// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /****************************************************************************** * * Module Name: hwxface - Public ACPICA hardware interfaces * * Copyright (C) 2000 - 2018, Intel Corp. * *****************************************************************************/ #define EXPORT_ACPI_INTERFACES #include #include "accommon.h" #include "acnamesp.h" #define _COMPONENT ACPI_HARDWARE ACPI_MODULE_NAME("hwxface") /****************************************************************************** * * FUNCTION: acpi_reset * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Set reset register in memory or IO space. Note: Does not * support reset register in PCI config space, this must be * handled separately. * ******************************************************************************/ acpi_status acpi_reset(void) { struct acpi_generic_address *reset_reg; acpi_status status; ACPI_FUNCTION_TRACE(acpi_reset); reset_reg = &acpi_gbl_FADT.reset_register; /* Check if the reset register is supported */ if (!(acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) || !reset_reg->address) { return_ACPI_STATUS(AE_NOT_EXIST); } if (reset_reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) { /* * For I/O space, write directly to the OSL. This bypasses the port * validation mechanism, which may block a valid write to the reset * register. * * NOTE: * The ACPI spec requires the reset register width to be 8, so we * hardcode it here and ignore the FADT value. This maintains * compatibility with other ACPI implementations that have allowed * BIOS code with bad register width values to go unnoticed. */ status = acpi_os_write_port((acpi_io_address)reset_reg->address, acpi_gbl_FADT.reset_value, ACPI_RESET_REGISTER_WIDTH); } else { /* Write the reset value to the reset register */ status = acpi_hw_write(acpi_gbl_FADT.reset_value, reset_reg); } return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_reset) /****************************************************************************** * * FUNCTION: acpi_read * * PARAMETERS: value - Where the value is returned * reg - GAS register structure * * RETURN: Status * * DESCRIPTION: Read from either memory or IO space. * * LIMITATIONS: * bit_width must be exactly 8, 16, 32, or 64. * space_ID must be system_memory or system_IO. * bit_offset and access_width are currently ignored, as there has * not been a need to implement these. * ******************************************************************************/ acpi_status acpi_read(u64 *return_value, struct acpi_generic_address *reg) { acpi_status status; ACPI_FUNCTION_NAME(acpi_read); status = acpi_hw_read(return_value, reg); return (status); } ACPI_EXPORT_SYMBOL(acpi_read) /****************************************************************************** * * FUNCTION: acpi_write * * PARAMETERS: value - Value to be written * reg - GAS register structure * * RETURN: Status * * DESCRIPTION: Write to either memory or IO space. * ******************************************************************************/ acpi_status acpi_write(u64 value, struct acpi_generic_address *reg) { acpi_status status; ACPI_FUNCTION_NAME(acpi_write); status = acpi_hw_write(value, reg); return (status); } ACPI_EXPORT_SYMBOL(acpi_write) #if (!ACPI_REDUCED_HARDWARE) /******************************************************************************* * * FUNCTION: acpi_read_bit_register * * PARAMETERS: register_id - ID of ACPI Bit Register to access * return_value - Value that was read from the register, * normalized to bit position zero. * * RETURN: Status and the value read from the specified Register. Value * returned is normalized to bit0 (is shifted all the way right) * * DESCRIPTION: ACPI bit_register read function. Does not acquire the HW lock. * * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and * PM2 Control. * * Note: The hardware lock is not required when reading the ACPI bit registers * since almost all of them are single bit and it does not matter that * the parent hardware register can be split across two physical * registers. The only multi-bit field is SLP_TYP in the PM1 control * register, but this field does not cross an 8-bit boundary (nor does * it make much sense to actually read this field.) * ******************************************************************************/ acpi_status acpi_read_bit_register(u32 register_id, u32 *return_value) { struct acpi_bit_register_info *bit_reg_info; u32 register_value; u32 value; acpi_status status; ACPI_FUNCTION_TRACE_U32(acpi_read_bit_register, register_id); /* Get the info structure corresponding to the requested ACPI Register */ bit_reg_info = acpi_hw_get_bit_register_info(register_id); if (!bit_reg_info) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Read the entire parent register */ status = acpi_hw_register_read(bit_reg_info->parent_register, ®ister_value); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* Normalize the value that was read, mask off other bits */ value = ((register_value & bit_reg_info->access_bit_mask) >> bit_reg_info->bit_position); ACPI_DEBUG_PRINT((ACPI_DB_IO, "BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n", register_id, bit_reg_info->parent_register, register_value, value)); *return_value = value; return_ACPI_STATUS(AE_OK); } ACPI_EXPORT_SYMBOL(acpi_read_bit_register) /******************************************************************************* * * FUNCTION: acpi_write_bit_register * * PARAMETERS: register_id - ID of ACPI Bit Register to access * value - Value to write to the register, in bit * position zero. The bit is automatically * shifted to the correct position. * * RETURN: Status * * DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock * since most operations require a read/modify/write sequence. * * SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and * PM2 Control. * * Note that at this level, the fact that there may be actually two * hardware registers (A and B - and B may not exist) is abstracted. * ******************************************************************************/ acpi_status acpi_write_bit_register(u32 register_id, u32 value) { struct acpi_bit_register_info *bit_reg_info; acpi_cpu_flags lock_flags; u32 register_value; acpi_status status = AE_OK; ACPI_FUNCTION_TRACE_U32(acpi_write_bit_register, register_id); /* Get the info structure corresponding to the requested ACPI Register */ bit_reg_info = acpi_hw_get_bit_register_info(register_id); if (!bit_reg_info) { return_ACPI_STATUS(AE_BAD_PARAMETER); } lock_flags = acpi_os_acquire_raw_lock(acpi_gbl_hardware_lock); /* * At this point, we know that the parent register is one of the * following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control */ if (bit_reg_info->parent_register != ACPI_REGISTER_PM1_STATUS) { /* * 1) Case for PM1 Enable, PM1 Control, and PM2 Control * * Perform a register read to preserve the bits that we are not * interested in */ status = acpi_hw_register_read(bit_reg_info->parent_register, ®ister_value); if (ACPI_FAILURE(status)) { goto unlock_and_exit; } /* * Insert the input bit into the value that was just read * and write the register */ ACPI_REGISTER_INSERT_VALUE(register_value, bit_reg_info->bit_position, bit_reg_info->access_bit_mask, value); status = acpi_hw_register_write(bit_reg_info->parent_register, register_value); } else { /* * 2) Case for PM1 Status * * The Status register is different from the rest. Clear an event * by writing 1, writing 0 has no effect. So, the only relevant * information is the single bit we're interested in, all others * should be written as 0 so they will be left unchanged. */ register_value = ACPI_REGISTER_PREPARE_BITS(value, bit_reg_info-> bit_position, bit_reg_info-> access_bit_mask); /* No need to write the register if value is all zeros */ if (register_value) { status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS, register_value); } } ACPI_DEBUG_PRINT((ACPI_DB_IO, "BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n", register_id, bit_reg_info->parent_register, value, register_value)); unlock_and_exit: acpi_os_release_raw_lock(acpi_gbl_hardware_lock, lock_flags); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_write_bit_register) #endif /* !ACPI_REDUCED_HARDWARE */ /******************************************************************************* * * FUNCTION: acpi_get_sleep_type_data * * PARAMETERS: sleep_state - Numeric sleep state * *sleep_type_a - Where SLP_TYPa is returned * *sleep_type_b - Where SLP_TYPb is returned * * RETURN: Status * * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested * sleep state via the appropriate \_Sx object. * * The sleep state package returned from the corresponding \_Sx_ object * must contain at least one integer. * * March 2005: * Added support for a package that contains two integers. This * goes against the ACPI specification which defines this object as a * package with one encoded DWORD integer. However, existing practice * by many BIOS vendors is to return a package with 2 or more integer * elements, at least one per sleep type (A/B). * * January 2013: * Therefore, we must be prepared to accept a package with either a * single integer or multiple integers. * * The single integer DWORD format is as follows: * BYTE 0 - Value for the PM1A SLP_TYP register * BYTE 1 - Value for the PM1B SLP_TYP register * BYTE 2-3 - Reserved * * The dual integer format is as follows: * Integer 0 - Value for the PM1A SLP_TYP register * Integer 1 - Value for the PM1A SLP_TYP register * ******************************************************************************/ acpi_status acpi_get_sleep_type_data(u8 sleep_state, u8 *sleep_type_a, u8 *sleep_type_b) { acpi_status status; struct acpi_evaluate_info *info; union acpi_operand_object **elements; ACPI_FUNCTION_TRACE(acpi_get_sleep_type_data); /* Validate parameters */ if ((sleep_state > ACPI_S_STATES_MAX) || !sleep_type_a || !sleep_type_b) { return_ACPI_STATUS(AE_BAD_PARAMETER); } /* Allocate the evaluation information block */ info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info)); if (!info) { return_ACPI_STATUS(AE_NO_MEMORY); } /* * Evaluate the \_Sx namespace object containing the register values * for this state */ info->relative_pathname = acpi_gbl_sleep_state_names[sleep_state]; status = acpi_ns_evaluate(info); if (ACPI_FAILURE(status)) { if (status == AE_NOT_FOUND) { /* The _Sx states are optional, ignore NOT_FOUND */ goto final_cleanup; } goto warning_cleanup; } /* Must have a return object */ if (!info->return_object) { ACPI_ERROR((AE_INFO, "No Sleep State object returned from [%s]", info->relative_pathname)); status = AE_AML_NO_RETURN_VALUE; goto warning_cleanup; } /* Return object must be of type Package */ if (info->return_object->common.type != ACPI_TYPE_PACKAGE) { ACPI_ERROR((AE_INFO, "Sleep State return object is not a Package")); status = AE_AML_OPERAND_TYPE; goto return_value_cleanup; } /* * Any warnings about the package length or the object types have * already been issued by the predefined name module -- there is no * need to repeat them here. */ elements = info->return_object->package.elements; switch (info->return_object->package.count) { case 0: status = AE_AML_PACKAGE_LIMIT; break; case 1: if (elements[0]->common.type != ACPI_TYPE_INTEGER) { status = AE_AML_OPERAND_TYPE; break; } /* A valid _Sx_ package with one integer */ *sleep_type_a = (u8)elements[0]->integer.value; *sleep_type_b = (u8)(elements[0]->integer.value >> 8); break; case 2: default: if ((elements[0]->common.type != ACPI_TYPE_INTEGER) || (elements[1]->common.type != ACPI_TYPE_INTEGER)) { status = AE_AML_OPERAND_TYPE; break; } /* A valid _Sx_ package with two integers */ *sleep_type_a = (u8)elements[0]->integer.value; *sleep_type_b = (u8)elements[1]->integer.value; break; } return_value_cleanup: acpi_ut_remove_reference(info->return_object); warning_cleanup: if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "While evaluating Sleep State [%s]", info->relative_pathname)); } final_cleanup: ACPI_FREE(info); return_ACPI_STATUS(status); } ACPI_EXPORT_SYMBOL(acpi_get_sleep_type_data)