
OPC UA PubSub over TSN
Open Source with a Real-time Operating System

Markus Carlstedt, Yabing Liu and Ting Wang

Wind River Systems

markus.carlstedt@windriver.com, yabing.liu@windriver.com, christina.wang@windriver.com

November 2020

Abstract -- This paper presents OPC UA PubSub
over Time-Sensitive Networking (TSN) with the
VxWorks real-time operating system. We describe
TSN features in VxWorks and the integration of
open62541, an open source OPC UA project.
Further, we evaluate the real-time performance of
the system and present test results for time-aware
scheduling and IEEE1588 time synchronization.

I. INTRODUCTION

The advent of OPC UA PubSub in 2018 enabled OPC
UA as a standard protocol for interoperability
between high performance embedded devices in
industrial real-time applications. While this market
has been dominated by vendor or industry specific
fieldbus technologies for decades, OPC UA PubSub
in combination with Time-Sensitive Networking
(TSN) provides cost savings and makes the
connection to Industrial Internet of Things (IIoT)
possible.

A typical use case for TSN is isochronous data
transmission, that is, when packets are sent cyclic and
with constant delay. For example, a sensor device in
a control network sends new readings to the
controller in every control loop cycle. OPC UA
PubSub was designed particularly for this type of
communication and adds very little protocol
overhead. Furthermore, adding TSN allows for both
hard real-time and competing best effort traffic to
coexist on the same wires.

Typical Key Performance Indicators (KPIs) for
industrial real-time applications are:

● Time synchronization convergence and
stability

● Cycle time
● Packet delay variation (jitter)
● Interrupt latency

In realistic test scenarios KPIs should be measured on
heavily loaded systems. A loaded system is one
where competition exists for both CPU resources and
network bandwidth between the OPC UA PubSub
application and other applications on the device.

Previous publications on OPC UA over TSN evaluate
performance when running on the Linux operating
system [2] [3]. In this paper we describe the test
process and present performance results when
running on the VxWorks real-time operating system
(RTOS). VxWorks, from Wind River Systems, is one
of the most commonly used RTOSs. It operates in the
Industrial, A&D, Space, Medical, Consumer and
Telecom markets with billions of devices deployed
over the last 30+ years. Table 1. lists the TSN related
standards applied in this paper.

1

Table 1.

Standard Description

IEEE 1588-2008 Precision Time Protocol

IEEE 802.1AS Timing and
Synchronization for
Time-Sensitive
Applications

mailto:markus.carlstedt@windriver.com
mailto:yabing.lu@windriver.com
mailto:ting.wang@windriver.com

A. OPC UA Implementation

Several stacks were evaluated before selecting an
OPC UA implementation for integration with
VxWorks TSN. The open62541 project at
https://open62541.org provides a portable OPC UA
stack written in ANSI-C which meets RTOS
requirements. These requirements include:

● A non-GPL license that can be used with a
commercial software license

● Multi-threading support
● Scalable
● Deterministic
● Secure

The open62541 project is maintained by several
academic institutions and commercial enterprises.
The source code is licensed under MPL 2.0 (Mozilla
Public License Version 2.0). Because it meets the
requirements, open62541 was chosen for the
VxWorks TSN integration effort.

B. Time Synchronization

Naturally, the prerequisite for TSN is that all devices
on the network must keep synchronized time in order
to transmit scheduled traffic. This is achieved by
using the Precision Time Protocol (PTP) on the
network. The PTP protocol, also known as
IEEE1588, holds the time in a network device
register and uses it to generate receive- and transmit
timestamps. The effect of varying queuing delays is
therefore minimized, and a synchronization accuracy
of under one microsecond can be achieved.

Two open source implementations of PTP with
permissive licenses are available with VxWorks:

● PTPd (https://github.com/ptpd/ptpd)
● gPTP (https://github.com/Avnu/gptp)

gPTP implements the 802.1AS standard, which is an
adaption profile of IEEE1588 geared towards
industrial and automotive TSN applications.

C. Time-Aware Scheduling

The time-aware scheduler (TAS) is defined in the
IEEE 802.1Qbv standard and was designed to
separate Ethernet transmission into repeating time
cycles of a fixed length. Each cycle can be divided
into time slices, where each time slice is assigned to
one or more traffic classes (TCs). During a time slice,
802.1Qbv capable hardware grants exclusive use to
the transmission medium for those traffic classes that
have been assigned to it. Figure 1 shows an example
with two time slices per cycle and one TC per time
slice. Typically, the VLAN priority bits are used to
map the frame to a particular traffic class.

