// SPDX-License-Identifier: GPL-2.0 /* * Arch specific cpu topology information * * Copyright (C) 2016, ARM Ltd. * Written by: Juri Lelli, ARM Ltd. */ #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, unsigned long max_freq) { unsigned long scale; int i; scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; for_each_cpu(i, cpus) per_cpu(freq_scale, i) = scale; } static DEFINE_MUTEX(cpu_scale_mutex); DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) { per_cpu(cpu_scale, cpu) = capacity; } static ssize_t cpu_capacity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpu *cpu = container_of(dev, struct cpu, dev); return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id)); } static ssize_t cpu_capacity_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpu *cpu = container_of(dev, struct cpu, dev); int this_cpu = cpu->dev.id; int i; unsigned long new_capacity; ssize_t ret; if (!count) return 0; ret = kstrtoul(buf, 0, &new_capacity); if (ret) return ret; if (new_capacity > SCHED_CAPACITY_SCALE) return -EINVAL; mutex_lock(&cpu_scale_mutex); for_each_cpu(i, &cpu_topology[this_cpu].core_sibling) topology_set_cpu_scale(i, new_capacity); mutex_unlock(&cpu_scale_mutex); return count; } static DEVICE_ATTR_RW(cpu_capacity); static int register_cpu_capacity_sysctl(void) { int i; struct device *cpu; for_each_possible_cpu(i) { cpu = get_cpu_device(i); if (!cpu) { pr_err("%s: too early to get CPU%d device!\n", __func__, i); continue; } device_create_file(cpu, &dev_attr_cpu_capacity); } return 0; } subsys_initcall(register_cpu_capacity_sysctl); static u32 capacity_scale; static u32 *raw_capacity; static int free_raw_capacity(void) { kfree(raw_capacity); raw_capacity = NULL; return 0; } void topology_normalize_cpu_scale(void) { u64 capacity; int cpu; if (!raw_capacity) return; pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale); mutex_lock(&cpu_scale_mutex); for_each_possible_cpu(cpu) { pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n", cpu, raw_capacity[cpu]); capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT) / capacity_scale; topology_set_cpu_scale(cpu, capacity); pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", cpu, topology_get_cpu_scale(NULL, cpu)); } mutex_unlock(&cpu_scale_mutex); } bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) { static bool cap_parsing_failed; int ret; u32 cpu_capacity; if (cap_parsing_failed) return false; ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", &cpu_capacity); if (!ret) { if (!raw_capacity) { raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), GFP_KERNEL); if (!raw_capacity) { pr_err("cpu_capacity: failed to allocate memory for raw capacities\n"); cap_parsing_failed = true; return false; } } capacity_scale = max(cpu_capacity, capacity_scale); raw_capacity[cpu] = cpu_capacity; pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", cpu_node, raw_capacity[cpu]); } else { if (raw_capacity) { pr_err("cpu_capacity: missing %pOF raw capacity\n", cpu_node); pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); } cap_parsing_failed = true; free_raw_capacity(); } return !ret; } #ifdef CONFIG_CPU_FREQ static cpumask_var_t cpus_to_visit; static void parsing_done_workfn(struct work_struct *work); static DECLARE_WORK(parsing_done_work, parsing_done_workfn); static int init_cpu_capacity_callback(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_policy *policy = data; int cpu; if (!raw_capacity) return 0; if (val != CPUFREQ_NOTIFY) return 0; pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", cpumask_pr_args(policy->related_cpus), cpumask_pr_args(cpus_to_visit)); cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); for_each_cpu(cpu, policy->related_cpus) { raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) * policy->cpuinfo.max_freq / 1000UL; capacity_scale = max(raw_capacity[cpu], capacity_scale); } if (cpumask_empty(cpus_to_visit)) { topology_normalize_cpu_scale(); free_raw_capacity(); pr_debug("cpu_capacity: parsing done\n"); schedule_work(&parsing_done_work); } return 0; } static struct notifier_block init_cpu_capacity_notifier = { .notifier_call = init_cpu_capacity_callback, }; static int __init register_cpufreq_notifier(void) { int ret; /* * on ACPI-based systems we need to use the default cpu capacity * until we have the necessary code to parse the cpu capacity, so * skip registering cpufreq notifier. */ if (!acpi_disabled || !raw_capacity) return -EINVAL; if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) { pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n"); return -ENOMEM; } cpumask_copy(cpus_to_visit, cpu_possible_mask); ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, CPUFREQ_POLICY_NOTIFIER); if (ret) free_cpumask_var(cpus_to_visit); return ret; } core_initcall(register_cpufreq_notifier); static void parsing_done_workfn(struct work_struct *work) { cpufreq_unregister_notifier(&init_cpu_capacity_notifier, CPUFREQ_POLICY_NOTIFIER); free_cpumask_var(cpus_to_visit); } #else core_initcall(free_raw_capacity); #endif