
!
! Welcome to libjson 7. libjson is the fastest and more customizable json library for C and C++. It
has a special interface for C++, to allow C++ programmers to embed libjson within their program, and
because many of libjson’s functions are inlined, they will get a major optimization boost from the compiler.
! It also has a C-style interface for other programming languages and for sharing libraries. This
document will explain building and optimizing libjson to fit your needs, the C interface, and the C++
specialized interface. Each has their own part in this document.
! If you are upgrading from libJSON 5 or earlier, this new library has a different interface, so your
programs will break if you try and plug and play, but it should not be difficult to convert them, as all of the
functions are still there, they just have more standardized names.
! If you are upgrading from libjson 6, the only difference in the interface in json_validate.
! libjson’s interface will not change during minor or bug fix releases. Only major upgrades will (ie,
libjson 6 to libjson 7.)
! You should look at the changelog at the end of the document each time you upgrade, as things
may have been added or fixed that you are using.

About libjson

! libjson is a high speed complete JSON library, including parsers, writers, builders, formatters,
validators… It is also highly customizable. It may seem strange that libjson is considered a very
lightweight library, but the documentation is 200 pages long and there are dozens of source files, but the
fact is that very little of the library gets complied at any given time. The JSONOptions.h file sets options
for which parts are compiled and how they are. This document will tell you if function behave differently
or are unavailable under certain options.
! libjson was written with performance in mind. It is fast, and uses very little memory. Low level
memory manipulation allows libjson to do some speed tricks that less fine-tuned libraries don’t do. The
loads of preprocessor options means that there are few conditions at run-time, allowing it to focus as
much energy on the task at hand. The options allow you to optimize libjson for your program. See the
Optimizing libjson section near the end of this document.
! I also gave it more customizability than any other library, including mutex managers, garbage
collection, memory control, and unicode support, all optional of course, and not on by default. There is a
clean C interface, with all methods using C - style names and all prefixed with json_. There is also a very
intuitive C++ interface complete with iterators, and a very STL - style interface. These two libraries share
some code, but also have version specific code.
! libjson is also quiet secure, it is immune from most DoS attacks with it’s default options on and its
security options are all configurable.

Please report any bugs or feature requests here: http://sourceforge.net/tracker/?group_id=314112

If you email from your sourceforge account, be sure that you’re able to receive replies. It seems that the
default behavior of sourceforge turns this off, I’ve gotten lots of requests for help that I’ve been unable to
respond to, I try my best to find another way to answer you, but I can’t always.

https://sourceforge.net/tracker/?group_id=314112
https://sourceforge.net/tracker/?group_id=314112

Supported platforms ! 8

Building libjson! 9
JSONOptions.h! 9

JSON_LIBRARY! 10

JSON_STRICT! 11

JSON_DEBUG! 12

JSON_ISO_STRICT! 13

JSON_SAFE! 14

JSON_CASTABLE! 15

JSON_STDERROR! 16

JSON_PREPARSE! 17

JSON_LESS_MEMORY! 18

JSON_UNICODE! 19

JSON_REF_COUNT! 20

JSON_BINARY! 21

JSON_EXPOSE_BASE64! 22

JSON_ITERATORS! 23

JSON_STREAM! 24

JSON_MEMORY_CALLBACKS! 25

JSON_MEMORY_MANAGE! 26

JSON_MEMORY_POOL! 27

JSON_MUTEX_CALLBACKS! 28

JSON_MUTEX_MANAGE! 29

JSON_NO_C_CONSTS! 30

JSON_OCTAL! 31

JSON_READ_PRIORITY! 32

JSON_WRITE_PRIORITY! 33

JSON_NEWLINE! 34

JSON_INDENT! 35

JSON_ESCAPE_WRITES! 36

JSON_COMMENTS! 37

JSON_WRITE_BASH_COMMENTS! 38

JSON_WRITE_SINGLE_LINE_COMMENTS! 39

ARRAY_SIZE_ON_ONE_LINE! 40

JSON_VALIDATE! 41

JSON_CASE_INSENSITIVE_FUNCTIONS! 42

JSON_INDEX_TYPE! 43

JSON_BOOL_TYPE! 44

JSON_INT_TYPE! 45

JSON_NUMBER_TYPE! 46

JSON_STRING_HEADER! 47

JSON_NO_EXCEPTIONS! 48

JSON_DEPRECATED_FUNCTIONS! 49

JSON_SECURITY_MAX_NEST_LEVEL! 50

JSON_SECURITY_MAX_STRING_LENGTH! 51

JSON_SECURITY_MAX_STREAM_OBJECTS! 52

JSON_UNIT_TEST! 53

Testing libjson! 54

Benchmarking! 54

C interface ! 55
JSONNODE types! 55

libjson types! 55

JSONNODE functions! 57

Inspector functions! 57

Modifier Functions! 58

Streaming Functions! 58

json_new! 61

json_new_a! 62

json_new_i! 63

json_new_f! 64

json_new_b! 65

json_copy! 66

json_duplicate! 67

json_delete! 68

json_delete_all! 69

json_new_stream! 70

json_stream_push! 71

json_stream_reset! 72

json_type! 73

json_size! 74

json_empty! 75

json_name! 76

json_get_comment! 77

json_as_string! 78

json_as_int! 79

json_as_float! 80

json_as_bool! 81

json_as_node! 82

json_as_array! 83

json_as_binary! 84

json_write! 85

json_write_formatted! 86

json_equal! 87

json_set_a! 88

json_set_i! 89

json_set_f! 90

json_set_b! 91

json_set_n! 92

json_set_name! 93

json_set_comment! 94

json_clear! 95

json_swap! 96

json_merge! 97

json_preparse! 98

json_set_binary! 99

json_cast! 100

json_at! 101

json_get! 102

json_get_nocase! 103

json_reserve! 104

json_push_back! 105

json_pop_back_at! 106

json_pop_back! 107

json_pop_back_nocase! 108

json_find! 109

json_find_nocase! 110

json_erase! 111

json_erase_multi! 112

json_insert! 113

json_insert_multi! 114

json_begin! 115

json_end! 116

json_lock! 117

json_unlock! 118

json_set_mutex! 119

json_set_global_mutex! 120

json_parse! 121

json_parse_unformatted! 122

json_strip_white_space! 123

json_is_valid! 124

json_is_valid_unformatted! 125

json_validate (deprecated)! 126

json_register_debug_callback! 127

json_register_mutex_callbacks! 128

json_register_memory_callbacks! 129

json_free! 130

json_free_all! 131

json_encode64! 132

json_decode64! 133

JSON_TEXT! 134

C++ interface ! 135
JSONNode! 136

JSONNode types! 136

Member types! 136

Class functions! 137

Inspector functions! 137

Modifier Functions! 139

JSONNode::JSONNode! 141

JSONNode::~JSONNode! 143

JSONNode::duplicate! 144

JSONNode::operator =! 145

JSONNode::operator ==! 147

JSONNode::operator !=! 148

JSONNode::type! 149

JSONNode::size! 150

JSONNode::empty! 151

JSONNode::name! 152

JSONNode::get_comment! 153

JSONNode::as_string! 154

JSONNode::as_int! 155

JSONNode::as_float! 156

JSONNode::as_bool! 157

JSONNode::as_node! 158

JSONNode::as_array! 159

JSONNode::as_binary! 160

JSONNode::dump! 161

JSONNode::write! 162

JSONNode::write_formatted! 163

JSONNode::set_name! 164

JSONNode::set_comment! 165

JSONNode::clear! 166

JSONNode::swap! 167

JSONNode::merge! 168

JSONNode::preparse! 169

JSONNode::set_binary! 170

JSONNode::cast! 171

JSONNode::at! 172

JSONNode::at_nocase! 173

JSONNode::operator []! 174

JSONNode::reserve! 175

JSONNode::push_back! 176

JSONNode::pop_back! 177

JSONNode::pop_back_nocase! 178

JSONNode::find! 179

JSONNode::find_nocase! 180

JSONNode::erase! 181

JSONNode::insert! 182

JSONNode::begin! 184

JSONNode::end! 185

JSONNode::rbegin! 186

JSONNode::rend! 187

JSONNode::set_mutex! 188

JSONNode::lock! 189

JSONNode::unlock! 190

JSONStream ! 191
JSONStream::JSONStream! 192

JSONStream::~JSONStream! 193

JSONStream::operator =! 194

JSONStream::operator <<! 195

JSONStream::reset! 196

libjson! 197
libjson::parse! 199

libjson::parse_unformatted! 200

libjson::strip_white_space! 201

libjson::is_valid! 202

libjson::is_valid_unformatted! 203

libjson::validate (deprecated)! 204

libjson::register_debug_callback! 205

libjson::register_mutex_callbacks! 206

libjson::set_global_mutex! 207

libjson::register_memory_callbacks! 208

libjson::encode64! 209

libjson::decode64! 210

libjson::to_std_string! 211

libjson::to_std_wstring! 212

libjson::to_json_string! 213

JSON_TEXT! 214

Optimizing libjson! 215
Compiler Options! 215

C++ Optimizations! 215

JSONOptions.h Optimizations! 215

Roadmap! 218

Changelog! 219

License! 225

Supported platforms

! libjson officially supports and has been tested on the following platforms

! gcc (OSX) - Fully
! llvm (OSX) - Fully
! gcc (LInux) - Fully
! MinGW (Windows) - Supported, partially tested
! Visual C++ (Windows) - Supported, partially tested

! More compilers are being added as I get word that it is working on them. If you are using a
different compiler than one on this list, it should would. The code is meant to be platform and compiler
independent. If there are minor incompatibilities, please open a ticket on sourceforge and I will get it fixed
as soon as I can.

Building libjson

! libjson is designed for customizability by experts, but also ease of use by novices. Most users
simply need to make the library. If you are planning on embedding it in your C++ program, then all you
have to do is add libjson’s source to your project and comment JSON_LIBRARY in JSONOptions.h.
libjson does not use anything other than built-in C++ and any compiler should compile it.

JSONOptions.h

! In the source code you will find a file called JSONOptions.h, which is used for configuring libjson’s
build. All of the options are in there and it’s recommended that you leave them, just comment out what
you don’t need. There is a brief description of each option in the file, as well as a more extensive
explanation further down in this document.
! I chose to use a file for the options in libjson instead of forcing the user to know compile options
and change them in the project and make files. I think this is easier.
! It is recommended that you build and run the Unit Test before compiling for the library or using it
in C++. As there are billions of combinations of options, not all of them have been tested together. If the
build failed, please take out a ticket on sourceforge: http://sourceforge.net/tracker/?group_id=314112 or
email the author at ninja9578@yahoo.com. Your issue will be quickly fixed and your options added to the
quarter of a million unit tests that are already run, that way regression of the bug is impossible.

Make Options

! Thanks to Bernhard Fluehmann, libjson now has a proper makefile. The options of how libjson
behaves are all in JSONOptions, but the way it compiles depends on the options you give the make file.
The most common options for the makefile are BUILD_TYPE, SHARED, and install.
! Running make by itself will cause the library to be built as a static library, exactly where the
source is. Doing make install will install it in the exec_prefix. By default, exec_prefix is /usr/local, but you
can set this as an option too.
! To build libjson for specific purposes, you can set the BUILD_TYPE parameter. This is set to the
same values as libjson 6’s target: small or debug;

BUILD_TYPE=debug BUILD_TYPE=small

Output libjson_dbg.a libjson.a

Library
Options

JSONOptions.h, and
JSON_DEBUG

JSONOptions.h and
JSON_LESS_MEMORY

Compile
Options

-g -Wall -Os, -ffast-math -DNDEBUG

! libjson now also has an option to compile as a shared or static library. Shared libraries are quite
useful if you have multiple programs that all require json functionality. To use a shared library make
SHARED=1. By default, SHARED is 0, so it will output a static library. The extension for a shared library
is hard coded as .so in the makefile. To use .dll or .dylib, you will have to edit the make file. There are a
few more options, all documented in the makefile itself.

https://sourceforge.net/tracker/?group_id=314112
https://sourceforge.net/tracker/?group_id=314112
mailto:ninja9578@yahoo.com
mailto:ninja9578@yahoo.com

JSON_LIBRARY

! This option exposes only the C-style interface, which is used for static and dynamic library
compilation so that it can be shared by multiple programs, or used by non-C++ programming languages.
This C interface is a little simpler so that it is compatible with most programming languages primitives, but
the overall functionality remains the same.

Recommended for

! Sharing the library among multiple programs, dynamically loading the library, or using it in a
programming language other than C++.

On by default

! Yes

JSON_STRICT

! This option makes libjson strictly adhere to the specs laid out for JSON. This eliminates all
support for comments, hexadecimal and octal values, and various other things that libjson supports that
isn’t standard.

Recommended for

! Programmers who want a bare-bones strict JSON library and nothing more.

Requirements

! JSON_UNICODE is required for this option
! JSON_COMMENTS is required to be off for this option
! JSON_OCTAL is required to be off for this option

On by default

! No

JSON_DEBUG

! This option is used to create a debugging version of the library. It does a lot of checks not only of
the json, but also of the library itself. This is recommended only while writing your software, but not for
release, as it is a little bit slower.
! This option exposes libjson::registerDebugCallback in C++ and json_register_debug_callback in
C, which allows you to get feedback from libjson if something goes wrong. This will not protect against
errors, only let you know about them before it crashes. If you want to catch errors and handle them
gracefully, then turn on JSON_SAFE as well. You can also turn on JSON_STDERROR, which hides the
callbacks and prints problems to stderr.
! This option also exposes the JSONNode::dump function in C++, which allows you inspect the
internal workings of libjson, which can be useful for debugging. I chose to omit this from the C interface
because it is mostly used by the author and maintainers.

Recommended for

! Writing and debugging software, not for release software

On by default

! No

JSON_ISO_STRICT

! This option makes libjson use iso strict settings. This includes doing things like removing any
non-standard C++ functionality like long longs and wchar_t.

Recommended for

! Those who have compiler or company restrictions

On by default

! Depends, usually it is off, but if you compile on GCC with -ansi, this option will turn itself on and
warn you that you left it off

JSON_SAFE

! This option is also used for debugging, but can also be useful if you think that your program might
receive json that is not properly formatted. If libjson encounters something it it considers an error, then it
will tell you through the callback or stderr, depending on the other options. then handle it gracefully. This
option is required for validation.

Recommended for

! Programs that might receive incorrect json, or if you need to validate json. If your sure that your
json will be correct, then there is no need for this option.

On by default

! Yes

JSON_CASTABLE

! This option creates implicit casts between internal types. For example, if you call as_int on a
bool, with this option turned on, it will return 1 if true, and 0 if false. If this option is not on, this behavior is
undefined. This makes libjson more flexible, but also makes the binary larger.

Recommended for

! Those who want a flexible and weakly typed libjson

On by default

! Yes

JSON_STDERROR

! This option is will route all error messages to cerr instead of the callback. It hides
libjson::registerDebugCallback and json_register_debug_callback as they are not needed. You can see
the errors in the console.

Recommended for

! Debugging for those who do not want to handle error messages in a special way.

On by default

! No

JSON_PREPARSE

! This option forces libjson to parse the entire json string at once. By default, libjson does on-the-
fly parsing for speed reasons. This makes initial parsing much faster and use much less memory, but
subsequent reads of it slightly slower. This options switches those.

Recommended for

! Programs that use all or most of the json that it receives. Because json is largely used for
communication from client to server, often the server will send more information that needed, so parsing
all of it wastes time for no reason. However, json can also be used for configuration files as well as other
things, so in cases like that, it might be preferable to use this option.

