/* * Module-based API test facility for ww_mutexes * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. */ #include #include #include #include #include #include #include #include static DEFINE_WD_CLASS(ww_class); struct workqueue_struct *wq; struct test_mutex { struct work_struct work; struct ww_mutex mutex; struct completion ready, go, done; unsigned int flags; }; #define TEST_MTX_SPIN BIT(0) #define TEST_MTX_TRY BIT(1) #define TEST_MTX_CTX BIT(2) #define __TEST_MTX_LAST BIT(3) static void test_mutex_work(struct work_struct *work) { struct test_mutex *mtx = container_of(work, typeof(*mtx), work); complete(&mtx->ready); wait_for_completion(&mtx->go); if (mtx->flags & TEST_MTX_TRY) { while (!ww_mutex_trylock(&mtx->mutex)) cond_resched(); } else { ww_mutex_lock(&mtx->mutex, NULL); } complete(&mtx->done); ww_mutex_unlock(&mtx->mutex); } static int __test_mutex(unsigned int flags) { #define TIMEOUT (HZ / 16) struct test_mutex mtx; struct ww_acquire_ctx ctx; int ret; ww_mutex_init(&mtx.mutex, &ww_class); ww_acquire_init(&ctx, &ww_class); INIT_WORK_ONSTACK(&mtx.work, test_mutex_work); init_completion(&mtx.ready); init_completion(&mtx.go); init_completion(&mtx.done); mtx.flags = flags; schedule_work(&mtx.work); wait_for_completion(&mtx.ready); ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL); complete(&mtx.go); if (flags & TEST_MTX_SPIN) { unsigned long timeout = jiffies + TIMEOUT; ret = 0; do { if (completion_done(&mtx.done)) { ret = -EINVAL; break; } cond_resched(); } while (time_before(jiffies, timeout)); } else { ret = wait_for_completion_timeout(&mtx.done, TIMEOUT); } ww_mutex_unlock(&mtx.mutex); ww_acquire_fini(&ctx); if (ret) { pr_err("%s(flags=%x): mutual exclusion failure\n", __func__, flags); ret = -EINVAL; } flush_work(&mtx.work); destroy_work_on_stack(&mtx.work); return ret; #undef TIMEOUT } static int test_mutex(void) { int ret; int i; for (i = 0; i < __TEST_MTX_LAST; i++) { ret = __test_mutex(i); if (ret) return ret; } return 0; } static int test_aa(void) { struct ww_mutex mutex; struct ww_acquire_ctx ctx; int ret; ww_mutex_init(&mutex, &ww_class); ww_acquire_init(&ctx, &ww_class); ww_mutex_lock(&mutex, &ctx); if (ww_mutex_trylock(&mutex)) { pr_err("%s: trylocked itself!\n", __func__); ww_mutex_unlock(&mutex); ret = -EINVAL; goto out; } ret = ww_mutex_lock(&mutex, &ctx); if (ret != -EALREADY) { pr_err("%s: missed deadlock for recursing, ret=%d\n", __func__, ret); if (!ret) ww_mutex_unlock(&mutex); ret = -EINVAL; goto out; } ret = 0; out: ww_mutex_unlock(&mutex); ww_acquire_fini(&ctx); return ret; } struct test_abba { struct work_struct work; struct ww_mutex a_mutex; struct ww_mutex b_mutex; struct completion a_ready; struct completion b_ready; bool resolve; int result; }; static void test_abba_work(struct work_struct *work) { struct test_abba *abba = container_of(work, typeof(*abba), work); struct ww_acquire_ctx ctx; int err; ww_acquire_init(&ctx, &ww_class); ww_mutex_lock(&abba->b_mutex, &ctx); complete(&abba->b_ready); wait_for_completion(&abba->a_ready); err = ww_mutex_lock(&abba->a_mutex, &ctx); if (abba->resolve && err == -EDEADLK) { ww_mutex_unlock(&abba->b_mutex); ww_mutex_lock_slow(&abba->a_mutex, &ctx); err = ww_mutex_lock(&abba->b_mutex, &ctx); } if (!err) ww_mutex_unlock(&abba->a_mutex); ww_mutex_unlock(&abba->b_mutex); ww_acquire_fini(&ctx); abba->result = err; } static int test_abba(bool resolve) { struct test_abba abba; struct ww_acquire_ctx ctx; int err, ret; ww_mutex_init(&abba.a_mutex, &ww_class); ww_mutex_init(&abba.b_mutex, &ww_class); INIT_WORK_ONSTACK(&abba.work, test_abba_work); init_completion(&abba.a_ready); init_completion(&abba.b_ready); abba.resolve = resolve; schedule_work(&abba.work); ww_acquire_init(&ctx, &ww_class); ww_mutex_lock(&abba.a_mutex, &ctx); complete(&abba.a_ready); wait_for_completion(&abba.b_ready); err = ww_mutex_lock(&abba.b_mutex, &ctx); if (resolve && err == -EDEADLK) { ww_mutex_unlock(&abba.a_mutex); ww_mutex_lock_slow(&abba.b_mutex, &ctx); err = ww_mutex_lock(&abba.a_mutex, &ctx); } if (!err) ww_mutex_unlock(&abba.b_mutex); ww_mutex_unlock(&abba.a_mutex); ww_acquire_fini(&ctx); flush_work(&abba.work); destroy_work_on_stack(&abba.work); ret = 0; if (resolve) { if (err || abba.result) { pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n", __func__, err, abba.result); ret = -EINVAL; } } else { if (err != -EDEADLK && abba.result != -EDEADLK) { pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n", __func__, err, abba.result); ret = -EINVAL; } } return ret; } struct test_cycle { struct work_struct work; struct ww_mutex a_mutex; struct ww_mutex *b_mutex; struct completion *a_signal; struct completion b_signal; int result; }; static void test_cycle_work(struct work_struct *work) { struct test_cycle *cycle = container_of(work, typeof(*cycle), work); struct ww_acquire_ctx ctx; int err, erra = 0; ww_acquire_init(&ctx, &ww_class); ww_mutex_lock(&cycle->a_mutex, &ctx); complete(cycle->a_signal); wait_for_completion(&cycle->b_signal); err = ww_mutex_lock(cycle->b_mutex, &ctx); if (err == -EDEADLK) { err = 0; ww_mutex_unlock(&cycle->a_mutex); ww_mutex_lock_slow(cycle->b_mutex, &ctx); erra = ww_mutex_lock(&cycle->a_mutex, &ctx); } if (!err) ww_mutex_unlock(cycle->b_mutex); if (!erra) ww_mutex_unlock(&cycle->a_mutex); ww_acquire_fini(&ctx); cycle->result = err ?: erra; } static int __test_cycle(unsigned int nthreads) { struct test_cycle *cycles; unsigned int n, last = nthreads - 1; int ret; cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL); if (!cycles) return -ENOMEM; for (n = 0; n < nthreads; n++) { struct test_cycle *cycle = &cycles[n]; ww_mutex_init(&cycle->a_mutex, &ww_class); if (n == last) cycle->b_mutex = &cycles[0].a_mutex; else cycle->b_mutex = &cycles[n + 1].a_mutex; if (n == 0) cycle->a_signal = &cycles[last].b_signal; else cycle->a_signal = &cycles[n - 1].b_signal; init_completion(&cycle->b_signal); INIT_WORK(&cycle->work, test_cycle_work); cycle->result = 0; } for (n = 0; n < nthreads; n++) queue_work(wq, &cycles[n].work); flush_workqueue(wq); ret = 0; for (n = 0; n < nthreads; n++) { struct test_cycle *cycle = &cycles[n]; if (!cycle->result) continue; pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n", n, nthreads, cycle->result); ret = -EINVAL; break; } for (n = 0; n < nthreads; n++) ww_mutex_destroy(&cycles[n].a_mutex); kfree(cycles); return ret; } static int test_cycle(unsigned int ncpus) { unsigned int n; int ret; for (n = 2; n <= ncpus + 1; n++) { ret = __test_cycle(n); if (ret) return ret; } return 0; } struct stress { struct work_struct work; struct ww_mutex *locks; unsigned long timeout; int nlocks; }; static int *get_random_order(int count) { int *order; int n, r, tmp; order = kmalloc_array(count, sizeof(*order), GFP_KERNEL); if (!order) return order; for (n = 0; n < count; n++) order[n] = n; for (n = count - 1; n > 1; n--) { r = get_random_int() % (n + 1); if (r != n) { tmp = order[n]; order[n] = order[r]; order[r] = tmp; } } return order; } static void dummy_load(struct stress *stress) { usleep_range(1000, 2000); } static void stress_inorder_work(struct work_struct *work) { struct stress *stress = container_of(work, typeof(*stress), work); const int nlocks = stress->nlocks; struct ww_mutex *locks = stress->locks; struct ww_acquire_ctx ctx; int *order; order = get_random_order(nlocks); if (!order) return; do { int contended = -1; int n, err; ww_acquire_init(&ctx, &ww_class); retry: err = 0; for (n = 0; n < nlocks; n++) { if (n == contended) continue; err = ww_mutex_lock(&locks[order[n]], &ctx); if (err < 0) break; } if (!err) dummy_load(stress); if (contended > n) ww_mutex_unlock(&locks[order[contended]]); contended = n; while (n--) ww_mutex_unlock(&locks[order[n]]); if (err == -EDEADLK) { ww_mutex_lock_slow(&locks[order[contended]], &ctx); goto retry; } if (err) { pr_err_once("stress (%s) failed with %d\n", __func__, err); break; } ww_acquire_fini(&ctx); } while (!time_after(jiffies, stress->timeout)); kfree(order); kfree(stress); } struct reorder_lock { struct list_head link; struct ww_mutex *lock; }; static void stress_reorder_work(struct work_struct *work) { struct stress *stress = container_of(work, typeof(*stress), work); LIST_HEAD(locks); struct ww_acquire_ctx ctx; struct reorder_lock *ll, *ln; int *order; int n, err; order = get_random_order(stress->nlocks); if (!order) return; for (n = 0; n < stress->nlocks; n++) { ll = kmalloc(sizeof(*ll), GFP_KERNEL); if (!ll) goto out; ll->lock = &stress->locks[order[n]]; list_add(&ll->link, &locks); } kfree(order); order = NULL; do { ww_acquire_init(&ctx, &ww_class); list_for_each_entry(ll, &locks, link) { err = ww_mutex_lock(ll->lock, &ctx); if (!err) continue; ln = ll; list_for_each_entry_continue_reverse(ln, &locks, link) ww_mutex_unlock(ln->lock); if (err != -EDEADLK) { pr_err_once("stress (%s) failed with %d\n", __func__, err); break; } ww_mutex_lock_slow(ll->lock, &ctx); list_move(&ll->link, &locks); /* restarts iteration */ } dummy_load(stress); list_for_each_entry(ll, &locks, link) ww_mutex_unlock(ll->lock); ww_acquire_fini(&ctx); } while (!time_after(jiffies, stress->timeout)); out: list_for_each_entry_safe(ll, ln, &locks, link) kfree(ll); kfree(order); kfree(stress); } static void stress_one_work(struct work_struct *work) { struct stress *stress = container_of(work, typeof(*stress), work); const int nlocks = stress->nlocks; struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks); int err; do { err = ww_mutex_lock(lock, NULL); if (!err) { dummy_load(stress); ww_mutex_unlock(lock); } else { pr_err_once("stress (%s) failed with %d\n", __func__, err); break; } } while (!time_after(jiffies, stress->timeout)); kfree(stress); } #define STRESS_INORDER BIT(0) #define STRESS_REORDER BIT(1) #define STRESS_ONE BIT(2) #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE) static int stress(int nlocks, int nthreads, unsigned int flags) { struct ww_mutex *locks; int n; locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL); if (!locks) return -ENOMEM; for (n = 0; n < nlocks; n++) ww_mutex_init(&locks[n], &ww_class); for (n = 0; nthreads; n++) { struct stress *stress; void (*fn)(struct work_struct *work); fn = NULL; switch (n & 3) { case 0: if (flags & STRESS_INORDER) fn = stress_inorder_work; break; case 1: if (flags & STRESS_REORDER) fn = stress_reorder_work; break; case 2: if (flags & STRESS_ONE) fn = stress_one_work; break; } if (!fn) continue; stress = kmalloc(sizeof(*stress), GFP_KERNEL); if (!stress) break; INIT_WORK(&stress->work, fn); stress->locks = locks; stress->nlocks = nlocks; stress->timeout = jiffies + 2*HZ; queue_work(wq, &stress->work); nthreads--; } flush_workqueue(wq); for (n = 0; n < nlocks; n++) ww_mutex_destroy(&locks[n]); kfree(locks); return 0; } static int __init test_ww_mutex_init(void) { int ncpus = num_online_cpus(); int ret; wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0); if (!wq) return -ENOMEM; ret = test_mutex(); if (ret) return ret; ret = test_aa(); if (ret) return ret; ret = test_abba(false); if (ret) return ret; ret = test_abba(true); if (ret) return ret; ret = test_cycle(ncpus); if (ret) return ret; ret = stress(16, 2*ncpus, STRESS_INORDER); if (ret) return ret; ret = stress(16, 2*ncpus, STRESS_REORDER); if (ret) return ret; ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL); if (ret) return ret; return 0; } static void __exit test_ww_mutex_exit(void) { destroy_workqueue(wq); } module_init(test_ww_mutex_init); module_exit(test_ww_mutex_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Intel Corporation");