/* * * Bluetooth HCI UART driver * * Copyright (C) 2000-2001 Qualcomm Incorporated * Copyright (C) 2002-2003 Maxim Krasnyansky * Copyright (C) 2004-2005 Marcel Holtmann * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "btintel.h" #include "btbcm.h" #include "hci_uart.h" #define VERSION "2.3" static const struct hci_uart_proto *hup[HCI_UART_MAX_PROTO]; int hci_uart_register_proto(const struct hci_uart_proto *p) { if (p->id >= HCI_UART_MAX_PROTO) return -EINVAL; if (hup[p->id]) return -EEXIST; hup[p->id] = p; BT_INFO("HCI UART protocol %s registered", p->name); return 0; } int hci_uart_unregister_proto(const struct hci_uart_proto *p) { if (p->id >= HCI_UART_MAX_PROTO) return -EINVAL; if (!hup[p->id]) return -EINVAL; hup[p->id] = NULL; return 0; } static const struct hci_uart_proto *hci_uart_get_proto(unsigned int id) { if (id >= HCI_UART_MAX_PROTO) return NULL; return hup[id]; } static inline void hci_uart_tx_complete(struct hci_uart *hu, int pkt_type) { struct hci_dev *hdev = hu->hdev; /* Update HCI stat counters */ switch (pkt_type) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; } } static inline struct sk_buff *hci_uart_dequeue(struct hci_uart *hu) { struct sk_buff *skb = hu->tx_skb; if (!skb) { percpu_down_read(&hu->proto_lock); if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) skb = hu->proto->dequeue(hu); percpu_up_read(&hu->proto_lock); } else { hu->tx_skb = NULL; } return skb; } int hci_uart_tx_wakeup(struct hci_uart *hu) { /* This may be called in an IRQ context, so we can't sleep. Therefore * we try to acquire the lock only, and if that fails we assume the * tty is being closed because that is the only time the write lock is * acquired. If, however, at some point in the future the write lock * is also acquired in other situations, then this must be revisited. */ if (!percpu_down_read_trylock(&hu->proto_lock)) return 0; if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) goto no_schedule; if (test_and_set_bit(HCI_UART_SENDING, &hu->tx_state)) { set_bit(HCI_UART_TX_WAKEUP, &hu->tx_state); goto no_schedule; } BT_DBG(""); schedule_work(&hu->write_work); no_schedule: percpu_up_read(&hu->proto_lock); return 0; } EXPORT_SYMBOL_GPL(hci_uart_tx_wakeup); static void hci_uart_write_work(struct work_struct *work) { struct hci_uart *hu = container_of(work, struct hci_uart, write_work); struct tty_struct *tty = hu->tty; struct hci_dev *hdev = hu->hdev; struct sk_buff *skb; /* REVISIT: should we cope with bad skbs or ->write() returning * and error value ? */ restart: clear_bit(HCI_UART_TX_WAKEUP, &hu->tx_state); while ((skb = hci_uart_dequeue(hu))) { int len; set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); len = tty->ops->write(tty, skb->data, skb->len); hdev->stat.byte_tx += len; skb_pull(skb, len); if (skb->len) { hu->tx_skb = skb; break; } hci_uart_tx_complete(hu, hci_skb_pkt_type(skb)); kfree_skb(skb); } if (test_bit(HCI_UART_TX_WAKEUP, &hu->tx_state)) goto restart; clear_bit(HCI_UART_SENDING, &hu->tx_state); } void hci_uart_init_work(struct work_struct *work) { struct hci_uart *hu = container_of(work, struct hci_uart, init_ready); int err; struct hci_dev *hdev; if (!test_and_clear_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) return; err = hci_register_dev(hu->hdev); if (err < 0) { BT_ERR("Can't register HCI device"); clear_bit(HCI_UART_PROTO_READY, &hu->flags); hu->proto->close(hu); hdev = hu->hdev; hu->hdev = NULL; hci_free_dev(hdev); return; } set_bit(HCI_UART_REGISTERED, &hu->flags); } int hci_uart_init_ready(struct hci_uart *hu) { if (!test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) return -EALREADY; schedule_work(&hu->init_ready); return 