/* * linux/drivers/spi/spi-loopback-test.c * * (c) Martin Sperl * * Loopback test driver to test several typical spi_message conditions * that a spi_master driver may encounter * this can also get used for regression testing * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include "spi-test.h" /* flag to only simulate transfers */ static int simulate_only; module_param(simulate_only, int, 0); MODULE_PARM_DESC(simulate_only, "if not 0 do not execute the spi message"); /* dump spi messages */ static int dump_messages; module_param(dump_messages, int, 0); MODULE_PARM_DESC(dump_messages, "=1 dump the basic spi_message_structure, " \ "=2 dump the spi_message_structure including data, " \ "=3 dump the spi_message structure before and after execution"); /* the device is jumpered for loopback - enabling some rx_buf tests */ static int loopback; module_param(loopback, int, 0); MODULE_PARM_DESC(loopback, "if set enable loopback mode, where the rx_buf " \ "is checked to match tx_buf after the spi_message " \ "is executed"); static int loop_req; module_param(loop_req, int, 0); MODULE_PARM_DESC(loop_req, "if set controller will be asked to enable test loop mode. " \ "If controller supported it, MISO and MOSI will be connected"); static int no_cs; module_param(no_cs, int, 0); MODULE_PARM_DESC(no_cs, "if set Chip Select (CS) will not be used"); /* run only a specific test */ static int run_only_test = -1; module_param(run_only_test, int, 0); MODULE_PARM_DESC(run_only_test, "only run the test with this number (0-based !)"); /* use vmalloc'ed buffers */ static int use_vmalloc; module_param(use_vmalloc, int, 0644); MODULE_PARM_DESC(use_vmalloc, "use vmalloc'ed buffers instead of kmalloc'ed"); /* check rx ranges */ static int check_ranges = 1; module_param(check_ranges, int, 0644); MODULE_PARM_DESC(check_ranges, "checks rx_buffer pattern are valid"); /* the actual tests to execute */ static struct spi_test spi_tests[] = { { .description = "tx/rx-transfer - start of page", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_rx_align = ITERATE_ALIGN, .transfer_count = 1, .transfers = { { .tx_buf = TX(0), .rx_buf = RX(0), }, }, }, { .description = "tx/rx-transfer - crossing PAGE_SIZE", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_rx_align = ITERATE_ALIGN, .transfer_count = 1, .transfers = { { .tx_buf = TX(PAGE_SIZE - 4), .rx_buf = RX(PAGE_SIZE - 4), }, }, }, { .description = "tx-transfer - only", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .transfer_count = 1, .transfers = { { .tx_buf = TX(0), }, }, }, { .description = "rx-transfer - only", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_rx_align = ITERATE_ALIGN, .transfer_count = 1, .transfers = { { .rx_buf = RX(0), }, }, }, { .description = "two tx-transfers - alter both", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0) | BIT(1), .transfer_count = 2, .transfers = { { .tx_buf = TX(0), }, { /* this is why we cant use ITERATE_MAX_LEN */ .tx_buf = TX(SPI_TEST_MAX_SIZE_HALF), }, }, }, { .description = "two tx-transfers - alter first", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0), .transfer_count = 2, .transfers = { { .tx_buf = TX(64), }, { .len = 1, .tx_buf = TX(0), }, }, }, { .description = "two tx-transfers - alter second", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(1), .transfer_count = 2, .transfers = { { .len = 16, .tx_buf = TX(0), }, { .tx_buf = TX(64), }, }, }, { .description = "two transfers tx then rx - alter both", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0) | BIT(1), .transfer_count = 2, .transfers = { { .tx_buf = TX(0), }, { .rx_buf = RX(0), }, }, }, { .description = "two transfers tx then rx - alter tx", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0), .transfer_count = 2, .transfers = { { .tx_buf = TX(0), }, { .len = 1, .rx_buf = RX(0), }, }, }, { .description = "two transfers tx then rx - alter rx", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(1), .transfer_count = 2, .transfers = { { .len = 1, .tx_buf = TX(0), }, { .rx_buf = RX(0), }, }, }, { .description = "two tx+rx transfers - alter both", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0) | BIT(1), .transfer_count = 2, .transfers = { { .tx_buf = TX(0), .rx_buf = RX(0), }, { /* making sure we align without overwrite * the reason we can not use ITERATE_MAX_LEN */ .tx_buf = TX(SPI_TEST_MAX_SIZE_HALF), .rx_buf = RX(SPI_TEST_MAX_SIZE_HALF), }, }, }, { .description = "two tx+rx transfers - alter first", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(0), .transfer_count = 2, .transfers = { { /* making sure we align without overwrite */ .tx_buf = TX(1024), .rx_buf = RX(1024), }, { .len = 1, /* making sure we align without overwrite */ .tx_buf = TX(0), .rx_buf = RX(0), }, }, }, { .description = "two tx+rx transfers - alter second", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_tx_align = ITERATE_ALIGN, .iterate_transfer_mask = BIT(1), .transfer_count = 2, .transfers = { { .len = 1, .tx_buf = TX(0), .rx_buf = RX(0), }, { /* making sure we align without overwrite */ .tx_buf = TX(1024), .rx_buf = RX(1024), }, }, }, { .description = "two tx+rx transfers - delay after transfer", .fill_option = FILL_COUNT_8, .iterate_len = { ITERATE_MAX_LEN }, .iterate_transfer_mask = BIT(0) | BIT(1), .transfer_count = 2, .transfers = { { .tx_buf = TX(0), .rx_buf = RX(0), .delay_usecs = 1000, }, { .tx_buf = TX(0), .rx_buf = RX(0), .delay_usecs = 1000, }, }, }, { /* end of tests sequence */ } }; static int spi_loopback_test_probe(struct spi_device *spi) { int ret; if (loop_req || no_cs) { spi->mode |= loop_req ? SPI_LOOP : 0; spi->mode |= no_cs ? SPI_NO_CS : 0; ret = spi_setup(spi); if (ret) { dev_err(&spi->dev, "SPI setup with SPI_LOOP or SPI_NO_CS failed (%d)\n", ret); return ret; } } dev_info(&spi->dev, "Executing spi-loopback-tests\n"); ret = spi_test_run_tests(spi, spi_tests); dev_info(&spi->dev, "Finished spi-loopback-tests with return: %i\n", ret); return ret; } /* non const match table to permit to change via a module parameter */ static struct of_device_id spi_loopback_test_of_match[] = { { .compatible = "linux,spi-loopback-test", }, { } }; /* allow to override the compatible string via a module_parameter */ module_param_string(compatible, spi_loopback_test_of_match[0].compatible, sizeof(spi_loopback_test_of_match[0].compatible), 0000); MODULE_DEVICE_TABLE(of, spi_loopback_test_of_match); static struct spi_driver spi_loopback_test_driver = { .driver = { .name = "spi-loopback-test", .owner = THIS_MODULE, .of_match_table = spi_loopback_test_of_match, }, .probe = spi_loopback_test_probe, }; module_spi_driver(spi_loopback_test_driver); MODULE_AUTHOR("Martin Sperl "); MODULE_DESCRIPTION("test spi_driver to check core functionality"); MODULE_LICENSE("GPL"); /*-------------------------------------------------------------------------*/ /* spi_test implementation */ #define RANGE_CHECK(ptr, plen, start, slen) \ ((ptr >= start) && (ptr + plen <= start + slen)) /* we allocate one page more, to allow for offsets */ #define SPI_TEST_MAX_SIZE_PLUS (SPI_TEST_MAX_SIZE + PAGE_SIZE) static void spi_test_print_hex_dump(char *pre, const void *ptr, size_t len) { /* limit the hex_dump */ if (len < 1024) { print_hex_dump(KERN_INFO, pre, DUMP_PREFIX_OFFSET, 16, 1, ptr, len, 0); return; } /* print head */ print_hex_dump(KERN_INFO, pre, DUMP_PREFIX_OFFSET, 16, 1, ptr, 512, 0); /* print tail */ pr_info("%s truncated - continuing at offset %04zx\n", pre, len - 512); print_hex_dump(KERN_INFO, pre, DUMP_PREFIX_OFFSET, 16, 1, ptr + (len - 512), 512, 0); } static void spi_test_dump_message(struct spi_device *spi, struct spi_message *msg, bool dump_data) { struct spi_transfer *xfer; int i; u8 b; dev_info(&spi->dev, " spi_msg@%pK\n", msg); if (msg->status) dev_info(&spi->dev, " status: %i\n", msg->status); dev_info(&spi->dev, " frame_length: %i\n", msg->frame_length); dev_info(&spi->dev, " actual_length: %i\n", msg->actual_length); list_for_each_entry(xfer, &msg->transfers, transfer_list) { dev_info(&spi->dev, " spi_transfer@%pK\n", xfer); dev_info(&spi->dev, " len: %i\n", xfer->len); dev_info(&spi->dev, " tx_buf: %pK\n", xfer->tx_buf); if (dump_data && xfer->tx_buf) spi_test_print_hex_dump(" TX: ", xfer->tx_buf, xfer->len); dev_info(&spi->dev, " rx_buf: %pK\n", xfer->rx_buf); if (dump_data && xfer->rx_buf) spi_test_print_hex_dump(" RX: ", xfer->rx_buf, xfer->len); /* check for unwritten test pattern on rx_buf */ if (xfer->rx_buf) { for (i = 0 ; i < xfer->len ; i++) { b = ((u8 *)xfer->rx_buf)[xfer->len - 1 - i]; if (b != SPI_TEST_PATTERN_UNWRITTEN) break; } if (i) dev_info(&spi->dev, " rx_buf filled with %02x starts at offset: %i\n", SPI_TEST_PATTERN_UNWRITTEN, xfer->len - i); } } } struct rx_ranges { struct list_head list; u8 *start; u8 *end; }; static int rx_ranges_cmp(void *priv, struct list_head *a, struct list_head *b) { struct rx_ranges *rx_a = list_entry(a, struct rx_ranges, list); struct rx_ranges *rx_b = list_entry(b, struct rx_ranges, list); if (rx_a->start > rx_b->start) return 1; if (rx_a->start < rx_b->start) return -1; return 0; } static int spi_check_rx_ranges(struct spi_device *spi, struct spi_message *msg, void *rx) { struct spi_transfer *xfer; struct rx_ranges ranges[SPI_TEST_MAX_TRANSFERS], *r; int i = 0; LIST_HEAD(ranges_list); u8 *addr; int ret = 0; /* loop over all transfers to fill in the rx_ranges */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { /* if there is no rx, then no check is needed */ if (!xfer->rx_buf) continue; /* fill in the rx_range */ if (RANGE_CHECK(xfer->rx_buf, xfer->len, rx, SPI_TEST_MAX_SIZE_PLUS)) { ranges[i].start = xfer->rx_buf; ranges[i].end = xfer->rx_buf + xfer->len; list_add(&ranges[i].list, &ranges_list); i++; } } /* if no ranges, then we can return and avoid the checks...