On by default

! No

JSON_LESS_MEMORY

! This option makes libjson use about 20% less memory on average. When libjson is done using
memory, it doesn’t always release all of it, it keeps it allocated so that any future requests to push memory
back is much faster. This option doesn't allow that to happen, it instantly releases all extra memory.
! This also turns off hot spot optimizations under GCC, but turns on the better packing.

Recommended for

! Programs that need as much memory as possible. Possibly for embedded programming, or
programs that might end up using billions of nodes and need as much memory as possible.

On by default

! No

JSON_UNICODE

! This option makes libjson use wide strings both internally and for the interface. Because the
JSON standard specifies that it must support full UTF8, libjson can not meet this standard without wide
characters. However, because these multi-byte characters are rarely used, this is optional, and off by
default.

Recommended for

! Programs that need the full range of UTF-8.

Requirements

! Must not be compiled using ansi strict.

On by default

! No

JSON_REF_COUNT

! This option makes libjson’s nodes reference count and copy-on-write it’s internal structure. This
makes passing by value and copying nodes very fast, but less thread-safe.

Recommended for

! Programmers that want to copy and pass by value often. Also by programmers who take
JSONNodes just to read them. It is recommended if you are interacting with your json with multiple
threads, that you turn this option off, or use the JSON_MUTEX_CALLBACKs options and use critical
sections.

On by default

! Yes

JSON_BINARY

! This option turns on the set_binary and get_binary functions. Because the JSON standard offers
no way to encode true binary data, libjson (like most json libraries) uses Base64 to encode and decode
binary data into text. This allows you to transport binary data between server and client, such as images
or files. If you already have a base64 library, then you don’t need this, however, this one is highly
optimized and will probably be faster than most others.

Recommended for

! Programs that have to encode and decode binary data such as images. It can also be used to
obfuscate data.

On by default

! Yes

JSON_EXPOSE_BASE64

! This option exposes an interface to libjson’s base64 encoding functions. Normally, these are
hidden behind the scenes (and off unless JSON_BINARY is turned on,) but sometimes you may want a
high-speed base64 encoder to accompany libjson. It is inefficient to have a base64 encoder/decoder
AND libjson in your project. libjson’s encoder and decoder is by far the fastest I’ve come across, and
already therefor you. JSON is often used in networking, and base64 is often also required in networking.

Recommended for

! Programs that have to encode and decode binary data such as images. It can also be used to
obfuscate data.

On by default

! Yes

JSON_ITERATORS

! This option turns on iterator functions for libjson. erase, find, insert are exposed when this option
is on. In C++ mode you’ll find iterator functions to be very STL-like, and there is even support for iterators
in the library, but more restrictive.

Recommended for

! Programmers familiar and comfortable with STL iterators or need advanced manipulation
methods.

On by default

! Yes

JSON_STREAM

! This option turns on streaming functions for libjson. This allows you buffer json, and send it to the
stream a little bit at a time.

Recommended for

! Programs that want to buffer json, or need to stream from the internet.

On by default

! Yes

JSON_MEMORY_CALLBACKS

! This option exposes functions to register callbacks for allocating, resizing, and freeing memory.
Because libjson is designed for speed, it is feasible that some users would like to further add speed by
having the library utilize a memory pool. With this option turned on, the default behavior is still done
internally unless a callback is registered

Recommended for

! Programs that want to use custom memory handling functionality, such as memory pools and
garbage collection.

On by default

! No

JSON_MEMORY_MANAGE

! This option exposes functions to bulk delete all memory that libjson has allocated for you. This
includes strings and nodes. Usually, you are required to keep track of all of the nodes and strings that
libjson creates, but with this option you don’t have to.

Recommended for

! Programs that use lots of strings and nodes and want to de bulk cleanups or memory managers.

On by default

! No

JSON_MEMORY_POOL

! This option turns on memory pooling within libjson. This is more efficient usually that just
attaching the callbacks to a memory pool because it creates a few of them internally, which are optimized
for specific tasks.
! JSON is often used for server and/or client communication. This often entails parsing json, then
creating json, then ending the session. It doesn’t make sense to allocate and deallocate memory over
and over again, so the memory pool allocates lots of space for this all at once.

Recommended for

! Programs that repeatedly parse json.

On by default

! No

JSON_MUTEX_CALLBACKS

! This option exposes functions to register callbacks to lock and unlock mutexs and functions to
lock and unlock JSONNodes and all of it's children. This does not prevent other threads from accessing
the node, but will prevent them from locking it. Because of libjson’s extremely complex internal working
and reference counting, it is much easier for the end programmer to allow libjson to manage your mutexs
because of reference counting and manipulating trees, libjson automatically tracks mutex controls for you,
so you only ever lock what you need to.

Recommended for

! Programs that require libjson be used in critical sections.

On by default

! No

JSON_MUTEX_MANAGE

! This option lets you set mutexes and forget them, libjson will not only keep track of the mutex, but
also keep a count of how many nodes are using it, and delete it when there are no more references. This
changes the registerMutexCallbacks and json_register_mutex_callbacks to require a third deleter
callback as well.

Recommended for

! Programs that require libjson be used in critical sections and handle it’s own mutexes.

Requirements

! JSON_MUTEX_CALLBACKS is required to also be defined, if it is not, the build will fail.

On by default

! No

JSON_NO_C_CONSTS

! This option removes the const qualifier for the function declarations. The functions do not behave
any differently, they simply have a slightly different interface.

Recommended for

! Programmers who are using legacy C compilers or coding guidelines

On by default

! No

JSON_OCTAL

! This option turns on features for supporting octal values in strings and numbers. Normally, octal
numbers are treated as decimal

Recommended for

! People who need octal support

On by default

! No

JSON_READ_PRIORITY

! This option exposes libjson’s parsing functionality, and sets it’s priority. By default reading is high
priority, but if the majority of your time is spent writing, you can lower the priority to produce a better
writing engine.

Recommended for

! Programs that need to read json, this is almost everyone.

On by default

! Yes (HIGH)

JSON_WRITE_PRIORITY

! This option exposes the write and write_formatted functionality. Without this option, libjson is
read-only, this allows you to write json as well. This also sets the priority of the writing, some compilers
will generate different code depending on the priority that you give.

Recommended for

! Programs that need to write json, such as two way communication or recording a config file after
it has changed.

On by default

! Yes (MED)

JSON_NEWLINE

! This option is used for writing formatted json using specialized newlines. By default, libjson will
use the UNIX newline character. Simply defining this option is not adequate, you must define it to
something. Whatever it’s defined to will be used. The JSONOptions.h file included with libjson shows
you how, as it defined is as a carriage return followed by a newline character, this is standard on Windows
or MS-DOS. You may also want to set it to </br> (the new line tag for HTML.)

! Even if you are using unicode, write the value of the newline in regular quotes, libjson will
automatically make ii unicode for you (in preprocessor.)

Recommended for

! Programs that write formatted JSON that require special newline characters.

On by default

! No

JSON_INDENT

! This option is used for writing formatted json using specialized indents. By default, libjson will use
the ASCII tab character. Simply defining this option is not adequate, you must define it to something.
Whatever it’s defined to will be used. The JSONOptions.h file included with libjson shows you how, you
will most commonly change it to spaces, but HTML might also be common.

! Even if you are using unicode, write the value of the newline in regular quotes, libjson will
automatically make ii unicode for you (in preprocessor.)

Recommended for

! Programs that write formatted JSON that spaces to indent instead of tabs.

On by default

! No

JSON_ESCAPE_WRITES

! This option is used for writing json where the special characters have been escaped. This is on
by default, because without it, the json no longer meets the standards. If it’s off special characters like
newlines, tabs, and special unicode characters are simply place in the json as they appear. This may
cause problems with other JSON engines, and it will not pass validation, so it is recommended that you
leave it on.

Recommended for

! Programs that write JSON and want to adhere to the JSON standard, or communicate between
other json engines.

On by default

! Yes

JSON_COMMENTS

! This option tells libjson to store and write comments. libjson always supports parsing json that
has comments in it as it simply ignores them, but with this option it keeps the comments and allows you to
insert further comments.
! libjson will automatically determine if comments are multiline or single line and write them
accordingly.

Recommended for

! Programs that write complex JSON that might be read by human eyes. Comments make JSON
easier to understand and alter.

On by default

! Yes

JSON_WRITE_BASH_COMMENTS

! This option tells libjson to use bash comments to output json with comments. Bash comments
are the # character. This also disables multi-line comments in the C-style (/* */). Instead it will simply put
multiple lines, all with leading # characters.

Recommended for

! Programs that require bash comments, perhaps for DOxygen documentation.

On by default

! No

JSON_WRITE_SINGLE_LINE_COMMENTS

! This option tells libjson to not use the C-style multi-line comment, as some JSON libraries don’t
support them. This will write multi-line comments as a series of // comments instead.

Recommended for

! Programs that need to output JSON that libraries that don’t support multiline comments need to
read.

On by default

! No

ARRAY_SIZE_ON_ONE_LINE

! This option allows libjson to write small arrays all on one line. This is commonly done to make
things easier to read, specifically for things like coordinates. This will only affect writing of primitives,
objects and arrays are done as normal. You have to set this to an integer, where anything smaller or
equal to the value is treated specially.

Recommended for

! Programmers who have small arrays of primitives

On by default

! No

JSON_VALIDATE

! This option exposes validation functions. For programs that might get invalid json, validation
might be required before anything is done.

Recommended for

! Programs that might receive invalid json.

Requirements

! JSON_READ_PRIORITY is required to also be defined, if it is not, the build will fail.

On by default

! Yes

JSON_CASE_INSENSITIVE_FUNCTIONS

! This option exposes case-insensitive functions. This includes at, get, find...

Recommended for

! Programs that don’t know the cases of the node names

On by default

! Yes

JSON_INDEX_TYPE

! This option changes the type that is used to track the number of children. Usually unsigned int is
used because it’s fast and efficient, but there are cases where it’s not desired. For instance, on
embedded systems where there is little memory, one might choose to use a short or even a char. Or on
huge 64-bit systems where the number of nodes may go outside the range of an unsigned int.

Recommended for

! Either very large or very small systems

On by default

! No

JSON_BOOL_TYPE

! This option changes the bool type in the C interface. This allows you to change the interface to fit
the language that you are working with. If this option is not on, then the bool type is an int, but you can
make it anything.

Recommended for

! Programming languages other than C-based ones

On by default

! No

JSON_INT_TYPE

! This option changes the int type for as_int. If this option is not on, then int type is a long

Recommended for

! People who want to get different types out of the as_int function, possible for high precision.

On by default

! No

JSON_NUMBER_TYPE

! This option changes the number type for as_float. If this option is not on, then number type is a
double in most cases, but in JSON_LESS_MEMORY mode, it squeezes into a float.

Recommended for

! People who need extra control, or may want a long double for more precision.

On by default

! No

JSON_STRING_HEADER

! This option changes the string type that libjson uses for both it’s interface and internals. This can
be very useful for working with other libraries. For instance, developers using Qt or wxWigdets. Both are
very common and have their own string class. Both should be able to be dropped right in without much
problem. The class must be named or typedefed json_string.
! If you change this option and are using the C++ interface, then you must recompile the entire
library because this makes a dynamic dependency that your IDE or compiler will not pick up on.

You are required to implement the following interface

Recommended for

! Making interface between libjson and other libraries easier.

On by default

! No

JSON_NO_EXCEPTIONS

! This option shuts off all exceptions at the interface level. For the functions that throw exceptions,
their differences are documented in the method documentation.

Recommended for

! Companies that do not allow exception-style error handling.

On by default

! No

Note

! If you use the JSON_PREPARSE option, exceptions are used internally, other than that,
exceptions are completely removed from the library.

JSON_DEPRECATED_FUNCTIONS

! This option leaves functions that are not supposed to be used anymore. You will get compiler
warnings if you try to use these functions, but they will behave just as they did before they were
deprecated.

Recommended for

! Backwards compatibility and ease of transition between major versions

On by default

! Yes

JSON_SECURITY_MAX_NEST_LEVEL

! This option is used to prevent DoS (denial of service) attacks. Hackers sometimes try to use
deeply nested JSON to make a server hang, this security option stops libjson from going too deeply. It
must be defined as an integer. The security checks are done during validation, not parsing.

Recommended for

! Servers with public interfaces

On by default

! Yes (128)

JSON_SECURITY_MAX_STRING_LENGTH

! This option is used to prevent DoS (denial of service) attacks. Hackers sometimes try to use very
long JSON strings to make a server hang, this security option stops libjson from even trying to parse a
string that is too large. It must be defined as an integer. The security checks are done during validation,
not parsing.

Recommended for

! Servers with public interfaces

On by default

! Yes (33554432) - 32MB

JSON_SECURITY_MAX_STREAM_OBJECTS

! This option is used to prevent DoS (denial of service) attacks. Hackers sometimes try to use very
long JSON strings of lots of small objects to make a server hang, this security option stops libjson from
even trying to parse a string that is too large. It must be defined as an integer.

Recommended for

! Servers with public interfaces

On by default

! Yes (128)

JSON_UNIT_TEST

! This option is used to maintain and debug the libjson. It makes all private members and functions
public so that tests can do checks of the inner workings of libjson. This should not be turned on by end
users.

Recommended for

! libjson maintainers only.

On by default

! No

Testing libjson

! libjson should work with any combination of options (excluding illegal ones of course,) but
because of the number of options, and platforms, it is not possible to test them all. That is why libjson
includes a test suite.

! Once you have all of the options set the way that you want them, it is time to test libjson. Unzip
the TestSuite zip, and navigate to it in the console.

! make [debug | small]
! ./testapp
!
! Now you will have a new file in the folder: out.html. This will show you all of the tests that were
run. Right at the top, you will see whether or not you have any failed tests. If you have failed tests,
please report it on sourceforge with your options and setup.

Benchmarking

! libjson also comes with a benchmark setup. Navigate to TestSuite/Benchmark and do as you did
before.

! make [debug | small]
! ./testapp

! This will run 5 loops, which ill allow you to compare speed with different options set. This is
useful if you find libjson acting as a bottleneck for some reason. Depending on the speed of your
computer, this may take a few minutes.

C interface

! libjson has an interface that uses standard C types and a standard C interface. This interface
doesn’t have to be used in just C, it can be used in Basic, C, C++ and any other language that supports
the C interface (most do.) All methods in libjson begin with “json_” to make sure that the names don’t
collide with other libraries or any of your methods.

