracy for the two hops case where the bucket size          
is 10 ns. The first bucket counts samples between 0          
and 10 ns, the second between 10 and 20 ns and so            
forth. It is evident that the majority of samples         
(>90%) are in the first bucket which means the offset          

is less than 10 ns. Sampling starts when the time          
synchronization has converged to avoid skewing the       
data with initial large offsets. 

Figure 7 shows the convergence time for the two         
switch hops case. The graph begins after the best         
master clock algorithm (BMC) has completed and the        
slave starts to tune the frequency of the IEEE1588         
device clock to keep in sync with the master. 

B. Isochronous transmission 

The next phase of testing was to evaluate the         
performance of isochronous packet transmission by      
OPC UA PubSub. Several factors must be considered        
when determining the sustainable publishing rate of a        
particular hardware device and operating system. A       
few examples are listed below: 

● CPU frequency and number of cores 
● Interrupt latency 
● Context switch latency 
● Network stack 
● OPC UA stack 
● Application code 
● Background traffic 
● Ethernet transmission time 

The packet delay and jitter can be measured at the          
receiver by taking a hardware timestamp of all        
incoming packets using the IEEE1588 clock. Since       
the publisher’s clock is synchronized with the master,        
and OPC UA packets can only be transmitted once         
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Table 3. 

Switch 
Hops 

PTP 
Profile 

Conv- 
ergence 
Time (s) 

Offset from 
Master (ns) 

Max Average 

0 802.1AS 2 - 3 29 4 

2 802.1AS 2 - 3 37 6 

 

Figure 6. Time synchronization accuracy 
with two switch hops 

 

Figure 7. Convergence time with two switch 
hops 



 

per cycle at the programmed offset, we know that the          
time difference between successive OPC UA packets       
must be equal to the cycle time. If the OPC UA           
packets do not arrive in every cycle the publisher is          
not able to sustain the requested cycle time. Some         
jitter will naturally be introduced by factors such as         
variation in time synchronization accuracy, and      
background traffic which is competing for the       
transmission media. The OPC UA traffic can be        
referred to as critical and the background traffic as         
best effort. In order to understand the latencies        
introduced by the operating system, we added       
instrumentation code in the execution path of the        
OPC UA publisher application. We sample the       
IEEE1588 clock at these instrumentation points and       
embed the timestamps in the OPC UA user data. By          
this method, the timing characteristics can easily be        
analyzed in the receiver application and compared       
with the cycle time. Figure 8 shows three time         
intervals labeled T1, T2 and T3 used in our tests. 

 

T1 is the time from the start of the cycle until the            
OPC UA PubSub task begins to execute. It consists         
of interrupt and context switch latency induced by the         
RTOS. T2 is the runtime of the OPC UA publisher          
task and consists of the open62541 PubSub logic to         
setup and transmit the packet. T3 is the time between          
the end of the OPC UA publisher task and the          
programmed launch offset in the cycle. T3 can be         
interpreted as the headroom available for additional       
user code in the context of the publisher task. Be          
aware that T3 must also allow for any additional CPU          
time required for the packet to traverse the network         
stack and reach the transmission queue in the device         
before the programmed launch time. In order to        
minimize latency and optimize the cycle time we        

made some specific configurations in the VxWorks       
RTOS as shown in figure 9. 

 

The LS1028A was configured with core affinity so        
that the first core handles the PTP protocol and best          
effort traffic. Best effort traffic was simulated by        
iperf3 which is a common tool for network        
throughput testing. The second core handles OPC UA        
PubSub and also processes the TSN interrupt.       
Furthermore, we created two network stack instances,       
one for each core, which means the OPC UA packets          
can pass independently and at a higher priority        
through the network stack. We used different       
transmission queues in the Ethernet controller for the        
best effort and OPC UA traffic types where the latter          
has higher priority. Figure 10 shows the traffic types. 