*/ if (!i) return 0; /* sort the list */ list_sort(NULL, &ranges_list, rx_ranges_cmp); /* and iterate over all the rx addresses */ for (addr = rx; addr < (u8 *)rx + SPI_TEST_MAX_SIZE_PLUS; addr++) { /* if we are the DO not write pattern, * then continue with the loop... */ if (*addr == SPI_TEST_PATTERN_DO_NOT_WRITE) continue; /* check if we are inside a range */ list_for_each_entry(r, &ranges_list, list) { /* if so then set to end... */ if ((addr >= r->start) && (addr < r->end)) addr = r->end; } /* second test after a (hopefull) translation */ if (*addr == SPI_TEST_PATTERN_DO_NOT_WRITE) continue; /* if still not found then something has modified too much */ /* we could list the "closest" transfer here... */ dev_err(&spi->dev, "loopback strangeness - rx changed outside of allowed range at: %pK\n", addr); /* do not return, only set ret, * so that we list all addresses */ ret = -ERANGE; } return ret; } static int spi_test_check_elapsed_time(struct spi_device *spi, struct spi_test *test) { int i; unsigned long long estimated_time = 0; unsigned long long delay_usecs = 0; for (i = 0; i < test->transfer_count; i++) { struct spi_transfer *xfer = test->transfers + i; unsigned long long nbits = (unsigned long long)BITS_PER_BYTE * xfer->len; delay_usecs += xfer->delay_usecs; if (!xfer->speed_hz) continue; estimated_time += div_u64(nbits * NSEC_PER_SEC, xfer->speed_hz); } estimated_time += delay_usecs * NSEC_PER_USEC; if (test->elapsed_time < estimated_time) { dev_err(&spi->dev, "elapsed time %lld ns is shorter than minimum estimated time %lld ns\n", test->elapsed_time, estimated_time); return -EINVAL; } return 0; } static int spi_test_check_loopback_result(struct spi_device *spi, struct spi_message *msg, void *tx, void *rx) { struct spi_transfer *xfer; u8 rxb, txb; size_t i; int ret; /* checks rx_buffer pattern are valid with loopback or without */ if (check_ranges) { ret = spi_check_rx_ranges(spi, msg, rx); if (ret) return ret; } /* if we run without loopback, then return now */ if (!loopback) return 0; /* if applicable to transfer check that rx_buf is equal to tx_buf */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { /* if there is no rx, then no check is needed */ if (!xfer->len || !xfer->rx_buf) continue; /* so depending on tx_buf we need to handle things */ if (xfer->tx_buf) { for (i = 0; i < xfer->len; i++) { txb = ((u8 *)xfer->tx_buf)[i]; rxb = ((u8 *)xfer->rx_buf)[i]; if (txb != rxb) goto mismatch_error; } } else { /* first byte received */ txb = ((u8 *)xfer->rx_buf)[0]; /* first byte may be 0 or xff */ if (!((txb == 0) || (txb == 0xff))) { dev_err(&spi->dev, "loopback strangeness - we expect 0x00 or 0xff, but not 0x%02x\n", txb); return -EINVAL; } /* check that all bytes are identical */ for (i = 1; i < xfer->len; i++) { rxb = ((u8 *)xfer->rx_buf)[i]; if (rxb != txb) goto mismatch_error; } } } return 0; mismatch_error: dev_err(&spi->dev, "loopback strangeness - transfer mismatch on byte %04zx - expected 0x%02x, but got 0x%02x\n", i, txb, rxb); return -EINVAL; } static int spi_test_translate(struct spi_device *spi, void **ptr, size_t len, void *tx, void *rx) { size_t off; /* return on null */ if (!