/* * FIPS-180-1 compliant SHA-1 implementation * * Copyright (C) 2003-2006 Christophe Devine * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License, version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ /* * The SHA-1 standard was published by NIST in 1993. * * http://www.itl.nist.gov/fipspubs/fip180-1.htm */ #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE 1 #endif #include #include #include "sha1.h" /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_BE #define GET_UINT32_BE(n,b,i) \ { \ (n) = ( (ulong) (b)[(i) ] << 24 ) \ | ( (ulong) (b)[(i) + 1] << 16 ) \ | ( (ulong) (b)[(i) + 2] << 8 ) \ | ( (ulong) (b)[(i) + 3] ); \ } #endif #ifndef PUT_UINT32_BE #define PUT_UINT32_BE(n,b,i) \ { \ (b)[(i) ] = (uchar) ( (n) >> 24 ); \ (b)[(i) + 1] = (uchar) ( (n) >> 16 ); \ (b)[(i) + 2] = (uchar) ( (n) >> 8 ); \ (b)[(i) + 3] = (uchar) ( (n) ); \ } #endif /* * Core SHA-1 functions */ void sha1_starts( sha1_context *ctx ) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; } void sha1_process( sha1_context *ctx, uchar data[64] ) { ulong temp, W[16], A, B, C, D, E; GET_UINT32_BE( W[0], data, 0 ); GET_UINT32_BE( W[1], data, 4 ); GET_UINT32_BE( W[2], data, 8 ); GET_UINT32_BE( W[3], data, 12 ); GET_UINT32_BE( W[4], data, 16 ); GET_UINT32_BE( W[5], data, 20 ); GET_UINT32_BE( W[6], data, 24 ); GET_UINT32_BE( W[7], data, 28 ); GET_UINT32_BE( W[8], data, 32 ); GET_UINT32_BE( W[9], data, 36 ); GET_UINT32_BE( W[10], data, 40 ); GET_UINT32_BE( W[11], data, 44 ); GET_UINT32_BE( W[12], data, 48 ); GET_UINT32_BE( W[13], data, 52 ); GET_UINT32_BE( W[14], data, 56 ); GET_UINT32_BE( W[15], data, 60 ); #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define R(t) \ ( \ temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \ W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \ ( W[t & 0x0F] = S(temp,1) ) \ ) #define P(a,b,c,d,e,x) \ { \ e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define F(x,y,z) (z ^ (x & (y ^ z))) #define K 0x5A827999 P( A, B, C, D, E, W[0] ); P( E, A, B, C, D, W[1] ); P( D, E, A, B, C, W[2] ); P( C, D, E, A, B, W[3] ); P( B, C, D, E, A, W[4] ); P( A, B, C, D, E, W[5] ); P( E, A, B, C, D, W[6] ); P( D, E, A, B, C, W[7] ); P( C, D, E, A, B, W[8] ); P( B, C, D, E, A, W[9] ); P( A, B, C, D, E, W[10] ); P( E, A, B, C, D, W[11] ); P( D, E, A, B, C, W[12] ); P( C, D, E, A, B, W[13] ); P( B, C, D, E, A, W[14] ); P( A, B, C, D, E, W[15] ); P( E, A, B, C, D, R(16) ); P( D, E, A, B, C, R(17) ); P( C, D, E, A, B, R(18) ); P( B, C, D, E, A, R(19) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0x6ED9EBA1 P( A, B, C, D, E, R(20) ); P( E, A, B, C, D, R(21) ); P( D, E, A, B, C, R(22) ); P( C, D, E, A, B, R(23) ); P( B, C, D, E, A, R(24) ); P( A, B, C, D, E, R(25) ); P( E, A, B, C, D, R(26) ); P( D, E, A, B, C, R(27) ); P( C, D, E, A, B, R(28) ); P( B, C, D, E, A, R(29) ); P( A, B, C, D, E, R(30) ); P( E, A, B, C, D, R(31) ); P( D, E, A, B, C, R(32) ); P( C, D, E, A, B, R(33) ); P( B, C, D, E, A, R(34) ); P( A, B, C, D, E, R(35) ); P( E, A, B, C, D, R(36) ); P( D, E, A, B, C, R(37) ); P( C, D, E, A, B, R(38) ); P( B, C, D, E, A, R(39) ); #undef K #undef F #define F(x,y,z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC P( A, B, C, D, E, R(40) ); P( E, A, B, C, D, R(41) ); P( D, E, A, B, C, R(42) ); P( C, D, E, A, B, R(43) ); P( B, C, D, E, A, R(44) ); P( A, B, C, D, E, R(45) ); P( E, A, B, C, D, R(46) ); P( D, E, A, B, C, R(47) ); P( C, D, E, A, B, R(48) ); P( B, C, D, E, A, R(49) ); P( A, B, C, D, E, R(50) ); P( E, A, B, C, D, R(51) ); P( D, E, A, B, C, R(52) ); P( C, D, E, A, B, R(53) ); P( B, C, D, E, A, R(54) ); P( A, B, C, D, E, R(55) ); P( E, A, B, C, D, R(56) ); P( D, E, A, B, C, R(57) ); P( C, D, E, A, B, R(58) ); P( B, C, D, E, A, R(59) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0xCA62C1D6 