JSONNODE types

Function Description

JSON_NULL Blank node or “null” (case-less)

JSON_STRING A string

JSON_NUMBER A floating point number

JSON_BOOL A boolean “true” or “false” (case-less)

JSON_ARRAY An array of JSONNodes

JSON_NODE A complex JSONNode structure

libjson types

Function Description

JSONNODE * Opaque pointer to a node within libjson

JSONNODE_ITERATOR Random access iterator

JSONSTREAM Opaque pointer to a stream

json_char Either char or wchar_t, depending on options

json_number Either float or double, depending on options

json_index_t Child node indexing type

json_bool_t Boolean type

json_int_t Int type

json_error_callback_t typedef void (* json_error_callback_t)(const json_char *)

json_stream_callback_t typedef void (* json_stream_callback_t)(JSONNODE *, void *)

json_stream_e_callback_t typedef void (* json_stream_e_callback_t)(void *)

json_mutex_callback_t typedef void (* json_mutex_callback_t)(void *)

json_malloc_t typedef void * (* json_malloc_t)(unsigned long)

json_realloc_t typedef void * (* json_realloc_t)(void *, unsigned long)

Function Description

json_free_t typedef void (* json_free_t)(void *)

JSONNODE functions

Function Description

json_new Construct JSONNode

json_new_a Constructs a string node

json_new_i Constructs a integer node

json_new_f Constructs a floating point node

json_new_b Constructs a boolean node

json_copy Copy JSONNode content, usually reference counting

json_duplicate Copy JSONNode content, forcing a copy

json_delete Deletes the node

json_delete_all Deletes all allocated nodes

Inspector functions

Function Description

json_type The type of JSONNode it is

json_size The number of child nodes

json_empty Tests if the node has children

json_name The name of the node

json_get_comment The comment attached to the node

json_as_string The string value of the node

json_as_int The integer value of the string

json_as_float The floating point value of the string

json_as_bool The boolean value of the string

json_as_node The node, cast to a JSON_NODE

json_as_array The node, cast to a JSON_ARRAY

json_as_binary The node with it’s value converted to binary

json_write Writes the node as JSON text

json_write_formatted Writes the node as readable JSON text

json_equal Compare JSONNode contents

Modifier Functions

Function Description

json_set_a Sets the contents of the node to a string

json_set_i Sets the contents of the node to an int

json_set_f Sets the contents of the node to a float

json_set_b Sets the contents of the node to a bool

json_set_n Sets the contents of the node to another node

json_set_name Sets the name of the node

json_set_comment Sets the comment attached to the node

json_clear Removes all children

json_nullify Nulls out the node

json_swap Swap the contents of two nodes

json_merge Merges the contents of two or more nodes

json_preparse Completely parses the JSON

json_set_binary Sets the binary value of the node

json_cast Change the node’s type

Streaming Functions

Function Description

json_new_stream Creates a stream

json_stream_push Pushes data onto the stream

json_delete_stream Deletes the stream

Children Access Functions

Function Description

json_at Access item by index

json_get Access item by name or index

json_get_nocase Assess item by name, case-insensitive

json_reserve Reserve enough space

json_push_back Adds a child

json_pop_back_at Removes and returns an item by index

json_pop_back Removes and returns an item by name

json_pop_back_nocase Removes and returns an item by name, case-insensitive

json_find Finds a node by name

json_find_nocase Finds a node by name, case-insensitive

json_erase Removes an item

json_erase_multi Remove a set of children

json_insert Adds a child

json_insert_multi Insert a set of children

Iterator Functions

Function Description

json_begin Return iterator to beginning

json_end Return iterator to end

Thread Safety Functions

Function Description

json_lock Return iterator to end

json_unlock Return reverse iterator to reverse beginning

json_set_mutex Attaches a mutex to the node

json_set_global_mutex Sets the global mutex

JSON Functions

Function Description

json_parse Parses json

json_parse_unformatted Parses son that has no white spaces

json_strip_white_space Removes all white space and comment

json_is_valid Validates json

json_is_valid_unformatted Validates json that has no white spaces

json_validate (deprecated) Validates json and if it’s valid, return an object

Callback Registration

Function Description

json_register_debug_callback Registers error callback

json_register_mutex_callbacks Register mutex callbacks

json_register_memory_callbacks Registers the memory callbacks

Cleanup Functions

Function Description

json_free Frees memory of a string

json_free_all Frees memory of all strings that libjson had allocated

Base64 Functions

Function Description

json_encode64 Base64 encodes data

json_decode64 Decodes Base64 data

Text Functions

Function Description

JSON_TEXT Creates a text string in the right format

json_new

JSONNODE * json_new (char mytype);

New Node

! This function creates an empty node of the specified type. This would normally be used to start
serializing something or writing a configuration file. You must json_delete the resulting node or attach it to
something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters

mytype
The enumerated type of the JSONNODE.

Return Value

Empty node

Complexity

Constant

json_new_a

JSONNODE * json_new_a (const json_char * name, const json_char * value);

New Node

! This function creates a string node with the name and value specified. You must json_delete the
resulting node or attach it to something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

JSON_SAFE - Allows value to be NULL

Parameters

name
The node’s name, this may be NULL

value
The node’s value, this should not be NULL

Return Value

A new node

Complexity

Constant

json_new_i

JSONNODE * json_new_i(const json_char * name, json_int_t value);

New Node

! This function creates a integer node with the name and value specified. You must json_delete
the resulting node or attach it to something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters

name
The node’s name, may be NULL

value
The node’s value

Return Value

A new node

Complexity

Constant

json_new_f

JSONNODE * json_new_f(const json_char * name, json_number value);

New Node

! This function creates a floating point node with the name and value specified. You must
json_delete the resulting node or attach it to something as a child.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters

name
The node’s name, may be NULL

value
The node’s value

Return Value

A new node

Complexity

Constant

json_new_b

JSONNODE * json_new_b(const json_char * name, json_bool_t value);

New Node

! This function creates a boolean node with the name and value specified. You must json_delete
the resulting node or attach it to something as a child.
! It’s important to note that this function takes an int as the value, Some languages do not have a
bool type (including C89.)

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

Parameters

name
The node’s name, may be NULL

value
The node’s value

Return Value

A new node

Complexity

Constant

json_copy

JSONNODE * json_copy(const JSONNODE * node);

Copy Node

! This function copies a JSONNODE and returns the new copy. With reference counting, this
operation is extremely fast. If you want a literal copy and not a reference count, use json_duplicate.

Option Differences

JSON_MEMORY_MANAGER - Will keep a reference to the resulting node, so it doesn’t have to be
explicitly json_deleted.

JSON_REF_COUNT - if this is turned off, the copy constructor will fully duplicate the node

Parameters

node
The node to be copied

Return Value

An exact copy of the node parameter

Complexity

Constant, unless JSON_REF_COUNT is on, in which case it’s the same as json_duplicate.

json_duplicate

JSONNODE * json_duplicate(const JSONNODE * node);

Duplicating JSONNODE

Constructs a JSONNODE object, by copying the contents of JSONNODE. This is different from the
json_copy because it makes a literal copy, not reference counting.

Option Differences

None

Parameters

node
The node to be copied

Return Value

A JSONNode that is a new copy of the original node.

Complexity

Linear on json_size, however, because JSON is a tree structure it's worse case scenario is linear on
json_size + json_size of each child recursively.

json_delete

void json_delete(JSONNODE * node);

Destruct JSONNODE

Destructs the JSONNode object and cleans itself up.

Option Differences

None

Parameters

node
The node to be deleted

Return Value

None

Complexity

! Depends on circumstances. If it's reference count is not one, then it's complexity is constant, if
it's the sole owner of it's value, then it becomes linear on JSONNode::size, however, because JSON is a
tree structure it's worse case scenario is linear on JSONNode::size + JSONNode::size of each child
recursively.

json_delete_all

void json_delete_all(void);

Destruct All JSONNODEs

! Deletes all nodes that have been allocated by libjson. This is for bulk delete when you are done
with libjson for the time.

Option Differences

JSON_MEMORY_MANAGER - Is required to use this function

Parameters

None

Return Value

None

Complexity

! Complexity of json_delete for each node.

json_new_stream

JSONSTREAM * json_new_stream(json_stream_callback_t callback, json_stream_e_callback_t
e_callback, void * id);

New Stream

! This function creates a stream. Streams are used for pushing small amounts of json at a time, it
may be incomplete json, or even multiple json nodes, and the callback you give it will be called whenever
a complete node is recognized.
! Your callback must assume that the node given to it will be immediately deleted once the callback
is finished, so if you need to keep it, you must copy it.

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

callback
The method that gets called whenever nodes are completed

e_callback
The method that gets called whenever the stream encounters bad json

id
The pointer that will get passed back into the callback method JSONSTREAM_SELF is
recommended, as it will tell the callback to use itself as the pointer

Return Value

A new stream

Complexity

Constant

json_stream_push

void json_stream_push(JSONSTREAM * stream, json_char * text);

Push to stream

Pushes more text to the stream. If the stream sees that you have completed a node, it will call the
callback.

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

stream
! The stream to push onto
text
! The text to add to the stream

Return Value

None

Complexity

Constant

json_stream_reset

void json_stream_reset(JSONSTREAM * stream);

Resets a stream

Resets a stream object

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

stream
! The stream to reset

Return Value

None

Complexity

Constant

json_type

char json_type(JSONNODE * node);

Return type

Returns the type of the JSONNODE.

Option Differences

None

Parameters

none

Return Value

The type of the node.

Complexity

Constant

json_size

json_index_t json_size(JSONNODE * node);

Return size

Returns the number of children that the node has. This should be zero for anything other than
JSON_ARRAY or JSON_NODE, but this is only guaranteed with the JSON_SAFE option turned on. This
is because casting may or may not purge the children.

Option Differences

JSON_SAFE - will guarantee that anything other than JSON_NODE and JSON_ARRAY will return 0.

Parameters

None

Return Value

The number of children that the node has.

Complexity

Constant.

json_empty

int json_empty(JSONNODE * node);

Return empty

Returns whether or not the node has any children. If the node is not of JSON_NODE or JSON_ARRAY it
will invariably return true. Note that it returns an int, because some languages do not have a bool type.

Option Differences

None

Parameters

node
The node to perform this function on

Return Value

Whether or not the node is empty

Complexity

Constant.

json_name

json_char * json_name(JSONNODE * node);

Return name

Returns the name of the node. If there is no name, then it returns a blank string.

Option Differences

None

Parameters

node
The node to perform this function on

Return Value

The name of the string.

Complexity

Constant.

json_get_comment

json_char * json_get_comment(JSONNODE * node);

Return comment

Returns the comment attached to the node

Option Differences

JSON_COMMENTS - If this option is turned off, this function is not exposed

Parameters

node
The node to perform this function on

Return Value

The comment of the node

Complexity

Constant.

json_as_string

json_char * json_as_string(JSONNODE * node);

Return string value

Returns the string representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL “” or “null” depending on how it was created

JSON_STRING The unescaped string value

JSON_NUMBER The number in string form (may be in scientific notation)

JSON_BOOL “true” or “false”

JSON_ARRAY “”

JSON_NODE “”

Notice that both JSON_NODE and JSON_ARRAY return empty strings. Use json_write and
json_write_formatted to output JSON.

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_STRING

Parameters

node
The node to perform this function on

Return Value

The string representation of the node.

Complexity

Constant.

json_as_int

json_int_t json_as_int(JSONNODE * node);

Return int value

Returns the integer representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL 0

JSON_STRING Truncated atof(as_string)

JSON_NUMBER Truncated Value

JSON_BOOL 1 if true, 0 if false

JSON_ARRAY Undefined

JSON_NODE Undefined

If the value is actually a floating point value, then libjson will record an error via it's callback, but will
continue on ahead and simply truncate the value. So 15.9 will be returned as 15. If JSON_DEBUG is
turned on, it will also error if the value of the node is outside the range of the long long datatype.

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_NUMBER

Parameters

node
The node to perform this function on

Return Value

The integer representation of the node.

Complexity

Constant.

json_as_float

json_number json_as_float(JSONNODE * node);

Return floating point value

Returns the floating point representation of the node. This may be different depending on the type of the
node

Function Description

JSON_NULL 0.0

JSON_STRING atof(as_string)

JSON_NUMBER Value

JSON_BOOL 1.0 if true, 0.0 if false

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_NUMBER

Parameters

node
The node to perform this function on

Return Value

The floating point representation of the node.

Complexity

Constant.

json_as_bool

int json_as_bool(JSONNODE * node);

Return bool value

Returns the boolean representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL FALSE

JSON_STRING Undefined

JSON_NUMBER Value == 0.0

JSON_BOOL Value

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_BOOL

Parameters

node
The node to perform this function on

Return Value

The boolean representation of the node.

Complexity

Constant.

json_as_node

JSONNODE * json_as_node(JSONNODE * node);

Return node value

Returns the node representation of the node. For anything other than node and array, it simply returns an
empty node. If the caller is an array, it will convert it to a node.

Function Description

JSON_NULL Empty node

JSON_STRING Empty node

JSON_NUMBER Empty node

JSON_BOOL Empty node

JSON_ARRAY Array converted to a node

JSON_NODE A copy of the node

This command creates a new JSONNODE that has to be deleted or attached to a parent.

Option Differences

None

Parameters

node
The node to perform this function on

Return Value

The node representation of the node.

Complexity

Constant for all except JSON_ARRAYs and JSON_NODEs which are the same as the json_copy
function.

json_as_array

JSONNODE * json_as_array(JSONNODE * node);

Return array value

Returns the array representation of the node. For anything other than node and array, it simply returns an
empty array. If the caller is an node, it will convert it to an array by stripping all of the names of each
child.

Function Description

JSON_NULL Empty node

JSON_STRING Empty node

JSON_NUMBER Empty node

JSON_BOOL Empty node

JSON_ARRAY A copy of the array

JSON_NODE An array of the children

This command creates a new JSONNODE that has to be deleted or attached to a parent.

Option Differences

None

Parameters

node
The node to perform this function on

Return Value

The node representation of the node.

Complexity

Constant for anything other than a node. For a JSON_NODE, it is linear with respect to json_size, and
JSON_ARRAY which is the same as the json_copy function.

json_as_binary

void * json_as_binary(JSONNODE * node, unsigned long * size);

Return binary value

Returns the binary value that was part of this node. It returns a byte array which is the original binary
data. It gives you how large the array is by the pass by pointer size parameter.

Function Description

JSON_NULL Undefined

JSON_STRING The binary data from the decoded Base64

JSON_NUMBER Undefined

JSON_BOOL Undefined

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_BINARY - If this option is not on, then this function is not accessible.

Parameters

node
The node to perform this function on

size
A pointer to an unsigned long, which will tell you how many bytes the data is

Return Value

The Base64 decoded binary data

Complexity

Linear with respect to the length of the binary data

json_write

json_char * json_write(JSONNODE * node);

Write JSON

Returns JSON text, with no white space or comments. Designed to create JSON that is very small, and
therefore, faster to send between servers or write to a disk. The flipside is that it’s nearly impossible to
read by human eyes.

Only root nodes (JSON_NODE and JSON_ARRAYs) are meant to be written, all others will return a blank
string.

Option Differences

JSON_WRITER - If this option is not on, then this function is not accessible.
JSON_ESCAPE_WRITES - Escapes special characters

Parameters

node
The node to perform this function on

Return Value

JSON text of the node being written

Complexity

Linear with respect to the size of the tree underneath the node.

json_write_formatted

json_char * json_write_formatted(JSONNODE * node);

Write JSON

Returns JSON text that has been indented and prettied up so that it can be easily read and modified by
humans.

Only root nodes (JSON_NODE and JSON_ARRAYs) are meant to be written, all others will return a blank
string.

Option Differences

JSON_WRITER - If this option is not on, then this function is not accessible.
JSON_COMMENTS - If this option is not turned on, the no comments are written
JSON_WRITE_BASH_COMMENTS - This option will make libjson write only bash style # comments
JSON_WRITE_SINGLE_LINE_COMMENTS - This option will make libjson not write C-style /* */
comments
JSON_ESCAPE_WRITES - Escapes special characters

Parameters

node
The node to perform this function on

Return Value

JSON text of the node being written

Complexity

Linear with respect to the size of the tree underneath the node.

json_equal

int json_equal(JSONNODE * node1, JSONNODE * node2);

Comparing JSONNODE

! Checks if the value held within the nodes are equal. This ignores things like comments, but for
JSON_NODE and JSON_ARRAYs, this is a deep comparison, checking each child too.