*ptr) return 0; /* in the MAX_SIZE_HALF case modify the pointer */ if (((size_t)*ptr) & SPI_TEST_MAX_SIZE_HALF) /* move the pointer to the correct range */ *ptr += (SPI_TEST_MAX_SIZE_PLUS / 2) - SPI_TEST_MAX_SIZE_HALF; /* RX range * - we check against MAX_SIZE_PLUS to allow for automated alignment */ if (RANGE_CHECK(*ptr, len, RX(0), SPI_TEST_MAX_SIZE_PLUS)) { off = *ptr - RX(0); *ptr = rx + off; return 0; } /* TX range */ if (RANGE_CHECK(*ptr, len, TX(0), SPI_TEST_MAX_SIZE_PLUS)) { off = *ptr - TX(0); *ptr = tx + off; return 0; } dev_err(&spi->dev, "PointerRange [%pK:%pK[ not in range [%pK:%pK[ or [%pK:%pK[\n", *ptr, *ptr + len, RX(0), RX(SPI_TEST_MAX_SIZE), TX(0), TX(SPI_TEST_MAX_SIZE)); return -EINVAL; } static int spi_test_fill_pattern(struct spi_device *spi, struct spi_test *test) { struct spi_transfer *xfers = test->transfers; u8 *tx_buf; size_t count = 0; int i, j; #ifdef __BIG_ENDIAN #define GET_VALUE_BYTE(value, index, bytes) \ (value >> (8 * (bytes - 1 - count % bytes))) #else #define GET_VALUE_BYTE(value, index, bytes) \ (value >> (8 * (count % bytes))) #endif /* fill all transfers with the pattern requested */ for (i = 0; i < test->transfer_count; i++) { /* fill rx_buf with SPI_TEST_PATTERN_UNWRITTEN */ if (xfers[i].rx_buf) memset(xfers[i].rx_buf, SPI_TEST_PATTERN_UNWRITTEN, xfers[i].len); /* if tx_buf is NULL then skip */ tx_buf = (u8 *)xfers[i].tx_buf; if (!tx_buf) continue; /* modify all the transfers */ for (j = 0; j < xfers[i].len; j++, tx_buf++, count++) { /* fill tx */ switch (test->fill_option) { case FILL_MEMSET_8: *tx_buf = test->fill_pattern; break; case FILL_MEMSET_16: *tx_buf = GET_VALUE_BYTE(test->fill_pattern, count, 2); break; case FILL_MEMSET_24: *tx_buf = GET_VALUE_BYTE(test->fill_pattern, count, 3); break; case FILL_MEMSET_32: *tx_buf = GET_VALUE_BYTE(test->fill_pattern, count, 4); break; case FILL_COUNT_8: *tx_buf = count; break; case FILL_COUNT_16: *tx_buf = GET_VALUE_BYTE(count, count, 2); break; case FILL_COUNT_24: *tx_buf = GET_VALUE_BYTE(count, count, 3); break; case FILL_COUNT_32: *tx_buf = GET_VALUE_BYTE(count, count, 4); break; case FILL_TRANSFER_BYTE_8: *tx_buf = j; break; case FILL_TRANSFER_BYTE_16: *tx_buf = GET_VALUE_BYTE(j, j, 2); break; case FILL_TRANSFER_BYTE_24: *tx_buf = GET_VALUE_BYTE(j, j, 3); break; case FILL_TRANSFER_BYTE_32: *tx_buf = GET_VALUE_BYTE(j, j, 4); break; case FILL_TRANSFER_NUM: *tx_buf = i; break; default: dev_err(&spi->dev, "unsupported fill_option: %i\n", test->fill_option); return -EINVAL; } } } return 0; } static int _spi_test_run_iter(struct spi_device *spi, struct spi_test *test, void *tx, void *rx) { struct spi_message *msg = &test->msg; struct spi_transfer *x; int i, ret; /* initialize message - zero-filled via static initialization */ spi_message_init_no_memset(msg); /* fill rx with the DO_NOT_WRITE pattern */ memset(rx, SPI_TEST_PATTERN_DO_NOT_WRITE, SPI_TEST_MAX_SIZE_PLUS); /* add the individual transfers */ for (i = 0; i < test->transfer_count; i++) { x = &test->transfers[i]; /* patch the values of tx_buf */ ret = spi_test_translate(spi, (void **)&x->tx_buf, x->len, (void *)tx, rx); if (ret) return ret; /* patch the values of rx_buf */ ret = spi_test_translate(spi, &x->rx_buf, x->len, (void *)tx, rx); if (ret) return ret; /* and add it to the list */ spi_message_add_tail(x, msg); } /* fill in the transfer buffers with pattern */ ret = spi_test_fill_pattern(spi, test); if (ret) return ret; /* and execute */ if (test->execute_msg) ret = test->execute_msg(spi, test, tx, rx); else ret = spi_test_execute_msg(spi, test, tx, rx); /* handle