Time Specific Departure (TSD) is a variant of TAS
where, instead of assigning a traffic class to each
frame, the application (or network stack) programs
the requested launch time into the packet descriptor.
TSN capable hardware will then hold the packet in
the transmit queue until the PTP time has reached the
launch time before sending it. Figure 2 shows an
example where the launch time of the isochronous
data is 70 µs into the TSN cycle.

2

IEEE 802.1Qbv Enhancements for
Scheduled Traffic

IEEE 802.1Qbu Frame Preemption

IEEE 802.3br Interspersing Express
Traffic

https://open62541.org/
https://open62541.org/
https://github.com/ptpd/ptpd
https://github.com/Avnu/gptp

In this paper we use TSD to control time-aware
scheduling. There are two reasons for this choice.
First, it gives the user exact control over when the
OPC UA packet shall be sent. Second, TSD, allows
us to evaluate the effect of frame preemption
(802.1Qbu/802.3br) on the maximum receive packet
jitter.

Previous Ethernet standards do not allow a frame to
interrupt an already transmitting frame. This means if
competing best-effort packets have begun
transmission at the moment the real-time OPC UA
packet must be sent, the real-time packet is delayed.
Since the typical Maximum Transfer Unit (MTU) on
an Ethernet network is 1500 Bytes this delay is up to
12 µs on a 1 Gb/s link. On a 100 Mb/s link the delay
is up to 120 µs. To overcome the inherent problem
with competing traffic, two new standards were
developed, 802.1Qbu (Frame Preemption) and
802.3br (Interspersing Express Traffic). These
standards allow preemption of an already transmitting
Ethernet frame by a higher priority (express) frame.
Figure 3 shows how the preempted frame continues
after the express frame has completed transmission.
802.1Qbu and 802.3br are not supported on legacy
Ethernet hardware.

D. TSN Implementation

Any operating system must be configured to enable
Time-Sensitive Networking features and connect the
OPC UA PubSub application to the requested cycle
time and transmit schedule. In VxWorks we used the
following TSN features to perform the
measurements:

● TSN interrupt and affinity
● TSN streams
● SO_X_QBV and SO_X_STACK_IDX

TSN interrupt and affinity

Usually, IEEE1588 hardware can generate either
one-shot or periodic interrupts based on the PTP
clock. The network devices have their internal clocks
synchronised by the PTP protocol, so we can use the
clock interrupt to generate a synchronous event
triggering isochronous OPC UA PubSub
transmission. The example code snippet below shows
how to use the VxWorks API to configure a periodic
tick timer based on the 1588 VxWorks interrupt. The
timer will expire every 250 µs and call the user
defined routine usrTsnClockIsr.

cid = tsnClockIdGet("enetc",0,0);

if (cid != 0)

{

 ret = tsnTimerAllocate (cid);

 if (ret == OK)

 {

 ret = tsnClockConnect (cid,

 usrTsnClockIsr, 0);

 if (ret == OK)

 ret = tsnClockRateSet(cid, 250);

 }

}

Note that while open62541 can be adapted to transmit
packets directly in the interrupt service routine (ISR),
we decided to only use the ISR to signal a
semaphore. This mimics a realistic RTOS
programming scenario. The semaphore will unblock
the OPC UA PubSub publisher task which in turn
prepares the OPC UA packet for transmission.

3

Affinity of the TSN interrupt can be controlled with
the VxWorks API tsnClockIntReroute. This API
selects the CPU core that will process the TSN
interrupt. In order to minimize interrupt and task
latency, it is recommended to use the same core for
the ISR and the OPC UA publisher and isolate this
core from other interrupts and tasks.