Option Differences

None

Parameters

node1
! The value to compare to
node2
! Another node to compare to

Complexity

! Constant except for JSON_NODEs and JSON_ARRAYs in which case it’s linear with respect to
size() and size() of each child recursively.

json_set_a

void json_set_a(JSONNODE * node, json_char * value);

Setting the node’s value

Sets the string value of the JSONNODE.

Option Differences

JSON_SAFE - Allows value to be NULL

Parameters

node
The node to perform this function on

value
The new value of the node, shouldn’t be NULL unless JSON_SAFE is on

Return Value

None

Complexity

Constant

json_set_i

void json_set_i(JSONNODE * node, json_int_t value);

Setting the node’s value

Sets the integer value of the JSONNODE.

Option Differences

none

Parameters

node
The node to perform this function on

value
The new value of the node

Return Value

None

Complexity

Constant

json_set_f

void json_set_f(JSONNODE * node, json_number value);

Setting the node’s value

Sets the floating point value of the JSONNODE.

Option Differences

None

Parameters

node
The node to perform this function on

value
The new value of the node

Return Value

None

Complexity

Constant

json_set_b

void json_set_b(JSONNODE * node, json_bool_t value);

Setting the node’s value

Sets the boolean value of the JSONNODE. The value is an int because of the missing bool datatype in
C.

Option Differences

None

Parameters

node
The node to perform this function on

value
The new value of the node

Return Value

None

Complexity

Constant

json_set_n

void json_set_n(JSONNODE * node, JSONNODE * value);

Setting the node’s value

Sets the value of the JSONNODE to the value of the other, usually through fast and simple reference
counting.

Option Differences

None

Parameters

node
The node to perform this function on

value
The new value of the node

Return Value

None

Complexity

Constant

json_set_name

void json_set_name(JSONNODE * node, json_char * name_t);

Setting the node’s name

Sets the name of the JSONNode.

Option Differences

JSON_SAFE - name_t can be NULL

Parameters

node
The node to perform this function on

name_t
The name of the node

Return Value

None

Complexity

Constant

json_set_comment

void json_set_comment(JSONNODE * node, json_char * comment_t);

Setting the node’s comment

Sets the comment that will be associated with the JSONNode.

Option Differences

JSON_COMMENTS - this option is required to expose this function
JSON_SAFE - comment_t can be NULL

Parameters

node
The node to perform this function on

comment_t
The comment attached to the node

Return Value

None

Complexity

Constant

json_clear

void json_clear(JSONNODE * node);

Clearing a node

Clears all children from the node.

Option Differences

None

Parameters

node
The node to perform this function on

Return Value

None

Complexity

Linear with respect to the size of the tree underneath it

json_swap

void json_swap(JSONNODE * node1, JSONNODE * node2);

Swaps the contents of nodes

Swaps the contents of two nodes. This is very fast because JSONNODE is just a wrapper around an
internal structure, so it simply swaps pointers to those structures.

Option Differences

None

Parameters

node1
The node to perform this function on

node2
The node to swap values with

Return Value

None

Complexity

Constant

json_merge

void json_merge(JSONNODE * node1, JSONNODE * node2);

Merge the contents of nodes

It’s possible that you may end up with multiple copies of the same node, through duplication and such. To
save space, you might want to merge the internal reference counted structure. Obviously, this only
makes a difference if reference counting is turned on.

libjson will try and do this efficiently, merging with the internal structure that has the highest reference
count.

Option Differences

JSON_REF_COUNT - this option is required for this to do anything

Parameters

node
The node to perform this function on

node2
One of the other nodes to merge with.

Return Value

None

Complexity

Constant

json_preparse

void json_preparse(JSONNODE * node);

Preparse the json

libjson’s lazy parsing makes parsing JSON that is not entirely used very fast, but sometimes you want to
parse it all at once, making the next reads a little faster

Option Differences

JSON_PREPARSE - this option does this automatically, so it hides this function

Parameters

node
The node to perform this function on

Return Value

None

Complexity

Linear with respect to the total number of nodes in the JSON

json_set_binary

void json_set_binary(JSONNODE * node, const void * bin, unsigned long bytes);

Set binary data

libjson’s built in Base64 encoder will create a JSON_NODE with Base64 encoded binary data, which
allows you to send images and files around. libjson’s Base64 encoder is faster than most others, so it’s
recommended that you use this method rather than other libraries.

Option Differences

JSON_BINARY - this option is required to use this method and the Base64 method

Parameters

node
The node to perform this function on

bin
binary data

bytes
the number of bytes that the binary data is

Return Value

None

Complexity

Linear with respect to the number of bytes

json_cast

void json_cast(JSONNODE * node, char type);

Cast to a different type

Will change the node to a different type and do any conversions necessary.

Option Differences

None

Parameters

node
The node to perform this function on

type
New type of node

Return Value

None

Complexity

Constant except for casting a node to array which is linear with respect to json_size.

json_at

JSONNODE * json_at(JSONNODE * node, json_index_t pos);

Getting a child

This will give you a reference to a child node at a specific location. This is a safe function and will return
zero if you go out of bounds. The returned value is still a child, so do not try and delete the results.

Option Differences

None

Parameters

node
The node to perform this function on

pos
The index of the child node

Return Value

The child at the desired location.

Complexity

Constant

json_get

JSONNODE * json_get(JSONNODE * node, json_char * name);

Getting a child

This will give you a reference to a child node by its name. This is a safe function and will return zero if
that child does not exist. The returned value is still a child, so do not try and delete the results.

Option Differences

None

Parameters

node
The node to perform this function on

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Linear with respect to json_size

json_get_nocase

JSONNODE * json_get_nocase(JSONNODE * node, json_char * name);

Getting a child

This will give you a reference to a child node by its name. This is a safe function and will return zero if
that child does not exist. The returned value is still a child, so do not try and delete the results.

Option Differences

JSON_CASE_INSENSITIVE_FUNCTIONS is required to use this function

Parameters

node
The node to perform this function on

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Linear with respect to json_size.

json_reserve

void json_reserve(JSONNODE * node, json_index_t size);

Reserving space

This function reserves children space, this makes the program faster and use less memory as it doesn't
have to keep allocating new memory when it runs out.

Option Differences

JSON_LESS_MEMORY - Causes this method to do nothing

Parameters

node
The node to perform this function on

size
The size to reserve

Return Value

None

Complexity

If there is already some children it’s linear with respect to json_size unless the reserved amount is less
than the current capacity, in which case it’s constant. If there are no children, then it’s constant.

json_push_back

void json_push_back(JSONNODE * node, JSONNODE * child);

Adding a child

This function pushes a new child node on the back of the child list. The child is then managed, so do not
try and delete it later.

Option Differences

None

Parameters

node
The node to perform this function on

child
The node to be added as a child

Return Value

None

Complexity

Constant

json_pop_back_at

JSONNODE * json_pop_back_at(JSONNODE * node, json_index_t pos);

Getting a child

This will give remove a JSONNODE from it’s parent and return it to you. Because it’s removed from the
parent, you must delete it yourself.

Option Differences

None

Parameters

node
The node to perform this function on

pos
The index of the child node

Return Value

The child at the desired location by value.

Complexity

Linear based on json_size minus pos. This is because the references of the other children have to be
shifted.

json_pop_back

JSONNODE * json_pop_back(JSONNODE * node, json_char * name);

Getting a child

This will give remove a JSONNODE from it’s parent and return it to you. Because it’s removed from the
parent, you must delete it yourself.

Option Differences

None

Parameters

node
The node to perform this function on

pos
The index of the child node

name
The name of the child node

Return Value

The child at the desired location by value.

Complexity

Linear based on json_size.

json_pop_back_nocase

JSONNODE * json_pop_back_nocase(JSONNODE * node, json_char * name);

Getting a child

This will give remove a JSONNODE from it’s parent and return it to you. Because it’s removed from the
parent, you must delete it yourself.

Option Differences

JSON_CASE_INSENSITIVE_FUNCTIONS is required to use this function

Parameters

node
The node to perform this function on

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Linear with respect to json_size.

json_find

JSONNODE_ITERATOR json_find(JSONNODE * node, json_char * name);

Getting a child

Searches through the children and finds an iterator to it. This function returns json_end if the child does
not exist.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

name
The name of the child node

Return Value

An iterator that points to the child requested, or json_end if it wasn’t found.

Complexity

Linear based on json_size.

json_find_nocase

JSONNODE_ITERATOR json_find_nocase(JSONNODE * node, json_char * name);

Getting a child

Searches through the children and finds an iterator to it. This function returns json_end if the child does
not exist.

Option Differences

JSON_ITERATORS and JSON_CASE_INSENSITIVE_FUNCTIONS must be on to use this function

Parameters

node
The node to perform this function on

name
The name of the child node

Return Value

An iterator that points to the child requested, or json_end if it wasn’t found.

Complexity

Linear based on json_size.

json_erase

JSONNODE_ITERATOR json_erase(JSONNODE * node, JSONNODE_ITERATOR pos);

Removing a child

Erases a single child and returns the iterator to the next one.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

pos
The position of the node that is to be deleted

Return Value

An iterator that points to the child after the deleted one, or json_end

Complexity

Linear based on json_size minus where it starts from due to memory shifting.

json_erase_multi

JSONNODE_ITERATOR json_erase_multi(JSONNODE * node, JSONNODE_ITERATOR start,
JSONNODE_ITERATOR end);

Removing a child

Erases a single child and returns the iterator to the next one.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

start
The position of starting node to be deleted (inclusively)

end
The position of ending node to be deleted (inclusively)

Return Value

An iterator that points to the child after the deleted one, or json_end

Complexity

Linear based on json_size minus where it starts from due to memory shifting.

json_insert

JSONNODE_ITERATOR json_insert(JSONNODE * node, JSONNODE_ITERATOR pos, JSONNODE *
child);

Adding a child

These functions place a new child into your node before the node pointed to by the iterator. This
functions copy the nodes, they remain where they are as well, so you must delete it.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

pos
The position to insert before

child
The node to be inserted

Return Value

An iterator that points to the first inserted node

json_insert_multi

JSONNODE_ITERATOR json_insert_multi(JSONNODE * node, JSONNODE_ITERATOR start,
JSONNODE_ITERATOR end);

Adding a child

These functions place a new child into your node before the node pointed to by the iterator. This
functions copy the nodes, they remain where they are as well, so you must delete it.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

pos
The position to insert before

start
Position to start copying (inclusively)

end
Position to stop copying (inclusively)

Return Value

An iterator that points to the first inserted node

Complexity

Linear based on json_size minus where it starts from due to memory shifting plus end minus start for the
ranged variety.

json_begin

JSONNODE_ITERATOR json_begin(JSONNODE * node);

Getting start of children

This function gets you an iterator pointing to the beginning of the children.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

Return Value

An iterator that points to the first child

Complexity

Constant

json_end

JSONNODE_ITERATOR json_end(JSONNODE * node);

Getting end of children

This function gets you an iterator pointing past the end of the children.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

node
The node to perform this function on

Return Value

An iterator that points past the last child

Complexity

Constant

json_lock

void json_lock(JSONNODE * node, int threadID);

Lock a mutex

! This function locks the mutex attached to a node, and locks anything sharing the lock in a
different thread. The reason for the threadID parameter is that because libjson passes around structures
behind the scenes it might be possible to try and lock the same lock in multiple places in the same critical
section. Counting locks per thread eliminates this problem.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function

Parameters

node
The node to perform this function on

threadID
A unique id for this thread

Return Value

None

Complexity

Constant

json_unlock

void json_unlock(JSONNODE * node, int threadID);

Unlock a mutex

! This function unlocks the mutex attached to a node. If the mutex has been locked multiple times
by the same thread, then it will wait until all locks have been released before actually doing the unlock.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function

Parameters

node
The node to perform this function on

threadID
A unique id for this thread

Return Value

None

Complexity

Constant

json_set_mutex

void json_set_mutex(JSONNODE * node, void * mutex);

Set a lock

! This function attaches a mutual exclusion lock for the node. It can be locked and unlocked by
using the lock and unlock functions, The reason for this is that because libjson’s complex reference
counting and internal magic, it is difficult to be sure that you track data correctly, so libjson will pass this
mutex around it’s internal system and track it for you.
! You can pass NULL to this function to unset a mutex.
! This method will filter the mutex down to all children as well, and anything that you add to it later.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function
JSON_MUTEX_MANAGER - if this option is on, then libjson will automatically delete this mutex when it

runs out of references to it

Parameters

node
The node to perform this function on

mutex
A pointer to a mutex of any type (POSIX, Windows…)

Return Value

None

Complexity

Linear with json_size and json_size of each child recursively.

json_set_global_mutex

void json_set_global_mutex(void * mutex);

Register library-wide mutex

! This function sets a global mutex for libjson. This is not the same as the manager mutex that you
are required to register in register_mutex_callbacks. This mutex is a fallback mutex that gets locked
when you attempt to lock a node that has no mutex attached to it. You may wish to omit assigning
mutexes for each node and just let them all use the global one.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this feature

Parameters

mutex
A mutex that libjson will use when it doesn’t have any to use

Return Value

None

Complexity

Constant

json_parse
JSONNODE * json_parse(const json_char * json);

Parse JSON text

! This function parses JSON text and returns you a JSONNode which is the root node of the text
that you just passed it. If bad JSON is sent to this method it may return NULL.

Option Differences

JSON_SAFE - a node of type JSON_NULL will be returned if the json was invalid

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on strlen(json)

json_parse_unformatted
JSONNODE * json_parse_unformatted(const json_char * json);

Parse JSON text

! This function parses JSON text and returns you a JSONNode which is the root node of the text
that you just passed it. If bad JSON is sent to this method it may return NULL. This method assumes
that the JSON has no whitespace, or comments.

Option Differences

JSON_SAFE - a node of type JSON_NULL will be returned if the json was invalid

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on strlen(json)

json_strip_white_space
json_char * json_strip_white_space(const json_char * json);

Parse JSON text

! This function removes anything that the JSON standard defines as white space, including extra
tabs, spaces, formatting, and comments. This makes this function useful for compressing json that needs
to be stored or sent over a network.

Option Differences

None

Parameters

json
JSON text

Return Value

Valid JSON that is free of all white space

Complexity

Linear depending on strlen(json)

json_is_valid
json_bool_t json_is_valid(const json_char * json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed.

Option Differences

JSON_VALIDATE must be on to use this feature

Parameters

json
JSON text

Return Value

whether or not the json is valid

Complexity

Linear depending on strlen(json) and the number of nodes within the text.

json_is_valid_unformatted
json_bool_t json_is_valid_unformatted(const json_char * json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed. This is the version to use if your json doesn’t have any white space or comments.

Option Differences

JSON_VALIDATE must be on to use this feature

Parameters

json
JSON text

Return Value

whether or not the json is valid

Complexity

Linear depending on strlen(json) and the number of nodes within the text.

json_validate (deprecated)
JSONNODE * json_validate(const json_char * json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed. If bad JSON is sent to this method it will return NULL, otherwise it will return the parsed
object.

! This function will be removed shortly, you are advised to replace all validate calls to json_is_valid
and json_parse functions.

Option Differences

JSON_VALIDATE, and JSON_DEPRECATED_FUNCTIONS must be on to use this feature

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on strlen(json) and the number of nodes within the text.

json_register_debug_callback
void json_register_debug_callback(json_error_callback_t callback);

Register error callback

! This callback allows libjson to tell you exactly what is going wrong in your software, making
debugging and fixing the problem much easier.