Our testing of isochronous packet transmission by       
OPC UA PubSub comprised four test cases: 

A. OPC UA PubSub without TSN and no best 
effort traffic 
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B. OPC UA PubSub with TSN (802.1Qbv) and 
no best effort traffic 

C. OPC UA PubSub without TSN but with 
simultaneous best effort traffic. 

D. OPC UA PubSub with TSN (802.1Qbv) and 
with simultaneous best effort traffic 

In each test case we measured the packet delay and          
calculated the packet delay variation (jitter). The       
packet delay is defined as the difference in receive         
time between two consecutive packets which      
nominally should be equal to the cycle time. The         
jitter is defined as the absolute value of the variation          
in packet delay for each packet. For example, if the          
cycle time is 250 µs and a packet is received 248 µs            
after the previous packet, the jitter for that packet is 2           
µs. Further, we also verified that all OPC UA PubSub          
packets transmitted by the sender were received. 

All tests were run with a cycle time of 250 µs and a             
transmission offset for the OPC UA PubSub packet        
of 200 µs. The packet length was 64 bytes. In case A            
and C which do not use TSN, transmission is still          
driven by the TSN interrupt but the packet is not          
assigned a launch time. Best effort traffic was        
generated by iperf3 which sources TCP data without        
rate limiting. Therefore, iperf3 uses all available       
bandwidth.  

For each test we collected 1 million samples. By         
comparing the packet delay and jitter for test case A          
and B, we demonstrate the general effect of TSN on          
packet delay and jitter. Comparing A and C shows the          
additional jitter of critical traffic induced by lower        
priority traffic without the support of TSN.       
Comparing case C and D proves packet delay and         
receive critical traffic jitter are stable with TSN when         
lower priority traffic competes for the transmission       
media. Further, case D validates that the system can         
handle the requested cycle time while all critical        
packets arrive at the receiver with the expected delay         
and jitter. Case D should be seen as the realistic use           
case that will be deployed in industrial applications        
because it introduces competition for both CPU and        
network resources in the system. 

Figure 11a shows packet delay and jitter for one         
million samples in case A which corresponds to about         
four minutes of runtime at 250 µs cycle time. 

The average jitter for case A is 117 ns while the           
maximum jitter is 36 µs. Figure 11b shows packet         
delay and jitter for the first 1000 samples in case B. 

The average jitter for case B is 16 ns while the           
maximum jitter is 45 ns. Comparing A and B shows          
significant jitter reduction by the addition of TSN.        
Extending the test duration to one hour generates        
similar data. 
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Figure 11a. Packet delay and jitter without 
TSN 

 

Figure 11b. Packet delay and jitter with TSN 
(802.1Qbv) 



 

Figure 11c shows packet delay and jitter for the first          
1000 samples in case C. 

The average jitter for case C is 85 µs while the           
maximum jitter is 380 µs. In this case the OPC UA           
PubSub packets are heavily delayed by lower priority        
packets and fail to transmit in the intended cycle.         
Extending the test duration to one hour shows even         
worse jitter. 

Figure 11d shows packet delay and jitter for one         
million samples in case D. 

The average jitter for case D is 6 µs while the           
maximum jitter is 15 µs. These jitter numbers clearly         

show that the system can handle the 250 µs cycle          
time. Despite time-aware scheduling lower priority      
packets can still delay the transmission of the critical         
packet up to 15 µs. While the average jitter was only           
16 ns in case B it increased to 6 µs in case D due to               
best effort traffic occupying the transmission media       
for most critical traffic.  

For case D we analyzed the timing data of the OPC           
UA publisher by plotting the T1 and T2 time         
intervals. Figure 12a and 12b show 3D histograms        
with 3000 sets of 400 samples which equals 1.2         
million samples in total. Each repetition plots       
logarithmic latency bars for greater visibility. The       
meaning of T1 and T2 are defined in figure 8. 

Figure 12a shows latency for T1, that is, the delay          
between the start of the cycle until the publisher task          
begins to execute. The worst case T1 latency is 7 µs           
which happens eight times out of all samples. 
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Figure 11c. Packet delay and jitter without 
TSN but with simultaneous best effort traffic  

 

Figure 11d. Packet delay and jitter with TSN 
(802.1Qbv)  and with simultaneous best 

effort traffic  

 

Figure 12a. Latency between cycle start until 
OPC UA publisher task begins 



 

Figure 12b shows latency for T2, that is, the         
execution time of the publisher task. The worst case         
T2 latency is 13 µs which happens once. It should be           
noted that the measured latencies include some       
overhead added by reading the IEEE1588 clock       
which we estimate to at most 10%. 