result */ if (ret == test->expected_return) return 0; dev_err(&spi->dev, "test failed - test returned %i, but we expect %i\n", ret, test->expected_return); if (ret) return ret; /* if it is 0, as we expected something else, * then return something special */ return -EFAULT; } static int spi_test_run_iter(struct spi_device *spi, const struct spi_test *testtemplate, void *tx, void *rx, size_t len, size_t tx_off, size_t rx_off ) { struct spi_test test; int i, tx_count, rx_count; /* copy the test template to test */ memcpy(&test, testtemplate, sizeof(test)); /* if iterate_transfer_mask is not set, * then set it to first transfer only */ if (!(test.iterate_transfer_mask & (BIT(test.transfer_count) - 1))) test.iterate_transfer_mask = 1; /* count number of transfers with tx/rx_buf != NULL */ rx_count = tx_count = 0; for (i = 0; i < test.transfer_count; i++) { if (test.transfers[i].tx_buf) tx_count++; if (test.transfers[i].rx_buf) rx_count++; } /* in some iteration cases warn and exit early, * as there is nothing to do, that has not been tested already... */ if (tx_off && (!tx_count)) { dev_warn_once(&spi->dev, "%s: iterate_tx_off configured with tx_buf==NULL - ignoring\n", test.description); return 0; } if (rx_off && (!rx_count)) { dev_warn_once(&spi->dev, "%s: iterate_rx_off configured with rx_buf==NULL - ignoring\n", test.description); return 0; } /* write out info */ if (!(len || tx_off || rx_off)) { dev_info(&spi->dev, "Running test %s\n", test.description); } else { dev_info(&spi->dev, " with iteration values: len = %zu, tx_off = %zu, rx_off = %zu\n", len, tx_off, rx_off); } /* update in the values from iteration values */ for (i = 0; i < test.transfer_count; i++) { /* only when bit in transfer mask is set */ if (!(test.iterate_transfer_mask & BIT(i))) continue; test.transfers[i].len = len; if (test.transfers[i].tx_buf) test.transfers[i].tx_buf += tx_off; if (test.transfers[i].tx_buf) test.transfers[i].rx_buf += rx_off; } /* and execute */ return _spi_test_run_iter(spi, &test, tx, rx); } /** * spi_test_execute_msg - default implementation to run a test * * spi: @spi_device on which to run the @spi_message * test: the test to execute, which already contains @msg * tx: the tx buffer allocated for the test sequence * rx: the rx buffer allocated for the test sequence * * Returns: error code of spi_sync as well as basic error checking */ int spi_test_execute_msg(struct spi_device *spi, struct spi_test *test, void *tx, void *rx) { struct spi_message *msg = &test->msg; int ret = 0; int i; /* only if we do not simulate */ if (!simulate_only) { ktime_t start; /* dump the complete message before and after the transfer */ if (dump_messages == 3) spi_test_dump_message(spi, msg, true); start = ktime_get(); /* run spi message */ ret = spi_sync(spi, msg); test->elapsed_time = ktime_to_ns(ktime_sub(ktime_get(), start)); if (ret == -ETIMEDOUT) { dev_info(&spi->dev, "spi-message timed out - rerunning...