Option Differences

JSON_DEBUG must be on to use this feature

Parameters

callback
A method that must have this prototype: static void callback (const json_char * message)

Return Value

None

Complexity

Constant

json_register_mutex_callbacks
void json_register_mutex_callbacks(json_mutex_callback_t lock, json_mutex_callback_t unlock, void *
manager_mutex);
void json_register_mutex_callbacks(json_mutex_callback_t lock, json_mutex_callback_t unlock,
json_mutex_callback_t destroy, void * manager_mutex);

Register mutex callbacks

! This callback allows libjson to lock mutexes that you assign to JSONNode structures. Because
libjson has no idea what kind of mutex you gave it, it can’t lock it without the help of a callback. This
method is required to run before any locking can take place.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this feature
JSON_MUTEX_MANAGER must be on to use the second variant

Parameters

lock
A method that locks a mutex and must have this prototype: static void callback (void * mutex).

unlock
A method that unlocks a mutex and must have this prototype: static void callback (void * mutex).

destroy
A method that deletes a mutex and must have this prototype: static void callback (void * mutex).
This parameter is only allowed if JSON_MUTEX_MANAGER is defined, otherwise, you are
responsible for cleaning up you mutexes.

manager_mutex
A mutex that libjson will need to use to handle all of the mutexes, as even without
JSON_MUTEX_MANAGER, some management takes place and libjson has a few critical
sections when threading. May not be the same as the global mutex.

Return Value

None

Complexity

Constant

json_register_memory_callbacks
void json_register_memory_callbacks(json_malloc_t allocer, json_realloc_t reallocer, json_free_t freer);

Register memory handling

! This function sets callbacks that libjson will use to allocate memory. This allows you to keep a
tight control of memory allocation, or use things like memory pool and such. These methods are currently
not allowed to return null or less than it asked for, as it will cause instability in libjson.

Option Differences

JSON_MEMORY_CALLBACKS must be on to use this feature

Parameters

allocer
A method that must have this prototype: static void * alloc(unsigned long bytes)

reallocer
A method that must have this prototype: static void * realloc(void * buffer, unsigned long bytes)

freer
A method that must have this prototype: static void dealloc(void * buffer)

Return Value

None

Complexity

Constant

json_free
void json_free(void * str);

Frees text

! This function removes the memory allocated by various functions that return strings, such as
json_as_string, json_as_binary, json_write…

Option Differences

None

Parameters

str
Memory that libjson allocated

Return Value

None

Complexity

Constant unless JSON_MEMORY_MANAGE is defined in which case it’s logarithmic depending on the
number of strings currently allocated.

json_free_all
void json_free_all(void);

Frees text

! This function removes all of the memory that libjson has allocated for strings and binary. This
allows for bulk frees and garbage collection.

Option Differences

JSON_MEMORY_MANAGE is required to use this function

Parameters

None

Return Value

None

Complexity

Constant

json_encode64
json_char * json_encode64(const void * binary, json_index_t bytes);

Encodes data

! This function takes binary data and does a base64 encoding so that you can send it through a
text only protocol,

Option Differences

JSON_EXPOSE_BASE64 is required to use this function

Parameters

binary
! binary data
bytes
! the number of bytes in the binary buffer

Return Value

Base 64 encoded string

Complexity

Linear

json_decode64
void * json_decode64(const json_char * text, unsigned long * bytes);

Encodes data

! This function takes base64 encoded data and decodes it for you

Option Differences

JSON_EXPOSE_BASE64 is required to use this function

Parameters

text
! base64 encoded text
bytes
! the number of bytes in the returned binary buffer

Return Value

Decoded binary data. Note: This is raw data, it is NOT a null terminated string

Complexity

Linear

JSON_TEXT

Converts text

! This is a marco that you can use to wrap around text that you pass into libjson. It automatically
prepends an L in unicode mode and does nothing when not in unicode mode. This allows you to use the
same code for unicode and non unicode software.

C++ interface

! libjson has an interface specifically designed for C++. It’s designed for the following things:
speed, heavy internal optimization, and ease of use. The interface should be very intuitive to those
familiar with STL and uses standard overloaded operators.
! Because so many of the functions in JSONNode are inline, the merge between your program and
the library at the optimization level allows more optimization that if the library was external. Your program
will run faster and use less memory because of this.

! There are two main interfaces here: libjson and JSONNode. libjson is for parsing and registering
callbacks and JSONNode is the worker and the structure that stores and manipulates JSON once it’s
been loaded.
! This part of the document is set up to look like cplusplus.com’s reference manual, so that it
should be easy to navigate and find everything that you’re looking for.

JSONNode

! JSONNode is the basic class for holding JSON values. It is a reference-counted, copy-on-write
class that adheres to standard C++ practices. It has a very small footprint, both in memory and on the
processor. It's interface is similar to anything in STL, and should be very intuitive.
! There are several types of JSONNodes, but they all share the same class.

JSONNode types

Function Description

JSON_NULL Blank node or “null” (case-less)

JSON_STRING A string

JSON_NUMBER A floating point number

JSON_BOOL A boolean “true” or “false” (case-less)

JSON_ARRAY An array of JSONNodes

JSON_NODE A complex JSONNode structure

Member types

Function Description

iterator Random access iterator

const_iterator Constant random access iterator

reverse_iterator A reverse random access iterator

reverse_const_iterator A constant reverse random access iterator

json_string Either std::string or std::wstring, depending on options

json_char Either char or wchar_t, depending on options

json_number Either float or double, depending on options

json_index_t Child node indexing type

auto_lock A scoped locking mechanism for JSONNodes

Class functions

Function Description

(constructor) Construct JSONNode

(destructor) JSONNode destructor

duplicate Copy JSONNode content, forcing a copy

operator = Copy JSONNode content, usually reference counting

Inspector functions

Function Description

type The type of JSONNode it is

size The number of child nodes

empty Tests if the node has children

name The name of the node

get_comment The comment attached to the node

as_string The string value of the node

as_int The integer value of the string

as_float The floating point value of the string

as_bool The boolean value of the string

as_node The node, cast to a JSON_NODE

as_array The node, cast to a JSON_ARRAY

as_binary The node with it’s value converted to binary

dump Dumps the inner working of the node into JSON

write Writes the node as JSON text

write_formatted Writes the node as readable JSON text

operator [cast] Casts the value of the node to a specific type

Comparison Functions

Function Description

operator == Compare JSONNode contents

Function Description

operator != Compare JSONNode contents

Modifier Functions

Function Description

set_name Sets the name of the node

set_comment Sets the comment attached to the node

clear Removes all children

nullify Nulls out the node

swap Swap the contents of two nodes

merge Merges the contents of two or more nodes

preparse Completely parses the JSON

set_binary Sets the binary value of the node

cast Change the node’s type

Children Access Functions

Function Description

at Access item by name or index

at_nocase Assess item by name, case-insensitive

operator [] Assess item by name or index

reserve Reserve enough space

push_back Adds a child

pop_back Removes and returns an item by name or index

pop_back_nocase Removes and returns an item by name, case-insensitive

find Finds a node by name

find_nocase Finds a node by name, case-insensitive

erase Removes an item

insert Adds a child

Iterator Functions

Function Description

begin Return iterator to beginning

end Return iterator to end

rbegin Return reverse iterator to reverse beginning

rend Return reverse iterator to reverse end

Thread Safety Functions

Function Description

set_mutex Attaches a mutex to the node

lock Return iterator to end

unlock Return reverse iterator to reverse beginning

Text Functions

Function Description

JSON_TEXT Creates a text string in the right format

JSONNode::JSONNode

explicit JSONNode(char mytype = JSON_NODE);
JSONNode(const json_string & name_t, char value_t);
JSONNode(const json_string & name_t, unsigned char value_t);
JSONNode(const json_string & name_t, short value_t);
JSONNode(const json_string & name_t, unsigned short value_t);
JSONNode(const json_string & name_t, int value_t);
JSONNode(const json_string & name_t, unsigned int value_t);
JSONNode(const json_string & name_t, long long value_t);
JSONNode(const json_string & name_t, unsigned long long value_t);
JSONNode(const json_string & name_t, long value_t);
JSONNode(const json_string & name_t, unsigned long value_t);
JSONNode(const json_string & name_t, float value_t);
JSONNode(const json_string & name_t, double value_t);
JSONNode(const json_string & name_t, long double value_t);
JSONNode(const json_string & name_t, bool value_t);
JSONNode(const json_string & name_t, const json_string & value_t);
JSONNode(const json_string & name_t, const json_char * value_t);
JSONNode(const JSONNode & orig);

Construct JSONNode

Constructs a JSONNode object, initializing it's contents depending on which constructor is used:

explicit JSONNode(char mytype = JSON_NODE);
Default constructor: creates an empty JSONNode of the specified type.

JSONNode(const json_string & name_t, char value_t);
JSONNode(const json_string & name_t, unsigned char value_t);
JSONNode(const json_string & name_t, short value_t);
JSONNode(const json_string & name_t, unsigned short value_t);
JSONNode(const json_string & name_t, int value_t);
JSONNode(const json_string & name_t, unsigned int value_t);
JSONNode(const json_string & name_t, long value_t);
JSONNode(const json_string & name_t, unsigned long value_t);
JSONNode(const json_string & name_t, long long value_t);
JSONNode(const json_string & name_t, unsigned long long value_t);
JSONNode(const json_string & name_t, float value_t);
JSONNode(const json_string & name_t, double value_t);
JSONNode(const json_string & name_t, long double value_t);

Constructs a numeric JSONNode.
JSONNode(const json_string & name_t, bool value_t);

Constructs a boolean JSONNode.
JSONNode(const json_string & name_t, const json_string & value_t);
JSONNode(const json_string & name_t, const json_char * value_t);

Constructs a string JSONNode.
JSONNode(const JSONNode & orig);

Copy constructor, increments the reference counter, will only copy if one of them changes. To
make a literal copy, use the duplicate method.

Option differences

JSON_REF_COUNT - if this is turned off, the copy constructor will fully duplicate the node

JSON_ISO_STRICT will remove the long long and long double variants

Parameters

mytype
The enumerated type of the JSONNode.

name_t
! The name of the object
value_t
! The value of the object
orig
! The original JSONNode that gets copied

Complexity

! Constant with the exception of copying a JSON_NODE or JSON_ARRAY, in which case it is
equivalent to JSONNode::duplicate.

JSONNode::~JSONNode

~JSONNode(void);

Destruct JSONNode

Destructs the JSONNode object and cleans itself up.

Option Differences

None

Parameters

None

Complexity

! Depends on circumstances. If it's reference count is not one, then it's complexity is constant, if
it's the sole owner of it's value, then it becomes linear on JSONNode::size, however, because JSON is a
tree structure it's worse case scenario is linear on JSONNode::size + JSONNode::size of each child
recursively.

JSONNode::duplicate

JSONNode duplicate(void);

Duplicating JSONNode

! Constructs a JSONNode object, by copying the contents of JSONNode. This is different from the
copy constructor or assignment operator because it makes a literal copy, not reference counting.

Option Differences

None

Parameters

None

Return Value

A JSONNode that is a new copy of the original node.

Complexity

Linear on JSONNode::size, however, because JSON is a tree structure it's worse case scenario is linear
on JSONNode::size + JSONNode::size of each child recursively.

JSONNode::operator =

void operator = (char value_t);
void operator = (unsigned char value_t);
void operator = (short value_t);
void operator = (unsigned short value_t);
void operator = (int value_t);
void operator = (unsigned int value_t);
void operator = (long long value_t);
void operator = (unsigned long long value_t);
void operator = (long value_t);
void operator = (unsigned long value_t);
void operator = (float value_t);
void operator = (double value_t);
void operator = (long double value_t);
void operator = (bool value_t);
void operator = (const json_string value_t);
void operator = (const json_char * value_t);
void operator = (const JSONNode & orig);

Assign JSONNode

Assigns JSONNode to a specific value and sets the type according to which version is used:

void operator = (char value_t);
void operator = (unsigned char value_t);
void operator = (short value_t);
void operator = (unsigned short value_t);
void operator = (int value_t);
void operator = (unsigned int value_t);
void operator = (long value_t);
void operator = (unsigned long value_t);
void operator = (long long value_t);
void operator = (unsigned long long value_t);
void operator = (float value_t);
void operator = (double value_t);
void operator = (long double value_t);

Constructs a numeric JSONNode.
void operator = (bool value_t);

Constructs a boolean JSONNode.
void operator = (const json_string value_t);
void operator = (const json_char * value_t);

Constructs a string JSONNode.
void operator = (const JSONNode & orig);

Copy assignment, increments the reference counter, will only copy if one of them changes. To
make a literal copy, use the duplicate method.

Option Differences

JSON_REF_COUNT - if this is off, then the copy assignment will fully duplicate the node
JSON_ISO_STRICT will remove the long long and long double variants

Parameters

value_t
! The value of the object
orig
! The original JSONNode that gets copied

Complexity

! All assignments run in constant time due to reference counting, if reference counting is not turned
on, then the copy assignment is the same as duplicate.

JSONNode::operator ==

bool operator == (char value_t);
bool operator == (unsigned char value_t);
bool operator == (short value_t);
bool operator == (unsigned short value_t);
bool operator == (int value_t);
bool operator == (unsigned int value_t);
bool operator == (long long value_t);
bool operator == (unsigned long long value_t);
bool operator == (long value_t);
bool operator == (unsigned long value_t);
bool operator == (float value_t);
bool operator == (double value_t);
bool operator == (long double value_t);
bool operator == (bool value_t);
bool operator == (const json_string value_t);
bool operator == (const json_char * value_t);
bool operator == (const JSONNode & node);

Comparing JSONNode

! Checks if the value held within the nodes are equal. This ignores things like comments, but for
JSON_NODE and JSON_ARRAYs, this is a deep comparison, checking each child too.

Option Differences

JSON_ISO_STRICT will remove the long long and long double variants

Parameters

value_t
! The value to compare to
node
! Another node to compare to

Complexity

! Constant except for JSON_NODEs and JSON_ARRAYs in which case it’s linear with respect to
size() and size() of each child recursively.

JSONNode::operator !=

bool operator != (char value_t);
bool operator != (unsigned char value_t);
bool operator != (short value_t);
bool operator != (unsigned short value_t);
bool operator != (int value_t);
bool operator != (unsigned int value_t);
bool operator != (long long value_t);
bool operator != (unsigned long long value_t);
bool operator != (long value_t);
bool operator != (unsigned long value_t);
bool operator != (float value_t);
bool operator != (double value_t);
bool operator != (long double value_t);
bool operator != (bool value_t);
bool operator != (const json_string value_t);
bool operator != (const json_char * value_t);
bool operator != (const JSONNode & node);

Comparing JSONNode

! Checks if the value held within the nodes are not equal. This ignores things like comments, but
for JSON_NODE and JSON_ARRAYs, this is a deep comparison, checking each child too.

Option Differences

JSON_ISO_STRICT will remove the long long and long double variants

Parameters

value_t
! The value to compare to
node
! Another node to compare to

Complexity

! Constant except for JSON_NODEs and JSON_ARRAYs in which case it’s linear with respect to
size() and size() of each child recursively.

JSONNode::type
char type(void);

Return type

Returns the type of the JSONNode.

Option Differences

None

Parameters

none

Return Value

The type of the node.

Complexity

Constant

JSONNode::size
size_t size(void);

Return size

Returns the number of children that the node has. This should be zero for anything other than
JSON_ARRAY or JSON_NODE, but this is only guaranteed with the JSON_SAFE option turned on. This
is because casting may or may not purge the children.

Option Differences

None

Parameters

None

Return Value

The number of children that the node has.

Complexity

Constant.

JSONNode::empty
bool empty(void);

Return empty

Returns whether or not the node has any children. If the node is not of JSON_NODE or JSON_ARRAY it
will invariably return true.