0; } /* ------- Interface to HCI layer ------ */ /* Reset device */ static int hci_uart_flush(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct tty_struct *tty = hu->tty; BT_DBG("hdev %p tty %p", hdev, tty); if (hu->tx_skb) { kfree_skb(hu->tx_skb); hu->tx_skb = NULL; } /* Flush any pending characters in the driver and discipline. */ tty_ldisc_flush(tty); tty_driver_flush_buffer(tty); percpu_down_read(&hu->proto_lock); if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) hu->proto->flush(hu); percpu_up_read(&hu->proto_lock); return 0; } /* Initialize device */ static int hci_uart_open(struct hci_dev *hdev) { BT_DBG("%s %p", hdev->name, hdev); /* Undo clearing this from hci_uart_close() */ hdev->flush = hci_uart_flush; return 0; } /* Close device */ static int hci_uart_close(struct hci_dev *hdev) { BT_DBG("hdev %p", hdev); hci_uart_flush(hdev); hdev->flush = NULL; return 0; } /* Send frames from HCI layer */ static int hci_uart_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("%s: type %d len %d", hdev->name, hci_skb_pkt_type(skb), skb->len); percpu_down_read(&hu->proto_lock); if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) { percpu_up_read(&hu->proto_lock); return -EUNATCH; } hu->proto->enqueue(hu, skb); percpu_up_read(&hu->proto_lock); hci_uart_tx_wakeup(hu); return 0; } /* Check the underlying device or tty has flow control support */ bool hci_uart_has_flow_control(struct hci_uart *hu) { /* serdev nodes check if the needed operations are present */ if (hu->serdev) return true; if (hu->tty->driver->ops->tiocmget && hu->tty->driver->ops->tiocmset) return true; return false; } /* Flow control or un-flow control the device */ void hci_uart_set_flow_control(struct hci_uart *hu, bool enable) { struct tty_struct *tty = hu->tty; struct ktermios ktermios; int status; unsigned int set = 0; unsigned int clear = 0; if (hu->serdev) { serdev_device_set_flow_control(hu->serdev, !enable); serdev_device_set_rts(hu->serdev, !enable); return; } if (enable) { /* Disable hardware flow control */ ktermios = tty->termios; ktermios.c_cflag &= ~CRTSCTS; status = tty_set_termios(tty, &ktermios); BT_DBG("Disabling hardware flow control: %s", status ? "failed" : "success"); /* Clear RTS to prevent the device from sending */ /* Most UARTs need OUT2 to enable interrupts */ status = tty->driver->ops->tiocmget(tty); BT_DBG("Current tiocm 0x%x", status); set &= ~(TIOCM_OUT2 | TIOCM_RTS); clear = ~set; set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | TIOCM_OUT2 | TIOCM_LOOP; clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | TIOCM_OUT2 | TIOCM_LOOP; status = tty->driver->ops->tiocmset(tty, set, clear); BT_DBG("Clearing RTS: %s", status ? "failed" : "success"); } else { /* Set RTS to allow the device to send again */ status = tty->driver->ops->tiocmget(tty); BT_DBG("Current tiocm 0x%x", status); set |= (TIOCM_OUT2 | TIOCM_RTS); clear = ~set; set &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | TIOCM_OUT2 | TIOCM_LOOP; clear &= TIOCM_DTR | TIOCM_RTS | TIOCM_OUT1 | TIOCM_OUT2 | TIOCM_LOOP; status = tty->driver->ops->tiocmset(tty, set, clear); BT_DBG("Setting RTS: %s", status ? "failed" : "success"); /* Re-enable hardware flow control */ ktermios = tty->termios; ktermios.c_cflag |= CRTSCTS; status = tty_set_termios(tty, &ktermios); BT_DBG("Enabling hardware flow control: %s", status ? "failed" : "success"); } } void hci_uart_set_speeds(struct hci_uart *hu, unsigned int init_speed, unsigned int oper_speed) { hu->init_speed = init_speed; hu->oper_speed = oper_speed; } void hci_uart_set_baudrate(struct hci_uart *hu, unsigned int speed) { struct tty_struct *tty = hu->tty; struct