P( A, B, C, D, E, R(60) ); P( E, A, B, C, D, R(61) ); P( D, E, A, B, C, R(62) ); P( C, D, E, A, B, R(63) ); P( B, C, D, E, A, R(64) ); P( A, B, C, D, E, R(65) ); P( E, A, B, C, D, R(66) ); P( D, E, A, B, C, R(67) ); P( C, D, E, A, B, R(68) ); P( B, C, D, E, A, R(69) ); P( A, B, C, D, E, R(70) ); P( E, A, B, C, D, R(71) ); P( D, E, A, B, C, R(72) ); P( C, D, E, A, B, R(73) ); P( B, C, D, E, A, R(74) ); P( A, B, C, D, E, R(75) ); P( E, A, B, C, D, R(76) ); P( D, E, A, B, C, R(77) ); P( C, D, E, A, B, R(78) ); P( B, C, D, E, A, R(79) ); #undef K #undef F ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } void sha1_update( sha1_context *ctx, void *data, uint length ) { uchar *input = data; ulong left, fill; if( ! length ) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < length ) ctx->total[1]++; if( left && length >= fill ) { memcpy( (void *) (ctx->buffer + left), (void *) input, fill ); sha1_process( ctx, ctx->buffer ); length -= fill; input += fill; left = 0; } while( length >= 64 ) { sha1_process( ctx, input ); length -= 64; input += 64; } if( length ) { memcpy( (void *) (ctx->buffer + left), (void *) input, length ); } } static uchar sha1_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void sha1_finish( sha1_context *ctx, uchar digest[20] ) { ulong last, padn; ulong high, low; uchar msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); sha1_update( ctx, sha1_padding, padn ); sha1_update( ctx, msglen, 8 ); PUT_UINT32_BE( ctx->state[0], digest, 0 ); PUT_UINT32_BE( ctx->state[1], digest, 4 ); PUT_UINT32_BE( ctx->state[2], digest, 8 ); PUT_UINT32_BE( ctx->state[3], digest, 12 ); PUT_UINT32_BE( ctx->state[4], digest, 16 ); } /* * Output SHA-1(file contents), returns 0 if successful. */ int sha1_file( char *filename, uchar digest[20] ) { FILE *f; size_t n; sha1_context ctx; uchar buf[1024]; if( ( f = fopen( filename, "rb" ) ) == NULL ) return( 1 ); sha1_starts( &ctx ); while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 ) sha1_update( &ctx, buf, (uint) n ); sha1_finish( &ctx, digest ); fclose( f ); return( 0 ); } /* * Output SHA-1(buf) */ void sha1_csum( uchar *buf, uint buflen, uchar digest[20] ) { sha1_context ctx; sha1_starts( &ctx ); sha1_update( &ctx, buf, buflen ); sha1_finish( &ctx, digest ); } /* * Output HMAC-SHA-1(key,buf) */ void sha1_hmac( uchar *key, uint keylen, uchar *buf, uint buflen, uchar digest[20] ) { uint i; sha1_context ctx; uchar k_ipad[64]; uchar k_opad[64]; uchar tmpbuf[20]; memset( k_ipad, 0x36, 64 ); memset( k_opad, 0x5C, 64 ); for( i = 0; i < keylen; i++ ) { if( i >= 64 ) break; k_ipad[i] ^= key[i]; k_opad[i] ^= key[i]; } sha1_starts( &ctx ); sha1_update( &ctx, k_ipad, 64 ); sha1_update( &ctx, buf, buflen ); sha1_finish( &ctx, tmpbuf ); sha1_starts( &ctx ); sha1_update( &ctx, k_opad, 64 ); sha1_update( &ctx, tmpbuf, 20 ); sha1_finish( &ctx, digest ); memset( k_ipad, 0, 64 ); memset( k_opad, 0, 64 ); memset( tmpbuf, 0, 20 ); memset( &ctx, 0, sizeof( sha1_context ) ); } #ifdef SELF_TEST /* * FIPS-180-1 test vectors */ static char *sha1_test_str[3] = { "abc", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", NULL }; static uchar sha1_test_sum[3][20] = { { 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E, 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D }, { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 }, { 0x34, 0xAA, 0x97, 0x3C, 0xD4, 0xC4, 0xDA, 0xA4, 0xF6, 0x1E, 0xEB, 0x2B, 0xDB, 0xAD, 0x27, 0x31, 0x65, 0x34, 0x01, 0x6F } }; /* * Checkup routine */ int sha1_self_test( void ) { int i, j; uchar buf[1000]; uchar sha1sum[20]; sha1_context ctx; for( i = 0; i < 3; i++ ) { printf( " SHA-1 test #%d: ", i + 1 ); sha1_starts( &ctx ); if( i < 2 ) sha1_update( &ctx, (uchar *) sha1_test_str[i], strlen( sha1_test_str[i] ) ); else { memset( buf, 'a', 1000 ); for( j = 0; j < 1000; j++ ) sha1_update( &ctx, (uchar *) buf, 1000 ); } sha1_finish( &ctx, sha1sum ); if( memcmp( sha1sum, sha1_test_sum[i], 20 ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n" ); } printf( "\n" ); return( 0 ); } #else int sha1_self_test( void ) { printf( "SHA-1 self-test not available\n\n" ); return( 1 ); } #endif