Option Differences

None

Parameters

None

Return Value

Whether or not the node is empty

Complexity

Constant.

JSONNode::name
json_string name(void);

Return name

Returns the name of the node. If there is no name, then it returns a blank string.

Option Differences

None

Parameters

None

Return Value

The name of the string.

Complexity

Constant.

JSONNode::get_comment
json_string get_comment(void);

Return comment

Returns the comment attached to the node

Option Differences

JSON_COMMENTS - If this option is turned off, this function is not exposed

Parameters

None

Return Value

The comment of the node

Complexity

Constant.

JSONNode::as_string
json_string as_string(void);

Return string value

Returns the string representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL “” or “null” depending on how it was created

JSON_STRING The unescaped string value

JSON_NUMBER The number in string form (may be in scientific notation)

JSON_BOOL “true” or “false”

JSON_ARRAY “”

JSON_NODE “”

Notice that both JSON_NODE and JSON_ARRAY return empty strings. Use JSONNode::write and
JSONNode::write_formatted to output JSON.

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_STRING

Parameters

None

Return Value

The string representation of the node.

Complexity

Constant.

JSONNode::as_int
json_int_t as_int(void);

Return int value

Returns the boolean representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL 0

JSON_STRING Undefined

JSON_NUMBER Truncated Value

JSON_BOOL 1 if true, 0 if false

JSON_ARRAY Undefined

JSON_NODE Undefined

If the value is actually a floating point value, then libjson will record an error via it's callback, but will
continue on ahead and simply truncate the value. So 15.9 will be returned as 15. If JSON_DEBUG is
turned on, it will also error if the value of the node is outside the range of the long datatype.

Option Differences

JSON_ISO_STRICT will make this return a long
JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_NUMBER

Parameters

None

Return Value

The integer representation of the node.

Complexity

Constant.

JSONNode::as_float
json_number as_float(void);

Return floating point value

Returns the boolean representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL 0.0

JSON_STRING Undefined

JSON_NUMBER Value

JSON_BOOL 1.0 if true, 0.0 if false

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_NUMBER

Parameters

None

Return Value

The floating point representation of the node.

Complexity

Constant.

JSONNode::as_bool
bool as_bool(void);

Return bool value

Returns the boolean representation of the node. This may be different depending on the type of the node

Function Description

JSON_NULL FALSE

JSON_STRING Undefined

JSON_NUMBER Value == 0.0

JSON_BOOL Value

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_CASTABLE - if this option is turned on, all return values are undefined except for JSON_BOOL

Parameters

None

Return Value

The boolean representation of the node.

Complexity

Constant.

JSONNode::as_node
JSONNode as_node(void);

Return node value

Returns the node representation of the node. For anything other than node and array, it simply returns an
empty node. If the caller is an array, it will convert it to a node.

Function Description

JSON_NULL Empty node

JSON_STRING Empty node

JSON_NUMBER Empty node

JSON_BOOL Empty node

JSON_ARRAY Array converted to a node

JSON_NODE A copy of the node

Option Differences

None

Parameters

None

Return Value

The node representation of the node.

Complexity

Constant for all except JSON_ARRAYs and JSON_NODEs which are the same as the copy constructor.

JSONNode::as_array
JSONNode as_array(void);

Return array value

Returns the array representation of the node. For anything other than node and array, it simply returns an
empty array. If the caller is an node, it will convert it to an array by stripping all of the names of each
child.

Function Description

JSON_NULL Empty node

JSON_STRING Empty node

JSON_NUMBER Empty node

JSON_BOOL Empty node

JSON_ARRAY A copy of the array

JSON_NODE An array of the children

Option Differences

None

Parameters

None

Return Value

The node representation of the node.

Complexity

Constant for anything other than a node. For a JSON_NODE, it is linear with respect to JSONNode::size,
and JSON_ARRAY which is the same as the copy constructor

JSONNode::as_binary
std::string as_binary(void);

Return binary value

Returns the binary value that was part of this node. It returns it as a std::string, you can use the data()
function to retrieve it in binary form. This allows you to use size() to know how large the binary data is.

Function Description

JSON_NULL Undefined

JSON_STRING The binary data from the decoded Base64

JSON_NUMBER Undefined

JSON_BOOL Undefined

JSON_ARRAY Undefined

JSON_NODE Undefined

Option Differences

JSON_BINARY - If this option is not on, then this function is not accessible.

Parameters

None

Return Value

The Base64 decoded binary data

Complexity

Linear with respect to the length of the binary data

JSONNode::dump
JSONNode dump(void);

Dump JSONNode’s internal structure

Returns a JSONNode that exposes all of the inner members of JSONNode. This is useful for debugging
purposes of libjson, but not much else. It is mostly used to maintain and upgrade libjson.

Option Differences

JSON_DEBUG - If this option is not on, then this function is not accessible.

Parameters

None

Return Value

A JSONNode representation of the inner workers of the JSONNode, showing all of the members and their
current state.

Complexity

Linear with respect to the size of the tree underneath the node.

JSONNode::write
json_string write(size_t approxsize = DEFAULT_APPROX_SIZE) const;

Write JSON

Returns JSON text, with no white space or comments. Designed to create JSON that is very small, and
therefore, faster to send between servers or write to a disk. The flipside is that it’s nearly impossible to
read by human eyes.

Only root nodes (JSON_NODE and JSON_ARRAYs) are meant to be written, all others will return a blank
string.

Option Differences

JSON_WRITER - If this option is not on, then this function is not accessible.

Parameters

approxsize
The size that you want to start the buffer at. If omitted, libjson assigns a default value based on
the compiling options. This is just an estimated size, libjson will extend the buffer if it needs to.

Return Value

JSON text of the node being written

Complexity

Linear with respect to the size of the tree underneath the node.

JSONNode::write_formatted
json_string write_formatted(size_t approxsize = DEFAULT_APPROX_SIZE_FORMATTED) const;

Write JSON

Returns JSON text that has been indented and prettied up so that it can be easily read and modified by
humans.

Only root nodes (JSON_NODE and JSON_ARRAYs) are meant to be written, all others will return a blank
string.

Option Differences

JSON_WRITER - If this option is not on, then this function is not accessible.
JSON_COMMENTS - If this option is not turned on, the no comments are written
JSON_WRITE_BASH_COMMENTS - This option will make libjson write only bash style # comments
JSON_WRITE_SINGLE_LINE_COMMENTS - This option will make libjson not write C-style /* */
comments

Parameters

approxsize
The size that you want to start the buffer at. If omitted, libjson assigns a default value based on
the compiling options. This is just an estimated size, libjson will extend the buffer if it needs to.

Return Value

JSON text of the node being written

Complexity

Linear with respect to the size of the tree underneath the node.

JSONNode::set_name
void set_name(json_string name_t);

Setting the node’s name

Sets the name of the JSONNode.

Option Differences

None

Parameters

name_t
The name of the node

Return Value

None

Complexity

Constant

JSONNode::set_comment
void set_comment(json_string comment_t);

Setting the node’s comment

Sets the comment that will be associated with the JSONNode.

Option Differences

JSON_COMMENTS - this option is required to expose this function

Parameters

comment_t
The comment attached to the node

Return Value

None

Complexity

Constant

JSONNode::clear
void clear(void);

Clearing a node

Clears all children from the node.

Option Differences

None

Parameters

None

Return Value

None

Complexity

Linear with respect to the size of the tree underneath it

JSONNode::swap
void swap(JSONNode & other);

Swaps the contents of nodes

Swaps the contents of two nodes. This is very fast because JSONNode is just a wrapper around an
internal structure, so it simply swaps pointers to those structures.

Option Differences

None

Parameters

other
The node to swap values with

Return Value

None

Complexity

Constant

JSONNode::merge
void merge(JSONNode & other);
void merge(unsigned int num, . . .);

Merge the contents of nodes

It’s possible that you may end up with multiple copies of the same node, through duplication and such. To
save space, you might want to merge the internal reference counted structure. Obviously, this only
makes a difference if reference counting is turned on.

libjson will try and do this efficiently, merging with the internal structure that has the highest reference
count.

Option Differences

JSON_REF_COUNT - this option is required for this to do anything

Parameters

other
One of the other nodes to merge with.

num
The number of JSONNodes to merge together

. . .
A list of JSONNode *

Return Value

None

Complexity

Constant or linear with respect to num.

JSONNode::preparse
void preparse(void);

Preparse the json

libjson’s lazy parsing makes parsing JSON that is not entirely used very fast, but sometimes you want to
parse it all at once, making the next reads a little faster

Option Differences

JSON_PREPARSE - this option does this automatically, so it hides this function

Parameters

None

Return Value

None

Complexity

Linear with respect to the total number of nodes in the JSON

JSONNode::set_binary
void set_binary(const unsigned char * bin, size_t bytes);

Set binary data

libjson’s built in Base64 encoder will create a JSON_NODE with Base64 encoded binary data, which
allows you to send images and files around. libjson’s Base64 encoder is faster than most others, so it’s
recommended that you use this method rather than other libraries.

Option Differences

JSON_BINARY - this option is required to use this method and the Base64 method

Parameters

bin
binary data

bytes
the number of bytes that the binary data is

Return Value

None

Complexity

Linear with respect to the number of bytes

JSONNode::cast
void cast(char type);

Cast to a different type

Will change the node to a different type and do any conversions necessary.

Option Differences

None

Parameters

type
New type of node

Return Value

None

Complexity

Constant except for casting a node to array which is linear with respect to size().

JSONNode::at
JSONNode & at(json_index_t pos) throw(std::out_of_range);
JSONNode & at(const json_string & name) throw(std::out_of_range);
const JSONNode & at(json_index_t pos) const throw(std::out_of_range);
const JSONNode & at(const json_string & name) const throw(std::out_of_range);

Getting a child

This will give you a reference to a child node either at a specific location or by it’s name. This differs from
the [] operator because at will throw an std::out_of_bounds exception.

Option Differences

None

Parameters

pos
The index of the child node

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Constant for the indexed variety, linear for the named variety.

JSONNode::at_nocase
JSONNode & at_nocase(const json_string & name) throw(std::out_of_range);
const JSONNode & at_nocase(const json_string & name) const throw(std::out_of_range);

Getting a child case insensitive

This will give you a reference to a child node by it’s name in a case-insensitive way.

Option Differences

JSON_CASE_INSENSITIVE_FUNCTIONS is required to use this function

Parameters

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Linear with respect to size().

JSONNode::operator []

JSONNode & operator [] (json_index_t pos);
const JSONNode & operator [] (json_index_t pos) const;
JSONNode & operator [] (const json_string & name);
const JSONNode & operator [] (const json_string & name) const;

Getting a child

This will give you a reference to a child node either at a specific location or by it’s name. Asking for a
node that is not there will result in undefined behavior.

Option Differences

None

Parameters

pos
The index of the child node

name
The name of the child node

Return Value

The child at the desired location.

Complexity

Constant for the indexed variety, linear for the named variety.

JSONNode::reserve

void reserve(json_index_t size);

Reserving space

This function reserves children space, this makes the program faster and use less memory as it doesn't
have to keep allocating new memory when it runs out.

Option Differences

None

Parameters

size
The size to reserve

Return Value

None

Complexity

If there is already some children it’s linear with respect to size() unless the reserved amount is less than
the current capacity, in which case it’s constant. If there are no children, then it’s constant.

JSONNode::push_back
void push_back(const JSONNode & node);

Adding a child

This function pushes a new child node on the back of the child list. This method copies the child, so
altering the parameter later will not affect the one in the children.

Option Differences

None

Parameters

node
The node to be added as a child

Return Value

None

Complexity

Depends on if new memory is needed to be allocated. This function would have the same complexity as
push_back for a vector plus the copy constructor. If JSON_LESS_MEMORY is defined, then this
operation is always linear with respect to size(), unless reserve had been used, in which case it’s constant
while smaller than that reserved amount . Otherwise it is linear if the node is currently full, otherwise it’s
constant.

JSONNode::pop_back

JSONNode pop_back(json_index_t pos) throw(std::out_of_range);
JSONNode pop_back(const json_string & name) throw(std::out_of_range);

Getting a child

This will give remove a JSONNode from it’s parent and return it to you.

Option Differences

None

Parameters

pos
The index of the child node

name
The name of the child node

Return Value

The child at the desired location by value.

Complexity

Linear based on size() for the variety using the name, but linear based on size() minus pos. This is
because the references of the other children have to be shifted.

JSONNode::pop_back_nocase
JSONNode pop_back_nocase(const json_string & name) throw(std::out_of_range);

Getting a child

This will give remove a JSONNode from it’s parent and return it to you.

Option Differences

JSON_CASE_INSENSITIVE_FUNCTIONS is required to use this function

Parameters

name
The name of the child node

Return Value

The child at the desired location by value.

Complexity

Linear based on size().

JSONNode::find
iterator find(const json_string & name);

Getting a child

Searches through the children and finds an iterator to it. This function returns JSONNode::end() if the
child does not exist.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

name
The name of the child node

Return Value

An iterator that points to the child requested, or end() if it wasn’t found.

Complexity

Linear based on size().

JSONNode::find_nocase
iterator find_nocase(const json_string & name);

Getting a child

Searches through the children and finds an iterator to it. This function returns JSONNode::end() if the
child does not exist.

Option Differences

JSON_ITERATORS and JSON_CASE_INSENSITIVE_FUNCTIONS must be on to use this function

Parameters

name
The name of the child node

Return Value

An iterator that points to the child requested, or end() if it wasn’t found.

Complexity

Linear based on size().

JSONNode::erase
iterator erase(iterator pos);
iterator erase(iterator start, const iterator & end);
reverse_iterator erase(reverse_iterator pos);
reverse_iterator erase(reverse_iterator start, const reverse_iterator & end);

Removing child(ren)

iterator erase(iterator pos);
reverse_iterator erase(reverse_iterator pos);

Erases a single child and returns the iterator to the next one.
iterator erase(iterator start, const iterator & end);
reverse_iterator erase(reverse_iterator start, const reverse_iterator & end);

Erases a set of children, allowing for quick dumps of unneeded children.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

pos
The position of the node that is to be deleted

start
The position of starting node to be deleted (inclusively)

end
The position of ending node to be deleted (inclusively)

Return Value

An iterator that points to the child after the deleted one, or end()/rend()

Complexity

Linear based on size() minus where it starts from due to memory shifting.

JSONNode::insert
iterator insert(iterator pos, const JSONNode & node);
iterator insert(iterator pos, const iterator & start, const iterator & end);
iterator insert(iterator pos, const reverse_iterator & start, const reverse_iterator & end);
iterator insert(iterator pos, const const_iterator & start, const const_iterator & end);
iterator insert(iterator pos, const const_reverse_iterator & start, const const_reverse_iterator & end);
reverse_iterator insert(reverse_iterator pos, const JSONNode & node);
reverse_iterator insert(reverse_iterator pos, const reverse_iterator & start, const reverse_iterator & end);
reverse_iterator insert(iterator pos, const iterator & start, const iterator & end);
reverse_iterator insert(reverse_iterator pos, const const_iterator & start, const const_iterator & end);
reverse_iterator insert(reverse_iterator pos, const const_reverse_iterator & start, const
const_reverse_iterator & end);

Adding child(ren)

iterator insert(iterator pos, const JSONNode & node);
 reverse_iterator insert(reverse_iterator pos, const JSONNode & node);

These functions place a new child into your node before the node pointed to by the iterator.
iterator insert(iterator pos, const iterator & start, const iterator & end);
iterator insert(iterator pos, const reverse_iterator & start, const reverse_iterator & end);
iterator insert(iterator pos, const const_iterator & start, const const_iterator & end);
iterator insert(iterator pos, const const_reverse_iterator & start, const const_reverse_iterator & end);
reverse_iterator insert(reverse_iterator pos, const reverse_iterator & start, const reverse_iterator & end);
reverse_iterator insert(iterator pos, const iterator & start, const iterator & end);
reverse_iterator insert(reverse_iterator pos, const const_iterator & start, const const_iterator & end);
reverse_iterator insert(reverse_iterator pos, const const_reverse_iterator & start, const
const_reverse_iterator & end);

These functions will copy a set of children from one node to another. These all start inserting at
start and increment it until ti’s end, so if you are reverse iterating, you can insert them in reverse
order.