ktermios ktermios; ktermios = tty->termios; ktermios.c_cflag &= ~CBAUD; tty_termios_encode_baud_rate(&ktermios, speed, speed); /* tty_set_termios() return not checked as it is always 0 */ tty_set_termios(tty, &ktermios); BT_DBG("%s: New tty speeds: %d/%d", hu->hdev->name, tty->termios.c_ispeed, tty->termios.c_ospeed); } static int hci_uart_setup(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct hci_rp_read_local_version *ver; struct sk_buff *skb; unsigned int speed; int err; /* Init speed if any */ if (hu->init_speed) speed = hu->init_speed; else if (hu->proto->init_speed) speed = hu->proto->init_speed; else speed = 0; if (speed) hci_uart_set_baudrate(hu, speed); /* Operational speed if any */ if (hu->oper_speed) speed = hu->oper_speed; else if (hu->proto->oper_speed) speed = hu->proto->oper_speed; else speed = 0; if (hu->proto->set_baudrate && speed) { err = hu->proto->set_baudrate(hu, speed); if (!err) hci_uart_set_baudrate(hu, speed); } if (hu->proto->setup) return hu->proto->setup(hu); if (!test_bit(HCI_UART_VND_DETECT, &hu->hdev_flags)) return 0; skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { BT_ERR("%s: Reading local version information failed (%ld)", hdev->name, PTR_ERR(skb)); return 0; } if (skb->len != sizeof(*ver)) { BT_ERR("%s: Event length mismatch for version information", hdev->name); goto done; } ver = (struct hci_rp_read_local_version *)skb->data; switch (le16_to_cpu(ver->manufacturer)) { #ifdef CONFIG_BT_HCIUART_INTEL case 2: hdev->set_bdaddr = btintel_set_bdaddr; btintel_check_bdaddr(hdev); break; #endif #ifdef CONFIG_BT_HCIUART_BCM case 15: hdev->set_bdaddr = btbcm_set_bdaddr; btbcm_check_bdaddr(hdev); break; #endif default: break; } done: kfree_skb(skb); return 0; } /* ------ LDISC part ------ */ /* hci_uart_tty_open * * Called when line discipline changed to HCI_UART. * * Arguments: * tty pointer to tty info structure * Return Value: * 0 if success, otherwise error code */ static int hci_uart_tty_open(struct tty_struct *tty) { struct hci_uart *hu; BT_DBG("tty %p", tty); /* Error if the tty has no write op instead of leaving an exploitable * hole */ if (tty->ops->write == NULL) return -EOPNOTSUPP; hu = kzalloc(sizeof(struct hci_uart), GFP_KERNEL); if (!hu) { BT_ERR("Can't allocate control structure"); return -ENFILE; } tty->disc_data = hu; hu->tty = tty; tty->receive_room = 65536; /* disable alignment support by default */ hu->alignment = 1; hu->padding = 0; INIT_WORK(&hu->init_ready, hci_uart_init_work); INIT_WORK(&hu->write_work, hci_uart_write_work); percpu_init_rwsem(&hu->proto_lock); /* Flush any pending characters in the driver */ tty_driver_flush_buffer(tty); return 0; } /* hci_uart_tty_close() * * Called when the line discipline is changed to something * else, the tty is closed, or the tty detects a hangup. */ static void hci_uart_tty_close(struct tty_struct *tty) { struct hci_uart *hu = tty->disc_data; struct hci_dev *hdev; BT_DBG("tty %p", tty); /* Detach from the tty */ tty->disc_data = NULL; if (!hu) return; hdev = hu->hdev; if (hdev) hci_uart_close(hdev); if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) { percpu_down_write(&hu->proto_lock); clear_bit(HCI_UART_PROTO_READY, &hu->flags); percpu_up_write(&hu->proto_lock); cancel_work_sync(&hu->write_work); if (hdev) { if (test_bit(HCI_UART_REGISTERED, &hu->flags)) hci_unregister_dev(hdev); hci_free_dev(hdev); } hu->proto->close(hu); } clear_bit(HCI_UART_PROTO_SET, &hu->flags); percpu_free_rwsem(&hu->proto_lock); kfree(hu); } /* hci_uart_tty_wakeup() * * Callback for transmit wakeup. Called when low level * device driver can accept more send data. * * Arguments: tty pointer to associated tty