IBM TPM 2.0

Ken Goldman

IBM Research

kgoldman@us.ibm.com
March 22, 2023
31.
Introduction

42.
Acknowledgements

53.
Build

53.1.
Linux Build

53.2.
Windows Build

63.2.1.
Windows MinGW Build

63.2.2.
Windows Visual Studio Build

63.2.3.
Windows Visual Studio Configuration

73.3.
Mac Build

84.
Running the TPM

95.
Status

95.1.
Bugs

1. Introduction
This is an open source implementation of the Trusted Computing Group's TPM 2.0 library specification.
It is current to revision 164. Revision 164 is not published but is available for public review
.
I have tested on several platforms and OSes, including:

·
· x86 Linux (RHEL, Fedora, Ubuntu)
· Power (Fedora)
·
·
· Big and little endian

· 32 and 64 bit

· OpenSSL 1.0, 1.1, 3.0, 3.1
I expect that it will work on any Windows or POSIX platform.
The interface is a socket with the same packet format as in the Microsoft simulator. The TPM specification Part 4 describes the format for those who are interested. The IBM TSS at https://sourceforge.net/projects/ibmtpm20tss integrates directly with this TPM.
There is a variation with a simulated Linux /dev/tpm0 interface on github.com.
2. Acknowledgements
I extracted much of the software for this TPM from the TPM 2.0 library specification Parts 3 and 4. I would like to acknowledge the generosity of Microsoft for contributing that code under a license that permits this open source implementation.
3. Build
The IBM TPM ships with these directories:

…/src

TPM source
…/tpmvstudio

TPM Visual Studio project

To extract the tarball

> cd …

> tar xvf ibmtpmnnn.tar .

The builds for Linux and Windows create an executable called "tpm_server" or "tpm_server.exe".

Prerequisites, one of
· OpenSSL 1.0.x
· OpenSSL 1.1.x (Linux, 32-bit Windows, 64-bit Windows with Visual Studio, gcc)
· OpenSSL 3.x x (Linux, 64-bit Windows with Visual Studio, gcc)
Compiler options:

· TPM_POSIX

on POSIX compliant OSes, or

· TPM_WINDOWS

on Windows OSes

3.1. Linux Build
For big endian machines, add -DBIG_ENDIAN_TPM=YES to CCFLAGS

> cd …/src
> make
3.2. Windows Build
Install OpenSSL 3.1 64-bit. Install Win64 OpenSSL, not the "Light" versions, which I believe do not contain the development files. The usual place to get OpenSSL binaries for Windows is:
http://slproweb.com/products/Win32OpenSSL.html

Recent Shining Light installs point to

C:\Program Files\OpenSSL-Win64

Change this to

C:\Program Files\OpenSSL

If you chose not to install OpenSSL in this location, you must fix the build paths. In other words, use the recommended location.

This directory should be added to the Path environment variable if it's not already there:

C:\Program Files\OpenSSL\bin
3.2.1. Windows MinGW Build
A mingw (Minimalist GNU for Windows) makefile is included. This permits a command line build, similar to the Linux build. It is compatible with the Eclipse build and debug tools.
makefile.mak links against OpenSSL 3.1 64-bit.

> cd …\src
> make -f makefile.mak
The executable will be in …\src

3.2.2. Windows Visual Studio Build
This permits a GUI based build.

I supply a VS solution and project file for Visual Studio Express 2022. The solution is at

…\tpmdevstudio\tpmserver\tpmserver.sln.
The executable will be in either:

…/tpmvstudio/tpm_server/x64/debug

…/tpmvstudio/tpm_server/x64/release

3.2.3. Windows Visual Studio Configuration

For other versions of Visual Studio, these build options may work. They have not been tested.

C/C++ Compiler:

Additional Include Directories:

c:/program files/openssl/include;%(AdditionalIncludeDirectories)
Preprocessor Definitions:

WIN32; TPM_WINDOWS;_CRT_SECURE_NO_WARNINGS; ;USE_BIT_FIELD_STRUCTURES=NO;TPM_NUVOTON;ALG_CAMELLIA=NO
Linker:

Additional Dependencies:

Libcrypt64mdd.lib;ws2_32.lib;%(AdditionalDependencies)
Additional Library Directories:

c:\program files\openssl\lib\vc;%(AdditionalLibraryDirectories)
3.3. Mac Build

This is a contribution. I did not test it.

· install homebrew

· install openssl -> brew install openssl

· set PATH of shell (terminal):

PATH=/usr/local/Cellar/openssl/1.0.2m/bin/:$PATH

Make this permanent by adding to a profile.

· Build using makefile.mac
4. Running the TPM
> tpm_server

To simulate a BIOS, send a TPM2_Startup. See the IBM TSS "startup" sample utility.

The IBM TPM works slightly differently from the Microsoft simulator.
1. Both "manufacture" a base TPM state the first time.

However, the Microsoft build "remanufactures" the TPM each time the TPM is started.
The IBM TPM retains NV state. The user can force a remanufacture using the -rm command line argument.

2. The IBM TPM does not require a 'powerup' command when it starts. It can be used to simulate a reboot.
5. Status

The source code is current to the TPM working group publication rev 164.
The TPM runs the IBM TSS regression test
5.1. Bugs
Please report bugs.

[image: image1.png]

[image: image2.png]

[image: image3.png]

Page 7