TSN streams

TSN streams are used to configure TSN scheduling in
VxWorks. The network stack is aware of TSN
streams and will apply scheduling parameters to
outgoing packets as defined by the stream.
Additionally, the network stack will apply VLAN
tag, PCP bits and MAC address according to the TSN
stream. TSN streams can be created by a
programming API or by a special tool called
tsnconfig which takes a JSON formatted file as input.
For the tests in this paper we used the following
configuration file:

{

 "schedule" : {

 "cycle_time" : 250000 ,

 "start_sec" : 0 ,

 "start_nsec" : 0

 },

 "stream_objects" : [

 {

 "stream" : {

 "name" : "flow1" ,

 "dst_mac" : "01:00:5E:00:00:01" ,

 "vid" : 3000 ,

 "pcp" : 7 ,

 "tclass" : 7 ,

 "tx_time" : {

 "offset" : 200000

 }

 }

 }

]

}

The schedule object defines the TSN schedule cycle
time in nanoseconds and the schedule start time (0
means immediately). A list of streams is defined by

the object stream_objects, where each stream object
is defined by:

● Name (ascii string)
● Destination MAC address
● VLAN id
● PCP bits
● Traffic class
● Tx time

Tx time defines the offset into the schedule when this
TSN stream transmits (launch time). The JSON file
supports many other configuration parameters which
are not discussed here.

SO_X_QBV and
SO_X_STACK_IDX

The OPC UA PubSub over Ethernet implementation
in open62541 uses a raw packet socket
(AF_PACKET) for transmission. Integration was
simple because VxWorks already supports the
AF_PACKET socket domain. Connecting open62541
to VxWorks TSN required a single code addition.
The socket option SO_X_QBV was set on the OPC
UA PubSub socket. In VxWorks, SO_X_QBV
connects a socket to a TSN stream which means all
data that is sent through the socket will be scheduled
according to the stream. Another VxWorks socket
option that optimizes latency is SO_X_STACK_IDX.
This socket option locks a socket to a specific
network stack instance which in turn can be
affinitized to a specific core. In our tests we assign a
dedicated network instance to the same core that
processes the TSN interrupt and runs the OPC UA
publisher task. The example code below shows how
to use SO_X_QBV and SO_X_STACK_IDX:

setsockopt (fd, SOL_SOCKET, SO_X_QBV,

“flow1”, TSN_STREAMNAMSIZ);

setsockopt(fd, SOL_SOCKET, SO_X_STACK_IDX,

&stkIdx, sizeof(stkIdx))

II. TEST SETUP
A. Hardware Setup

Figure 4 shows the hardware setup used in the tests,
consisting of two NXP LS1028A reference design
boards. The LS1028A is a dual core ARM
Cortex-A72 processor system running at 1.3 GHz.

4

The board carries an Ethernet controller (ENETC)
and an Ethernet switch, both of which are TSN
capable. In this test we use the ENETC to connect the
boards peer to peer at a link speed of 1 Gb/s with a
standard Ethernet cable.

The first system is the VxWorks device under test
(DUT) and runs the OPC UA publisher. The second
system is the receiver and runs Wind River Linux.
The receiver is any computer that supports PTP and
is capable of capturing hardware timestamps of
incoming packets. Specifically for PTP testing, we
connected two intermediate Cisco IE-4000 industrial
Ethernet switches between the two systems.

B. Software setup

The software used in the tests is listed in table 2. It
consists of both Wind River proprietary software
packages and Open Source packages.

In addition to the software packages provided by the
operating systems, we developed a receiver
application for Linux called tsnPerfLxRx. This
application captures all incoming OPC UA PubSub
packets with their receive timestamps based on the
IEEE1588 clock. The receiver will dump the packet
log into a text file which can be used to analyze the
performance of the DUT. For this purpose we
developed a Python tool called tsnPerfAnalyzer
which will compute packet delay and jitter for the
OPC UA PubSub traffic. The tool will also plot
graphs of test results.

III. TEST RESULTS
A. Precision Time Protocol

The aim of initial testing was verification of time
synchronization accuracy and stability for the
IEEE1588 clock on the VxWorks device as
controlled by PTP. Isochronous real-time
communication with TSN relies on highly accurate
network device clock synchronization. Depending on
the type of industrial application, the required
synchronization accuracy can be as low as 250 ns [5].
The endpoints in industrial Ethernet networks are
usually connected with PTP capable switches or
bridged endpoints. Even if the PTP protocol allows
for compensation of switch queueing delays, some
degradation of synchronization accuracy is expected
for each switch hop. In this paper we investigate the
effect on synchronization accuracy by adding two
intermediate switches. Figure 5 shows the test setup
with two switches. We configured the PTP protocol
such that the Linux device will become the master
and the device under test will become the slave.

5

Table 2.