\n"); /* rerun after a few explicit schedules */ for (i = 0; i < 16; i++) schedule(); ret = spi_sync(spi, msg); } if (ret) { dev_err(&spi->dev, "Failed to execute spi_message: %i\n", ret); goto exit; } /* do some extra error checks */ if (msg->frame_length != msg->actual_length) { dev_err(&spi->dev, "actual length differs from expected\n"); ret = -EIO; goto exit; } /* run rx-buffer tests */ ret = spi_test_check_loopback_result(spi, msg, tx, rx); if (ret) goto exit; ret = spi_test_check_elapsed_time(spi, test); } /* if requested or on error dump message (including data) */ exit: if (dump_messages || ret) spi_test_dump_message(spi, msg, (dump_messages >= 2) || (ret)); return ret; } EXPORT_SYMBOL_GPL(spi_test_execute_msg); /** * spi_test_run_test - run an individual spi_test * including all the relevant iterations on: * length and buffer alignment * * spi: the spi_device to send the messages to * test: the test which we need to execute * tx: the tx buffer allocated for the test sequence * rx: the rx buffer allocated for the test sequence * * Returns: status code of spi_sync or other failures */ int spi_test_run_test(struct spi_device *spi, const struct spi_test *test, void *tx, void *rx) { int idx_len; size_t len; size_t tx_align, rx_align; int ret; /* test for transfer limits */ if (test->transfer_count >= SPI_TEST_MAX_TRANSFERS) { dev_err(&spi->dev, "%s: Exceeded max number of transfers with %i\n", test->description, test->transfer_count); return -E2BIG; } /* setting up some values in spi_message * based on some settings in spi_master * some of this can also get done in the run() method */ /* iterate over all the iterable values using macros * (to make it a bit more readable... */ #define FOR_EACH_ALIGNMENT(var) \ for (var = 0; \ var < (test->iterate_##var ? \ (spi->master->dma_alignment ? \ spi->master->dma_alignment : \ test->iterate_##var) : \ 1); \ var++) for (idx_len = 0; idx_len < SPI_TEST_MAX_ITERATE && (len = test->iterate_len[idx_len]) != -1; idx_len++) { FOR_EACH_ALIGNMENT(tx_align) { FOR_EACH_ALIGNMENT(rx_align) { /* and run the iteration */ ret = spi_test_run_iter(spi, test, tx, rx, len, tx_align, rx_align); if (ret) return ret; } } } return 0; } EXPORT_SYMBOL_GPL(spi_test_run_test); /** * spi_test_run_tests - run an array of spi_messages tests * @spi: the spi device on which to run the tests * @tests: NULL-terminated array of @spi_test * * Returns: status errors as per @spi_test_run_test() */ int spi_test_run_tests(struct spi_device *spi, struct spi_test *tests) { char *rx = NULL, *tx = NULL; int ret = 0, count = 0; struct spi_test *test; /* allocate rx/tx buffers of 128kB size without devm * in the hope that is on a page boundary */ if (use_vmalloc) rx = vmalloc(SPI_TEST_MAX_SIZE_PLUS); else rx = kzalloc(SPI_TEST_MAX_SIZE_PLUS, GFP_KERNEL); if (!rx) return -ENOMEM; if (use_vmalloc) tx = vmalloc(SPI_TEST_MAX_SIZE_PLUS); else tx = kzalloc(SPI_TEST_MAX_SIZE_PLUS, GFP_KERNEL); if (!tx) { ret = -ENOMEM; goto err_tx; } /* now run the individual tests in the table */ for (test = tests, count = 0; test->description[0]; test++, count++) { /* only run test if requested */ if ((run_only_test > -1) && (count != run_only_test)) continue; /* run custom implementation */ if (test->run_test) ret = test->run_test(spi, test, tx, rx); else ret = spi_test_run_test(spi, test, tx, rx); if (ret) goto out; /* add some delays so that we can easily * detect the individual tests when using a logic analyzer * we also add scheduling to avoid potential spi_timeouts... */ mdelay(100); schedule(); } out: kvfree(tx); err_tx: kvfree(rx); return ret; } EXPORT_SYMBOL_GPL(spi_test_run_tests);