Summing T1 and T2 equals 20 µs which means there          
are 230 µs left in the 250 µs cycle for additional user            
application code in the worst case. However, the        
network stack consumes additional CPU cycles when       
the packet is sent to the device, which should be          
taken into account when selecting the transmission       
offset. 

C. Frame preemption 

The third phase of testing was to investigate the         
effect of frame preemption (802.1Qbu and 802.3br)       
in the context of OPC UA PubSub over TSN. It is           
evident from figure 11d that competing best effort        
traffic can delay time critical traffic by up to 15 µs,           
which may be an unacceptable jitter for some        
industrial applications. In order to enable frame       
preemption, we added a section in the TSN        
configuration file as below: 

{ 

... 

  "preemption" : { 

    "tclass_mask" : 1 , 

  }, 

... 

} 

The tclass_mask key specifies which traffic classes       
are preemtible and which are express traffic. In our         
test case the best effort traffic is preemptible while         
OPC UA packets are express traffic. Figure 13 shows         
packet delay and jitter for the first 1000 samples         
when frame preemption is enabled in addition to        
time-aware scheduling. As in case D best effort        
traffic is also present on the wire. 

The average jitter with preemption enabled is 78 ns         
while the maximum jitter is 630 ns. Comparing this         
test case to case D clearly shows that the maximum          
jitter has been reduced by applying frame       
preemption. Further analysis of test data shows that        
over 90% of OPC UA PubSub packets preempted a         
low priority packet. Table 4. summarizes the test        
results for time-aware scheduling. 
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Figure 12b. OPC UA publisher runtime  

 

Figure 13. Packet delay and jitter with TSN 
(802.1Qbv+802.1Qbu) and with 
simultaneous best effort traffic  

Table 4. 

Test Case Packet Jitter 

Max Average 

OPC UA PubSub 36 µs 117 ns 



 

 

IV. CONCLUSION 

First, based on the test results we conclude that OPC          
UA PubSub over TSN is a viable protocol for         
industrial real-time communication. Second, we have      
proven that the VxWorks RTOS provides the       
required performance, and implements the required      
TSN standards to build OPC UA publisher       
applications that meet highly deterministic industrial      
automation requirements as outlined in [5]. Applying       
time specific departure to critical traffic can       
guarantee a maximum receive jitter close to the        
Ethernet transmission time for the MTU, which is 12         
µs on a 1 Gb/s link with 1500 bytes MTU size. We            
learned the jitter is caused by competing best effort         
traffic on the same wire. Also, adding 802.1Qbu        
(frame preemption) can reduce the jitter to less than         
one microsecond for critical traffic while the       
remaining bandwidth of the link is fully utilized. 

V. FUTURE DIRECTIONS 

The implementation and measurements described in      
this paper cover the real-time properties of an OPC         
UA publisher device on a TSN network. In addition         
to isochronous transmission performance, a device      
must also meet certain performance criteria when       
acting as a subscriber receiving time scheduled       
packets. Future experiments should focus on OPC       

UA PubSub roundtrip measurements, including both      
a publisher and subscriber. 

Future work could also experiment with optimization       
of the minimal TSN cycle time that can be sustained          
without packet loss or missed cycles. While our        
current implementation is interrupt driven it would be        
possible to use a busy wait loop to drive isochronous          
transmission in order to reduce interrupt latency.       
Another optimization that could be considered is to        
use the lower level VxWorks API muxSend to        
transmit OPC UA PubSub packets. Currently, the       
implementation uses a network stack raw socket       
which adds some latency compared to writing frames        
directly to the driver layer in VxWorks. 

OPC UA security is an important factor to consider in          
any network. At the time of writing, secure OPC UA          
PubSub is not supported in open62541. When it        
becomes available, it would be relevant to test the         
effect that security has on the cycle time and jitter.          
This is because cryptography is a relatively expensive        
CPU operation. 
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OPC UA PubSub 
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45 ns 16 ns 
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+Best effort 
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