Software package information

VxWorks Version

VxWorks 7 SR0660

ptpd v2.3.1

gPTP v1.0.0

open62541 v1.1.2

iperf3 v3.7

Linux Version

Wind River Linux LTS 19.45 Update 10

ptp4l v2.0

iperf3 v3.7

We also tested the convergence time of clock
synchronization, meaning the time it takes for a new
network device to reach IEEE1588 clock
synchronization to the master device. The
convergence time includes both the time to determine
the best master clock (BMC) as governed by the
802.1AS protocol and the actual time to synchronize
the time by tuning the IEEE1588 clock frequency.
Convergence time is an essential factor for some TSN
applications as it affects system startup and repair.

Table 3. summarizes the test results for time
synchronization. For 80000 samples taken over a
22-hour period, the maximum offset was 29 ns with
no switch hops and 37 ns with two switch hops. The
offset is sampled by calculating the root mean square
value (rms) of the offset of the last eight PTP sync
messages received from the master. The convergence
time was between 2 and 3 seconds in both cases.

Figure 6 shows a histogram of synchronization
accuracy for the two hops case where the bucket size
is 10 ns. The first bucket counts samples between 0
and 10 ns, the second between 10 and 20 ns and so
forth. It is evident that the majority of samples
(>90%) are in the first bucket which means the offset

is less than 10 ns. Sampling starts when the time
synchronization has converged to avoid skewing the
data with initial large offsets.

Figure 7 shows the convergence time for the two
switch hops case. The graph begins after the best
master clock algorithm (BMC) has completed and the
slave starts to tune the frequency of the IEEE1588
device clock to keep in sync with the master.

B. Isochronous transmission

The next phase of testing was to evaluate the
performance of isochronous packet transmission by
OPC UA PubSub. Several factors must be considered
when determining the sustainable publishing rate of a
particular hardware device and operating system. A
few examples are listed below:

● CPU frequency and number of cores
● Interrupt latency
● Context switch latency
● Network stack
● OPC UA stack
● Application code
● Background traffic
● Ethernet transmission time

The packet delay and jitter can be measured at the
receiver by taking a hardware timestamp of all
incoming packets using the IEEE1588 clock. Since
the publisher’s clock is synchronized with the master,
and OPC UA packets can only be transmitted once

6

Table 3.

Switch
Hops

PTP
Profile

Conv-
ergence
Time (s)

Offset from
Master (ns)

Max Average

0 802.1AS 2 - 3 29 4

2 802.1AS 2 - 3 37 6

Figure 6. Time synchronization accuracy
with two switch hops

Figure 7. Convergence time with two switch
hops

per cycle at the programmed offset, we know that the
time difference between successive OPC UA packets
must be equal to the cycle time. If the OPC UA
packets do not arrive in every cycle the publisher is
not able to sustain the requested cycle time. Some
jitter will naturally be introduced by factors such as
variation in time synchronization accuracy, and
background traffic which is competing for the
transmission media. The OPC UA traffic can be
referred to as critical and the background traffic as
best effort. In order to understand the latencies
introduced by the operating system, we added
instrumentation code in the execution path of the
OPC UA publisher application. We sample the
IEEE1588 clock at these instrumentation points and
embed the timestamps in the OPC UA user data. By
this method, the timing characteristics can easily be
analyzed in the receiver application and compared
with the cycle time. Figure 8 shows three time
intervals labeled T1, T2 and T3 used in our tests.

T1 is the time from the start of the cycle until the
OPC UA PubSub task begins to execute. It consists
of interrupt and context switch latency induced by the
RTOS. T2 is the runtime of the OPC UA publisher
task and consists of the open62541 PubSub logic to
setup and transmit the packet. T3 is the time between
the end of the OPC UA publisher task and the
programmed launch offset in the cycle. T3 can be
interpreted as the headroom available for additional
user code in the context of the publisher task. Be
aware that T3 must also allow for any additional CPU
time required for the packet to traverse the network
stack and reach the transmission queue in the device
before the programmed launch time. In order to
minimize latency and optimize the cycle time we

made some specific configurations in the VxWorks
RTOS as shown in figure 9.

The LS1028A was configured with core affinity so
that the first core handles the PTP protocol and best
effort traffic. Best effort traffic was simulated by
iperf3 which is a common tool for network
throughput testing. The second core handles OPC UA
PubSub and also processes the TSN interrupt.
Furthermore, we created two network stack instances,
one for each core, which means the OPC UA packets
can pass independently and at a higher priority
through the network stack. We used different
transmission queues in the Ethernet controller for the
best effort and OPC UA traffic types where the latter
has higher priority. Figure 10 shows the traffic types.