instance data * Return Value: None */ static void hci_uart_tty_wakeup(struct tty_struct *tty) { struct hci_uart *hu = tty->disc_data; BT_DBG(""); if (!hu) return; clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); if (tty != hu->tty) return; if (test_bit(HCI_UART_PROTO_READY, &hu->flags)) hci_uart_tx_wakeup(hu); } /* hci_uart_tty_receive() * * Called by tty low level driver when receive data is * available. * * Arguments: tty pointer to tty isntance data * data pointer to received data * flags pointer to flags for data * count count of received data in bytes * * Return Value: None */ static void hci_uart_tty_receive(struct tty_struct *tty, const u8 *data, char *flags, int count) { struct hci_uart *hu = tty->disc_data; if (!hu || tty != hu->tty) return; percpu_down_read(&hu->proto_lock); if (!test_bit(HCI_UART_PROTO_READY, &hu->flags)) { percpu_up_read(&hu->proto_lock); return; } /* It does not need a lock here as it is already protected by a mutex in * tty caller */ hu->proto->recv(hu, data, count); percpu_up_read(&hu->proto_lock); if (hu->hdev) hu->hdev->stat.byte_rx += count; tty_unthrottle(tty); } static int hci_uart_register_dev(struct hci_uart *hu) { struct hci_dev *hdev; int err; BT_DBG(""); /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { BT_ERR("Can't allocate HCI device"); return -ENOMEM; } hu->hdev = hdev; hdev->bus = HCI_UART; hci_set_drvdata(hdev, hu); /* Only when vendor specific setup callback is provided, consider * the manufacturer information valid. This avoids filling in the * value for Ericsson when nothing is specified. */ if (hu->proto->setup) hdev->manufacturer = hu->proto->manufacturer; hdev->open = hci_uart_open; hdev->close = hci_uart_close; hdev->flush = hci_uart_flush; hdev->send = hci_uart_send_frame; hdev->setup = hci_uart_setup; SET_HCIDEV_DEV(hdev, hu->tty->dev); if (test_bit(HCI_UART_RAW_DEVICE, &hu->hdev_flags)) set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks); if (test_bit(HCI_UART_EXT_CONFIG, &hu->hdev_flags)) set_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks); if (!test_bit(HCI_UART_RESET_ON_INIT, &hu->hdev_flags)) set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); if (test_bit(HCI_UART_CREATE_AMP, &hu->hdev_flags)) hdev->dev_type = HCI_AMP; else hdev->dev_type = HCI_PRIMARY; /* Only call open() for the protocol after hdev is fully initialized as * open() (or a timer/workqueue it starts) may attempt to reference it. */ err = hu->proto->open(hu); if (err) { hu->hdev = NULL; hci_free_dev(hdev); return err; } if (test_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags)) return 0; if (hci_register_dev(hdev) < 0) { BT_ERR("Can't register HCI device"); hu->proto->close(hu); hu->hdev = NULL; hci_free_dev(hdev); return -ENODEV; } set_bit(HCI_UART_REGISTERED, &hu->flags); return 0; } static int hci_uart_set_proto(struct hci_uart *hu, int id) { const struct hci_uart_proto *p; int err; p = hci_uart_get_proto(id); if (!p) return -EPROTONOSUPPORT; hu->proto = p; err = hci_uart_register_dev(hu); if (err) { return err; } set_bit(HCI_UART_PROTO_READY, &hu->flags); return 0; } static int hci_uart_set_flags(struct hci_uart *hu, unsigned long flags) { unsigned long valid_flags = BIT(HCI_UART_RAW_DEVICE) | BIT(HCI_UART_RESET_ON_INIT) | BIT(HCI_UART_CREATE_AMP) | BIT(HCI_UART_INIT_PENDING) | BIT(HCI_UART_EXT_CONFIG) | BIT(HCI_UART_VND_DETECT); if (flags & ~valid_flags) return -EINVAL; hu->hdev_flags = flags; return 0; } /* hci_uart_tty_ioctl() * * Process IOCTL system call for the tty device. * * Arguments: * * tty pointer to tty instance data * file pointer to open file object for device * cmd IOCTL command code * arg argument