All of these functions copy the nodes, they remain where they are as well.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

pos
The position to insert before

node
The node to be inserted

start
Position to start copying (inclusively)

end
Position to stop copying (inclusively)

Return Value

An iterator that points to the first inserted node

Complexity

Linear based on size() minus where it starts from due to memory shifting plus end minus start for the
ranged variety.

JSONNode::begin
iterator begin(void);
const_iterator begin(void) const;

Getting start of children

This function gets you an iterator pointing to the beginning of the children.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

None

Return Value

An iterator that points to the first child

Complexity

Constant

JSONNode::end
iterator end(void);
const_iterator end(void) const;

Getting end of children

This function gets you an iterator pointing past the end of the children.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

None

Return Value

An iterator that points past the last child

Complexity

Constant

JSONNode::rbegin
reverse_iterator rbegin(void);
reverse_const_iterator rbegin(void) const;

Getting start of children

This function gets you an iterator pointing to the beginning of the children in reverse order.

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

None

Return Value

An iterator that points to the first child in reverse order (actually the last child.)

Complexity

Constant

JSONNode::rend
reverse_iterator rend(void);
reverse_const_iterator rend(void) const;

Getting start of children

This function gets you an iterator pointing past the end of the children in reverse order

Option Differences

JSON_ITERATORS must be on to use this function

Parameters

None

Return Value

An iterator that points past the last child in reverse order

Complexity

Constant

JSONNode::set_mutex
void set_mutex(void * mutex);

Set a lock

! This function attaches a mutual exclusion lock for the node. It can be locked and unlocked by
using the lock and unlock functions, The reason for this is that because libjson’s complex reference
counting and internal magic, it is difficult to be sure that you track data correctly, so libjson will pass this
mutex around it’s internal system and track it for you.
! You can pass NULL to this function to unset a mutex.
! This method will filter the mutex down to all children as well, and anything that you add to it later.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function
JSON_MUTEX_MANAGER - if this option is on, then libjson will automatically delete this mutex when it

runs out of references to it

Parameters

mutex
A pointer to a mutex of any type (POSIX, Windows…)

Return Value

None

Complexity

Linear with size() and size() of each child recursively.

JSONNode::lock
void lock(int threadID);

Lock a mutex

! This function locks the mutex attached to a node, and locks anything sharing the lock in a
different thread. The reason for the threadID parameter is that because libjson passes around structures
behind the scenes it might be possible to try and lock the same lock in multiple places in the same critical
section. Counting locks per thread eliminates this problem.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function

Parameters

threadID
A unique id for this thread

Return Value

None

Complexity

Constant

JSONNode::unlock
void unlock(int threadID);

Unlock a mutex

! This function unlocks the mutex attached to a node. If the mutex has been locked multiple times
by the same thread, then it will wait until all locks have been released before actually doing the unlock.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this function

Parameters

threadID
A unique id for this thread

Return Value

None

Complexity

Constant

JSONStream

! JSONStreams allow you to have partial json or multiple json objects and alert you when the
nodes are completed.

Class Functions

Function Description

(constructor) Construct JSONStream

(destructor) JSONStream destructor

operator << Pushes data into the stream

operator = Copy JSONStream

reset Resets a JSONStream

JSONStream::JSONStream

JSONStream(json_stream_callback_t call_p, json_stream_e_callback_t call_e, void * id =
JSONSTREAM_SELF);
JSONStream(const JSONStream & orig);

New Stream

! This function creates a stream. Streams are used for pushing small amounts of json at a time, it
may be incomplete json, or even multiple json nodes, and the callback you give it will be called whenever
a complete node is recognized.

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

callback
The method that gets called whenever nodes are completed

e_callback
The method that gets called the stream encounters bad json

id
The pointer to pass into the callback, JSONSTREAM_SELF will tell it to use itself

orig
! The stream to copy

Return Value

A new stream

Complexity

Constant

JSONStream::~JSONStream

~JSONStream(void);

Deletes stream

Deletes the stream

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

None

Return Value

None

Complexity

Constant

JSONStream::operator =

JSONStream & operator = (const JSONStream & orig);

Copies a stream

Copies a stream

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

orig
! The node to copy

Return Value

A reference to itself

Complexity

Constant

JSONStream::operator <<

JSONStream & operator << (const json_string & str);

Push to a stream

This pushes a string on the stream, and if a node gets completed, the callback gets called.

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

str
! Partial json

Return Value

A reference to itself

Complexity

Constant

JSONStream::reset

void reset(void);

Resets to a stream

Resets a stream

Option Differences

JSON_STREAM must be turned on to use this function

Parameters

none

Complexity

Constant

libjson

! libjson is a namespace that holds a few functions that are part of libjson, but separate from
JSONNode. These methods include json text functions and callback registration.

JSON Functions

Function Description

parse Parses json

parse_unformatted Parse json that has no white space

strip_white_space Removes all white space and comment

is_valid Validates json

is_valid_unformatted Validates json that has no whitespace

validate (deprecated) Validate json and return the parsed node

Callback Registration

Function Description

register_debug_callback Registers error callback

register_mutex_callbacks Register mutex callbacks

set_global_mutex Set the global mutex

register_memory_callbacks Registers the memory callbacks

Base64 Functions

Function Description

encode64 Base64 encodes data

decode64 Decodes Base64 data

Callback Types

Function Description

json_error_callback_t typedef void (* json_error_callback_t)(const json_string &)

json_mutex_callback_t typedef void (* json_mutex_callback_t)(void *)

json_malloc_t typedef void * (* json_malloc_t)(size_t)

json_realloc_t typedef void * (* json_realloc_t)(void *, size_t)

Function Description

json_free_t typedef void (* json_free_t)(void *)

libjson::parse
JSONNode parse(const json_string & json) throw(std::invalid_argument);

Parse JSON text

! This function parses JSON text and returns you a JSONNode which is the root node of the text
that you just passed it. If bad JSON is sent to this method it will throw a std::invalid_argument exception.

Option Differences

JSON_SAFE - a node of type JSON_NULL will be returned if the json was invalid

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on json.length()

libjson::parse_unformatted
JSONNode parse_unformatted(const json_string & json) throw(std::invalid_argument);

Parse JSON text

! This function parses JSON text and returns you a JSONNode which is the root node of the text
that you just passed it. If bad JSON is sent to this method it will throw a std::invalid_argument exception.

Option Differences

JSON_SAFE - a node of type JSON_NULL will be returned if the json was invalid

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on json.length()

libjson::strip_white_space
json_string strip_white_space(const json_string & json);

Parse JSON text

! This function removes anything that the JSON standard defines as white space, including extra
tabs, spaces, formatting, and comments. This makes this function useful for compressing json that needs
to be stored or sent over a network.

Option Differences

None

Parameters

json
JSON text

Return Value

Valid JSON that is free of all white space

Complexity

Linear depending on json.length()

libjson::is_valid
bool is_valid(const json_string & json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed.

Option Differences

JSON_VALIDATE must be on to use this feature

Parameters

json
JSON text

Return Value

true or false

Complexity

Linear depending on json.length() and the number of nodes within the text.

libjson::is_valid_unformatted
bool is_valid_unformatted(const json_string & json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed. This is the version for json that doesn’t have any white space or comments.

Option Differences

JSON_VALIDATE must be on to use this feature

Parameters

json
JSON text

Return Value

true or false

Complexity

Linear depending on json.length() and the number of nodes within the text.

libjson::validate (deprecated)
JSONNode validate(const json_string & json);

Validate JSON text

! This function validates the text by parsing it completely and looking for anything that is
malformed. If bad JSON is sent to this method it will throw a std::invalid_argument exception, otherwise it
returns the root node of the text.

! This function will be removed shortly, you are advised to replace all validate calls to is_valid and
parse functions.

Option Differences

JSON_VALIDATE, and JSON_DEPRECATED_FUNCTIONS must be on to use this feature

Parameters

json
JSON text

Return Value

The root node of the text

Complexity

Linear depending on json.length() and the number of nodes within the text.

libjson::register_debug_callback
void register_debug_callback(json_error_callback_t callback);

Register error callback

! This callback allows libjson to tell you exactly what is going wrong in your software, making
debugging and fixing the problem much easier.

Option Differences

JSON_DEBUG must be on to use this feature

Parameters

callback
A method that must have this prototype: static void callback (const json_string & message)

Return Value

None

Complexity

Constant

libjson::register_mutex_callbacks
void register_mutex_callbacks(json_mutex_callback_t lock, json_mutex_callback_t unlock, void *
manager_mutex);
void register_mutex_callbacks(json_mutex_callback_t lock, json_mutex_callback_t unlock,
json_mutex_callback_t destroy, void * manager_mutex);

Register mutex callbacks

! This callback allows libjson to lock mutexes that you assign to JSONNode structures. Because
libjson has no idea what kind of mutex you gave it, it can’t lock it without the help of a callback. This
method is required to run before any locking can take place.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this feature
JSON_MUTEX_MANAGER must be on to use the second variant

Parameters

lock
A method that locks a mutex and must have this prototype: static void callback (void * mutex).

unlock
A method that unlocks a mutex and must have this prototype: static void callback (void * mutex).

destroy
A method that deletes a mutex and must have this prototype: static void callback (void * mutex).
This parameter is only allowed if JSON_MUTEX_MANAGER is defined, otherwise, you are
responsible for cleaning up you mutexes.

manager_mutex
A mutex that libjson will need to use to handle all of the mutexes, as even without
JSON_MUTEX_MANAGER, some management takes place and libjson has a few critical
sections when threading. May not be the same as the global mutex.

Return Value

None

Complexity

Constant

libjson::set_global_mutex
void set_global_mutex(void * mutex);

Register library-wide mutex

! This function sets a global mutex for libjson. This is not the same as the manager mutex that you
are required to register in register_mutex_callbacks. This mutex is a fallback mutex that gets locked
when you attempt to lock a node that has no mutex attached to it. You may wish to omit assigning
mutexes for each node and just let them all use the global one.

Option Differences

JSON_MUTEX_CALLBACKS must be on to use this feature

Parameters

mutex
A mutex that libjson will use when it doesn’t have any to use

Return Value

None

Complexity

Constant

libjson::register_memory_callbacks
void register_memory_callbacks(json_malloc_t allocer, json_realloc_t reallocer, json_free_t freer);

Register memory handling

! This function sets callbacks that libjson will use to allocate memory. This allows you to keep a
tight control of memory allocation, or use things like memory pool and such. These methods are currently
not allowed to return null or less than it asked for, as it will cause instability in libjson.

Option Differences

JSON_MEMORY_CALLBACKS must be on to use this feature

Parameters

allocer
A method that must have this prototype: static void * alloc(size_t bytes)

reallocer
A method that must have this prototype: static void * realloc(void * buffer, size_t bytes)

freer
A method that must have this prototype: static void dealloc(void * buffer)

Return Value

None

Complexity

Constant

libjson::encode64
json_string encode64(const unsigned char * binary, json_index_t bytes);

Encodes data

! This function takes binary data and does a base64 encoding so that you can send it through a
text only protocol,

Option Differences

JSON_EXPOSE_BASE64 is required to use this function

Parameters

binary
! binary data
bytes
! the number of bytes in the binary buffer

Return Value

Base 64 encoded string

Complexity

Linear

libjson::decode64
unsigned char * decode64(const json_string & text, unsigned long * bytes);

Encodes data

! This function takes base64 encoded data and decodes it for you

Option Differences

JSON_EXPOSE_BASE64 is required to use this function

Parameters

text
! base64 encoded text
bytes
! the number of bytes in the returned binary buffer

Return Value

Decoded binary. Note: This is raw data, not a null terminated string

Complexity

Linear

libjson::to_std_string
std::string to_std_string(const json_string & str);

Converts to STL string

! This function takes a json_string and converts to it a std::string for you

Option Differences

JSON_STRING_HEADER is required to be off to use this function

Parameters

str
! The string to be converted

Return Value

The string in std::string. Note that if you are in unicode mode, some information may get lost.

Complexity

Linear or 1, depending on whether or not json_string is already defined as std::string internally

libjson::to_std_wstring
std::wstring to_std_wstring(const json_string & str);

Converts to STL wstring

! This function takes a json_string and converts to it a std::wstring for you

Option Differences

JSON_STRING_HEADER is required to be off to use this function

Parameters

str
! The string to be converted

Return Value

The string in std::wstring.

Complexity

Linear or 1, depending on whether or not json_string is already defined as std::wstring internally

libjson::to_json_string
json_string to_json_string(const std::string & str);
json_string to_json_string(const std::wstring & str);

Converts to STL wstring

! This function takes a STL string and converts to it a json_string for you

Option Differences

JSON_STRING_HEADER is required to be off to use this function

Parameters

str
! The string to be converted

Return Value

The string in json_string. Note that if you go from unicode to non-unicode, you may loose information.

Complexity

Linear or 1, depending on whether or what json_string is defined as

JSON_TEXT

Converts text

! This is a marco that you can use to wrap around text that you pass into libjson. It automatically
prepends an L in unicode mode and does nothing when not in unicode mode. This allows you to use the
same code for unicode and non unicode software.

Optimizing libjson

! Once your program is written and functioning with libjson, it is time to optimize it. libjson’s options
are the best way to do this, however if you are using a library, then you can also edit the make file and
change the compiler options. Obviously you should never try to optimize with a debug build, it’s doing a
lot of extra checks that help debugging, but are unneeded in release.

Compiler Options

! You can see the default compiler options in the building libjson section of this document. -O3 isn’t
always optimal, because it’s such a small library, caching may actually make -Os the fastest, it depends
on how much cache you have, what kind of computer, and what libjson options are turned on.

! There are also many optimizations that you can do that are compiler specific. libjson does a
decent amount of string functions internally, so turning on reference counted or copy on write strings may
result in a performance increase, both faster due to less copying and less memory.

C++ Optimizations

! If using C++, you can embed libjson and compile it into your program. This saves any time at the
interface. The C interface is fairly rigid, and everything has to pass through the library interface, creating
a choke-point. But in C++, many of the functions get inlined, so that little extra overhead is gone. The
compiler is also free to do things like return by reference and other little tricks that you can’t get with the
json_ interface.
!
JSONOptions.h Optimizations

! You can also optimize libjson by changing the options. Here are some common optimizations.

Speed

! If you know that you will always be receiving proper json, or json written by your libjson engine
(like if you are using it to store and read a configuration file), then JSON_SAFE is probably not needed.
That option does a lot of checks to make sure that the json isn’t corrupt and guards if it is. If there is no
need for these guards, don’t bother with them.
! If you are not always sure that the json is valid, but need more parsing speed. turn JSON_SAFE
off and validate the json before sending it to the parser.

! The JSON_MEMORY_CALLBACKS option can help you dramatically speed up your program.
libjson allocates a lot of memory using malloc, but those calls can be rerouted to callbacks, allowing you
to utilize your own memory management system. A memory pool can speed up a program.