Our testing of isochronous packet transmission by
OPC UA PubSub comprised four test cases:

A. OPC UA PubSub without TSN and no best
effort traffic

7

B. OPC UA PubSub with TSN (802.1Qbv) and
no best effort traffic

C. OPC UA PubSub without TSN but with
simultaneous best effort traffic.

D. OPC UA PubSub with TSN (802.1Qbv) and
with simultaneous best effort traffic

In each test case we measured the packet delay and
calculated the packet delay variation (jitter). The
packet delay is defined as the difference in receive
time between two consecutive packets which
nominally should be equal to the cycle time. The
jitter is defined as the absolute value of the variation
in packet delay for each packet. For example, if the
cycle time is 250 µs and a packet is received 248 µs
after the previous packet, the jitter for that packet is 2
µs. Further, we also verified that all OPC UA PubSub
packets transmitted by the sender were received.

All tests were run with a cycle time of 250 µs and a
transmission offset for the OPC UA PubSub packet
of 200 µs. The packet length was 64 bytes. In case A
and C which do not use TSN, transmission is still
driven by the TSN interrupt but the packet is not
assigned a launch time. Best effort traffic was
generated by iperf3 which sources TCP data without
rate limiting. Therefore, iperf3 uses all available
bandwidth.

For each test we collected 1 million samples. By
comparing the packet delay and jitter for test case A
and B, we demonstrate the general effect of TSN on
packet delay and jitter. Comparing A and C shows the
additional jitter of critical traffic induced by lower
priority traffic without the support of TSN.
Comparing case C and D proves packet delay and
receive critical traffic jitter are stable with TSN when
lower priority traffic competes for the transmission
media. Further, case D validates that the system can
handle the requested cycle time while all critical
packets arrive at the receiver with the expected delay
and jitter. Case D should be seen as the realistic use
case that will be deployed in industrial applications
because it introduces competition for both CPU and
network resources in the system.

Figure 11a shows packet delay and jitter for one
million samples in case A which corresponds to about
four minutes of runtime at 250 µs cycle time.

The average jitter for case A is 117 ns while the
maximum jitter is 36 µs. Figure 11b shows packet
delay and jitter for the first 1000 samples in case B.

The average jitter for case B is 16 ns while the
maximum jitter is 45 ns. Comparing A and B shows
significant jitter reduction by the addition of TSN.
Extending the test duration to one hour generates
similar data.

8

Figure 11a. Packet delay and jitter without
TSN

Figure 11b. Packet delay and jitter with TSN
(802.1Qbv)

Figure 11c shows packet delay and jitter for the first
1000 samples in case C.

The average jitter for case C is 85 µs while the
maximum jitter is 380 µs. In this case the OPC UA
PubSub packets are heavily delayed by lower priority
packets and fail to transmit in the intended cycle.
Extending the test duration to one hour shows even
worse jitter.

Figure 11d shows packet delay and jitter for one
million samples in case D.

The average jitter for case D is 6 µs while the
maximum jitter is 15 µs. These jitter numbers clearly

show that the system can handle the 250 µs cycle
time. Despite time-aware scheduling lower priority
packets can still delay the transmission of the critical
packet up to 15 µs. While the average jitter was only
16 ns in case B it increased to 6 µs in case D due to
best effort traffic occupying the transmission media
for most critical traffic.

For case D we analyzed the timing data of the OPC
UA publisher by plotting the T1 and T2 time
intervals. Figure 12a and 12b show 3D histograms
with 3000 sets of 400 samples which equals 1.2
million samples in total. Each repetition plots
logarithmic latency bars for greater visibility. The
meaning of T1 and T2 are defined in figure 8.

Figure 12a shows latency for T1, that is, the delay
between the start of the cycle until the publisher task
begins to execute. The worst case T1 latency is 7 µs
which happens eight times out of all samples.

9

Figure 11c. Packet delay and jitter without
TSN but with simultaneous best effort traffic

Figure 11d. Packet delay and jitter with TSN
(802.1Qbv) and with simultaneous best

effort traffic

Figure 12a. Latency between cycle start until
OPC UA publisher task begins

Figure 12b shows latency for T2, that is, the
execution time of the publisher task. The worst case
T2 latency is 13 µs which happens once. It should be
noted that the measured latencies include some
overhead added by reading the IEEE1588 clock
which we estimate to at most 10%.