for IOCTL call (cmd dependent) * * Return Value: Command dependent */ static int hci_uart_tty_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { struct hci_uart *hu = tty->disc_data; int err = 0; BT_DBG(""); /* Verify the status of the device */ if (!hu) return -EBADF; switch (cmd) { case HCIUARTSETPROTO: if (!test_and_set_bit(HCI_UART_PROTO_SET, &hu->flags)) { err = hci_uart_set_proto(hu, arg); if (err) clear_bit(HCI_UART_PROTO_SET, &hu->flags); } else err = -EBUSY; break; case HCIUARTGETPROTO: if (test_bit(HCI_UART_PROTO_SET, &hu->flags)) err = hu->proto->id; else err = -EUNATCH; break; case HCIUARTGETDEVICE: if (test_bit(HCI_UART_REGISTERED, &hu->flags)) err = hu->hdev->id; else err = -EUNATCH; break; case HCIUARTSETFLAGS: if (test_bit(HCI_UART_PROTO_SET, &hu->flags)) err = -EBUSY; else err = hci_uart_set_flags(hu, arg); break; case HCIUARTGETFLAGS: err = hu->hdev_flags; break; default: err = n_tty_ioctl_helper(tty, file, cmd, arg); break; } return err; } /* * We don't provide read/write/poll interface for user space. */ static ssize_t hci_uart_tty_read(struct tty_struct *tty, struct file *file, unsigned char __user *buf, size_t nr) { return 0; } static ssize_t hci_uart_tty_write(struct tty_struct *tty, struct file *file, const unsigned char *data, size_t count) { return 0; } static __poll_t hci_uart_tty_poll(struct tty_struct *tty, struct file *filp, poll_table *wait) { return 0; } static int __init hci_uart_init(void) { static struct tty_ldisc_ops hci_uart_ldisc; int err; BT_INFO("HCI UART driver ver %s", VERSION); /* Register the tty discipline */ memset(&hci_uart_ldisc, 0, sizeof(hci_uart_ldisc)); hci_uart_ldisc.magic = TTY_LDISC_MAGIC; hci_uart_ldisc.name = "n_hci"; hci_uart_ldisc.open = hci_uart_tty_open; hci_uart_ldisc.close = hci_uart_tty_close; hci_uart_ldisc.read = hci_uart_tty_read; hci_uart_ldisc.write = hci_uart_tty_write; hci_uart_ldisc.ioctl = hci_uart_tty_ioctl; hci_uart_ldisc.poll = hci_uart_tty_poll; hci_uart_ldisc.receive_buf = hci_uart_tty_receive; hci_uart_ldisc.write_wakeup = hci_uart_tty_wakeup; hci_uart_ldisc.owner = THIS_MODULE; err = tty_register_ldisc(N_HCI, &hci_uart_ldisc); if (err) { BT_ERR("HCI line discipline registration failed. (%d)", err); return err; } #ifdef CONFIG_BT_HCIUART_H4 h4_init(); #endif #ifdef CONFIG_BT_HCIUART_BCSP bcsp_init(); #endif #ifdef CONFIG_BT_HCIUART_LL ll_init(); #endif #ifdef CONFIG_BT_HCIUART_ATH3K ath_init(); #endif #ifdef CONFIG_BT_HCIUART_3WIRE h5_init(); #endif #ifdef CONFIG_BT_HCIUART_INTEL intel_init(); #endif #ifdef CONFIG_BT_HCIUART_BCM bcm_init(); #endif #ifdef CONFIG_BT_HCIUART_QCA qca_init(); #endif #ifdef CONFIG_BT_HCIUART_AG6XX ag6xx_init(); #endif #ifdef CONFIG_BT_HCIUART_MRVL mrvl_init(); #endif return 0; } static void __exit hci_uart_exit(void) { int err; #ifdef CONFIG_BT_HCIUART_H4 h4_deinit(); #endif #ifdef CONFIG_BT_HCIUART_BCSP bcsp_deinit(); #endif #ifdef CONFIG_BT_HCIUART_LL ll_deinit(); #endif #ifdef CONFIG_BT_HCIUART_ATH3K ath_deinit(); #endif #ifdef CONFIG_BT_HCIUART_3WIRE h5_deinit(); #endif #ifdef CONFIG_BT_HCIUART_INTEL intel_deinit(); #endif #ifdef CONFIG_BT_HCIUART_BCM bcm_deinit(); #endif #ifdef CONFIG_BT_HCIUART_QCA qca_deinit(); #endif #ifdef CONFIG_BT_HCIUART_AG6XX ag6xx_deinit(); #endif #ifdef CONFIG_BT_HCIUART_MRVL mrvl_deinit(); #endif /* Release tty registration of line discipline */ err = tty_unregister_ldisc(N_HCI); if (err) BT_ERR("Can't unregister HCI line discipline (%d)", err); } module_init(hci_uart_init); module_exit(hci_uart_exit); MODULE_AUTHOR("Marcel Holtmann "); MODULE_DESCRIPTION("Bluetooth HCI UART driver ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_LDISC(N_HCI);