! Starting with libjson 7.4.0, libjson has a built in memory pool that is shut off by default.
Uncomment the JSON_MEMORY_POOL option, and if necessary, change it’s starting pool size. In tests,
memory pooling increased speed performance by 30%.

! Starting with libjson 6.3.0, you can have libjson compile some parts of itself differently than other
parts. If your program is mostly using libjson for reading, you should set JSON_READ_PRIORITY to
HIGH. If you are mostly writing set JSON_WRITE_PRIORITY to HIGH. If you almost never write, turn it
to LOW. This is can create some dramatically different code on certain compilers.

Memory

! If JSON_STDERROR is on, libjson prints out any errors to std::cerr, which requires iostream.
iostream adds considerable size to the library. Removing the JSON_STDERROR option will compile the
library without iostream in it.

! If you are parsing huge amounts of JSON, or are working with very limited memory and need
libjson to use less of it, turn on the JSON_LESS_MEMORY option. This will cause libjson to be far more
stringent with it’s memory and clean it up faster. It also makes it slightly slower though because it
allocates and deallocates memory more often.

! Manage your own memory. Turn JSON_MEMORY_MANAGE off if you turned it on and delete
your memory when you are done using it instead of just letting it sit around. libjson utilizes a map to keep
track of memory, this can grow quiet a bit if not flushed often enough. Managed memory is in libjson for
ease of use, not performance.

! If you can bring down the size of the indexes, it may save some bytes. By turning on and
changing the JSON_INDEX_TYPE option, you can choose a different type of all of the indexing. This
cuts down on the size of the internal structure, but be careful, you have to give enough space to hold all
of your nodes. If you are sure that no node will ever hold more than 255 subitems, you can even use an
unsigned char.

! You might be able to further decrease the memory required and the size of the library if you use
your own string class. JSON_STRING_HEADER lets you drop in your own string class which you can
heavily optimize for your needs. A string class that does reference counting, or even shallow substrings
could dramatically reduce your memory usage.

! Remove the JSON_CASTABLE option if you can. This option allows libjson to do conversions to
do be a lot more flexible, however, if you don’t ever use these conversions, or do so rarely, you may get a
small memory drop if you turn it off, as it will no longer keep a string version of numbers, and bools, and
nulls, and it may also significantly reduce the size of the binary.

! Turn off all optional features that you are not using. The defaults in the options are meant to be
flexible and easy to use, so it has a lot of functions available. For example, there are deprecated
functions available in the default libjson.

Overall

! If your program almost always uses most or all of the json that it receives, then doing parsing as
needed might not make sense, and you might want all parsing done at once. JSON_PREPARSE will
force libjson to do this. This makes the initial parse command a little slower, but every subsequent
request is faster. It also drops the amount of memory libjson uses slightly.

! If you turned JSON_REF_COUNT off, and can find a way to turn it back on, do it. This cuts down
on both the amount of memory used when copying objects, but also saves copy time, which sometimes
can be quite expensive. The common reason to turn this option off is for thread safety. It is
recommended that you use the mutex callback system instead.

! Write your own string class, or find a better one. There are many string classes out there that
perform better than STL in some cases and are drop in and forget. Define JSON_STRING_HEADER to
point to a header where you typedef your replacement string as json_string. libjson has no control over
how the strings work, so you can often specialize a string type for this case. The majority of both time
and memory used by libjson is spent doing string manipulation.

! Benchmark your software doing both preparsing and JiT parsing. Often, if you are using all of the
JSON, preparsing the JSON is both faster and uses a smaller footprint.

Roadmap
This is the roadmap of things coming down the pipeline. Bug fixes and other mistakes
are always fixed as quickly as possible, but other projects that require more time, and
possibly a phased rollout are jotted down here.

Pull out number parser into its own library
Create svn repository on sourceforge
Automate acceptance testing, benchmarking, and release into one step
Clean up macros in code
Replace some preprocessor with const switches or templates
Write tests for makefiles

Changelog
7.6.1
! Fixed type mismatch when memory manager is turned on
! Makefile now installs libjson for all users
! Automated release process
! Automated testing for each makefile option added
! Made benchmark link to the library, instead of compiling it in
! Fixed bug where uninstall didn’t work entirely for debug mode
! Reorganized folder structure
! Automated option combo generator to test all possible combos
! Fixed compile bug when JSON_INDENT is used
! Fixed compile bug when JSON_ARRAY_SIZE_ON_ONE_LINE is used
! Fixed compile bug when JSON_NUMBER_TYPE is used
! Fixed compile bug when JSON_INT_TYPE is used
! Fixed bug where white space stripping would fail if the last quoted char is a quote
! Fixed Bug #3530505, dependancies not copied in makefile
! Fixed bug #3537672, broken vcproj
! Fixed bug #3536654, specifying std namespace for snprintf
7.6.0 (3/23/12)
! Optimized the comment extractor in preparser
! Optimized the comment extractor in worker
! Fixed JSONWorker::RemoveWhiteSpaceAndComments still throwing
! Merged white space stripper code
! Specialized white space stripper code when memory is no issue
! Unified white space stripping method signatures
! Replaced many c_str calls with data calls
! Removed extra string copy in validation
! Added JSON_NUMBER_TYPE option
! Upgraded to mempool++ 1.2
! Pulled base64 code into libbase64++ 1.1
! Fixed internally escaped strings being written in rare cases (bug #3509080)
7.5.1 (2/28/12)
! Fixed bug where FindNextRelevant can go outside string bounds
7.5.0 (2/2/12)
! Optimized writing engine to use a buffer, about 6x faster on average
! Fixed a method declaration that broke the compile in gcc 4.6.1 (bug #3436621)
! Added complete in depth unit test infrastructure to test individual functions better
! Fixed compile bugs with JSON_STRICT option
! Fixed various bugs where strange number formats would be read wrong
! Fixed inconsistencies with number parsers
! Added tests for JSON_STRICT
! Fixed accident where JSON_LIBRARY was off

! Make one of most common methods template based when size doesn’t matter
! Added some extra caches to speed up big writes
! Removed throw from JSONWorker to allow no exceptions
! Fixed possible stack overflow problem with streams (bug #3452923)
! Added the JSON_SECURITY_MAX_STREAM_OBJECTS option
! Added optional parameters to writes for buffer size
! Removed unused method in writer
! Put in place infrastructure for shared strings (not implemented yet)
! Fixed bug where assert for negative allocations wasn’t getting called
7.4.1 (10/13/11)
! Fixed accident where JSON_MEMORY_CALLBACKS was turned on
! Added libjson::to_std_string and libjson::to_std_wstring methods
! Added libjson::to_json_string method
7.4.0 (9/6/11)
! Added mempool++ inside of the libjson code for nodes, internal nodes, and stl
! Tests with memory pooling run about 30% faster
! Added JSON_MEMORY_POOL option
7.3.4 (9/1/11)
! Fixed bug where with JSON_NULL_MEMORY option could null out children
! Explicitly defined std namespace for memory functions
7.3.3 (8/25/11)
! Fixed problem with as_int being limited to long
7.3.2 (8/15/11)
! Made library fail compilation if JSON_NO_EXCEPTIONS and JSON_SAFE on
7.3.1 (8/1/11)
! Fixed makefile
7.3.0 (7/28/11)
! Moved all globals to one place
! Globals now allocated only when needed by using singletons
! Fixed some incorrect error reporting
! Moved most repeated strings in global strings
! Fixed bug with base64 not null terminating (bug #3370505)
! Put hotspots in allocator
! Made allocator VC++ capable
! Fixed bug in preparser with escaped strings
! Fixed bug in writer where unparsed dumps may have intermediate values
! Added error detection in streams
! Added option to have streams use themselves as identifiers
! Added a state to streams
! Test Suite now shows the maximum amount of heap used at once
7.2.0 (7/15/11)
! Changed the default options to make library bigger by default
! Added the JSON_CASTABLE option
! Added the JSON_SECURITY_MAX_NEST_LEVEL option
! Added the JSON_SECURITY_MAX_STRING_LENGTH option
! Fixed a bug where json_encode64 would not produce a correct string

! Added a 2nd parameter to the stream callbacks
! Made all dynamic allocations do through callbacks (even STL)
! Made writer more memory efficient
! Fixed unicode verification bug
! Added a secondary parser (preprocessor swaps them)
! Fixed some implicit conversions between unicode and ascii
! Replaced some global callbacks with singletons
7.1.1 (3/3/11)
! Fixed an implicit conversion between unicode and ascii
! Removed some compiler warnings from VC++
! Added checks for LONG_LONG_MAX and LLONG_MAX
7.1.0 (3/1/11)
! Added the ARRAY_SIZE_ON_ONE_LINE option
! Added JSON_INT_TYPE option
! Fixed bug in validation in unicode mode
! Fixed bug where huge numbers wouldn’t be translated correctly
! Fixed a bug where precision was lost in base 64 unicode encoding
! Make number parsing safer for unicode
! Fixed the long long and long double variants not being declared
! Added the -> operator to iterators
! Added casts from iterators to const_iterators
! Added casts from reverse_iterators to reverse_const_iterators
! Added comparison ability between iterators and const_iterators
! Added comparison ability between reverse_iterators and reverse_const_iterators
! Made write and write_formatted const
7.0.1 (2/17/11)
! Bernhard Fluehmann fixed a bug in the makefile
7.0.0 (2/02/11)
! Added JSON_STRICT option
! Made checking of numeric values more precise
! Expanded some test macros
! Replaced some implicit initializations with explicit ones
! Replaced FromOctal with one big conversion
! Made number converters more explicit
! Removed // comments from C interface
! Added exception specification
! Added various GCC-specific optimizations
! ! Made a few methods __attribute__ ((pure))
! ! Made a few fields __attribute__ ((packed)) with JSON_LESS_MEMORY
! ! Packed data even tighter in JSON_LESS_MEMORY mode
! ! Added hot and cold spots depending on options
! ! Added compile-time branch prediction
! Added various VC++-specific optimizations
! ! Packed data even tighter in JSON_LESS_MEMORY mode
! Made _ftoa not a template function
! Changed JSON_WRITER option to JSON_WRITE_PRIORITY

! Added JSON_READ_PRIORITY
! Added __LIBJSON_MAJOR__
! Added __LIBJSON_MINOR__
! Added __LIBJSON_PATCH__
! Added __LIBJSON_VERSION__
! With JSON_LESS_MEMORY on, number conversion buffers are on the heap
! Number to string conversions much faster now
! String to number in JSON_STRICT mode really fast
! Sped up string manipulation
! Allowed reserve with JSON_LESS_MEMORY again
! Added NDEBUG to release build options
! Rewrote how validation is done
! Made entire reading engine much faster in most cases
! Constants (true, false, null) can now be case-insensitive
! Added JSON_OCTAL option
! Added JSONStreams
! Added JSON_EXPOSE_BASE64 option
! Nodes that aren’t containers use considerably less memory
! Fixed a bug where mutexes wouldn’t propagate during a copy
! Added JSON_NO_EXCEPTIONS option
! Added JSON_DEPRECATED_FUNCTIONS option
! Replaced makefile with one written by Bernhard Fluehmann
6.2.3 (12/10/10)
! Any unsupported escape character is put in as-is
! Removed escaping of vertical tabs when writing
6.2.2 (12/9/10)
! Fix bug where single quotes got escaped
6.2.1 (11/23/10)
! Fix a few documentation slips
! Fixed bug in All Test Suite options
! Defined as_int and as_float for strings
! reserve now is a no-op when JSON_LESS_MEMORY is on
! Added JSON_BOOL_TYPE option for the C interface
6.2.0 (11/18/10)
! Fix problem with escaping names sometimes
! Added JSON_ESCAPE_WRITES option to make escaping special chars optional
! Added JSON_STRING_HEADER option to drop in custom string classes
! Added JSON_NO_C_CONSTS option
! Memory enhancements throughout
! Added Salvor Hardin’s fix for missing snprintf in VC++
! Added C++ example in the Getting Started folder
6.1.2 (11/11/10)
! Fixed bug where unicode wasn’t writing escaped UTF correctly
! Added JSON_TEXT macro to the documentation
6.1.1 (11/10/10)
! Fixed bug with consecutive surrogate pairs not being read correctly

! Changed license to FreeBSD
6.1.0 (10/16/10)
! Made buffers for converting numbers to strings solved at compile time
! Minor performance tweaks throughout
! Better examples thanks to Chris Larsen
! Fixed a few mistakes in documentation
6.0.0 (9/11/10)
! Complete rewrite of library
! More STL-like C++ interface
! More standard C interface
! Must faster
! Less Memory
! Must more customizable
! Huge Test Suite
! Complete cplusplus.com-like documentation
5.2.4 (8/24/10)
! Added memory cleanup in example.cpp
5.2.3 (8/24/10)
! Fixed safety catch in mismatched quotes
5.2.2 (8/20/10)
! Added safety catch for mismatched quotes
5.2.1 (8/6/10)
! Fixed bug 3040432 (not mallocing enough memory in white space stripper)
5.2 (7/7/10)
! Changed some size_t to unsigned ints for uniformity
! Made some functions faster
! Fixed problem with key/value pairs being accepted in arrays
! Fixed problem where DEBUG mode would give false Children errors
! Fixed compiling error under Linux
5.1 (7/6/10)
! Fixed bug where duplication arrays or nodes wouldn't work
! Added JSON_LESS_MEMORY compiling option
! Replaced std::vector with custom container
5.0 (6/27/10)
! Added a JSON_SAFE compiling option
! Added JSON_PREPARSE compiling option
! Fixed bug with name_encoded flag not dumping correctly
! Nodes now use 5% - 20% less memory
4.5 (6/18/10)
! Made unicode slightly more efficient
! Fixed some documentation
! Added GetMemoryUsage method to debugger
! Nodes now use 8% less memory
4.4 (6/17/10)
! Fixed bug where false values were not always flagged as Fetched
! Fixed typecast when converting double to int

! Used a union for boolean and double values for smaller memory footprint
4.3 (6/16/10)
! new makefiles for each platform
! Removed unused declarations
4.2 (5/7/10)
! Fixed makefile
! Removed unused declarations
4.1 (5/5/10)
! Full support for surrogate pairs
! makefile for linux
! Better documentation
4.0 (4/21/10)
! Numbers now get fetched lazily too
! Added full unicode support by adding a JSON_UNICODE compile option
! Added unicode targets in Code::Blocks projects
! Prebuilt libraries / suites now not included to make downloads faster
3.0 (4/20/10)
! Fixed bug with Root Arrays printing an extra comma
! Root arrays now also lazily fetched
! Unified array parsing routine
! Decent speed and memory optimizations
! NodeAsFloat now returns a double, not a single
! Replaced profiler with Dump method
! Dump now uses allocated string space instead of length
! Added Preparse function
! Made header safeties more obscure to not interfere with other headers
2.2 (4/18/10)
! More technical documentation
! More speed in initial parsing
! Added profiler and raw memory dumps to Debug version
2.1 (4/15/10)
! Added support for escaping object names
! Added support for bash-style comments
! Made writing strings without escaping faster
! Made initial parse faster and uses less memory
2.0 (4/7/10)
! Added support for Octal string escaping
! Added support for both single and multiline C-style comments
1.0 (4/1/10)
! Initial release
! Renamed LiveJSON to libjson and added Test Suites

License
This license is also available in license.txt

Copyright 2010, 2011 Jonathan Wallace. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY JONATHAN WALLACE ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JONATHAN WALLACE OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The views and conclusions contained in the software and documentation are those of
the authors and should not be interpreted as representing official policies, either
expressed or implied, of Jonathan Wallace.