Summing T1 and T2 equals 20 µs which means there
are 230 µs left in the 250 µs cycle for additional user
application code in the worst case. However, the
network stack consumes additional CPU cycles when
the packet is sent to the device, which should be
taken into account when selecting the transmission
offset.

C. Frame preemption

The third phase of testing was to investigate the
effect of frame preemption (802.1Qbu and 802.3br)
in the context of OPC UA PubSub over TSN. It is
evident from figure 11d that competing best effort
traffic can delay time critical traffic by up to 15 µs,
which may be an unacceptable jitter for some
industrial applications. In order to enable frame
preemption, we added a section in the TSN
configuration file as below:

{

...

 "preemption" : {

 "tclass_mask" : 1 ,

 },

...

}

The tclass_mask key specifies which traffic classes
are preemtible and which are express traffic. In our
test case the best effort traffic is preemptible while
OPC UA packets are express traffic. Figure 13 shows
packet delay and jitter for the first 1000 samples
when frame preemption is enabled in addition to
time-aware scheduling. As in case D best effort
traffic is also present on the wire.

The average jitter with preemption enabled is 78 ns
while the maximum jitter is 630 ns. Comparing this
test case to case D clearly shows that the maximum
jitter has been reduced by applying frame
preemption. Further analysis of test data shows that
over 90% of OPC UA PubSub packets preempted a
low priority packet. Table 4. summarizes the test
results for time-aware scheduling.

10

Figure 12b. OPC UA publisher runtime

Figure 13. Packet delay and jitter with TSN
(802.1Qbv+802.1Qbu) and with
simultaneous best effort traffic

Table 4.

Test Case Packet Jitter

Max Average

OPC UA PubSub 36 µs 117 ns

IV. CONCLUSION

First, based on the test results we conclude that OPC
UA PubSub over TSN is a viable protocol for
industrial real-time communication. Second, we have
proven that the VxWorks RTOS provides the
required performance, and implements the required
TSN standards to build OPC UA publisher
applications that meet highly deterministic industrial
automation requirements as outlined in [5]. Applying
time specific departure to critical traffic can
guarantee a maximum receive jitter close to the
Ethernet transmission time for the MTU, which is 12
µs on a 1 Gb/s link with 1500 bytes MTU size. We
learned the jitter is caused by competing best effort
traffic on the same wire. Also, adding 802.1Qbu
(frame preemption) can reduce the jitter to less than
one microsecond for critical traffic while the
remaining bandwidth of the link is fully utilized.

V. FUTURE DIRECTIONS

The implementation and measurements described in
this paper cover the real-time properties of an OPC
UA publisher device on a TSN network. In addition
to isochronous transmission performance, a device
must also meet certain performance criteria when
acting as a subscriber receiving time scheduled
packets. Future experiments should focus on OPC

UA PubSub roundtrip measurements, including both
a publisher and subscriber.

Future work could also experiment with optimization
of the minimal TSN cycle time that can be sustained
without packet loss or missed cycles. While our
current implementation is interrupt driven it would be
possible to use a busy wait loop to drive isochronous
transmission in order to reduce interrupt latency.
Another optimization that could be considered is to
use the lower level VxWorks API muxSend to
transmit OPC UA PubSub packets. Currently, the
implementation uses a network stack raw socket
which adds some latency compared to writing frames
directly to the driver layer in VxWorks.

OPC UA security is an important factor to consider in
any network. At the time of writing, secure OPC UA
PubSub is not supported in open62541. When it
becomes available, it would be relevant to test the
effect that security has on the cycle time and jitter.
This is because cryptography is a relatively expensive
CPU operation.

VI. REFERENCES

[1] E. Gardiner, Avnu Alliance: “Theory of
Operation for TSN-enabled Systems”

[2] Pfrommer, et al: “Open Source OPC UA PubSub
over TSN for Realtime Industrial Communication”

[3] Gopiga, et al: “Real-time Open Source Solution
for Industrial Communication Using OPC UA
PubSub over TSN”

[4] Bruckner, et al: “A new Solution for Industrial
Communication”

[5] IEB Media GbR: “Industrial Ethernet Book”,
Issue 106 / 15

11

OPC UA PubSub
+802.1Qbv

45 ns 16 ns

OPC UA PubSub
+Best effort

380 µs 85 µs

OPC UA PubSub
+Best effort
+802.1Qbv

15 µs 6 µs

OPC UA PubSub
+Best effort
+802.1Qbv
+802.1Qbu

630 ns 78 ns

