#include #include "fio.h" #include "steadystate.h" bool steadystate_enabled = false; void steadystate_free(struct thread_data *td) { free(td->ss.iops_data); free(td->ss.bw_data); td->ss.iops_data = NULL; td->ss.bw_data = NULL; } static void steadystate_alloc(struct thread_data *td) { td->ss.bw_data = calloc(td->ss.dur, sizeof(uint64_t)); td->ss.iops_data = calloc(td->ss.dur, sizeof(uint64_t)); td->ss.state |= FIO_SS_DATA; } void steadystate_setup(void) { struct thread_data *td, *prev_td; int i, prev_groupid; if (!steadystate_enabled) return; /* * if group reporting is enabled, identify the last td * for each group and use it for storing steady state * data */ prev_groupid = -1; prev_td = NULL; for_each_td(td, i) { if (!td->ss.dur) continue; if (!td->o.group_reporting) { steadystate_alloc(td); continue; } if (prev_groupid != td->groupid) { if (prev_td) steadystate_alloc(prev_td); prev_groupid = td->groupid; } prev_td = td; } if (prev_td && prev_td->o.group_reporting) steadystate_alloc(prev_td); } static bool steadystate_slope(uint64_t iops, uint64_t bw, struct thread_data *td) { int i, j; double result; struct steadystate_data *ss = &td->ss; uint64_t new_val; ss->bw_data[ss->tail] = bw; ss->iops_data[ss->tail] = iops; if (ss->state & FIO_SS_IOPS) new_val = iops; else new_val = bw; if (ss->state & FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) { if (!(ss->state & FIO_SS_BUFFER_FULL)) { /* first time through */ for(i = 0, ss->sum_y = 0; i < ss->dur; i++) { if (ss->state & FIO_SS_IOPS) ss->sum_y += ss->iops_data[i]; else ss->sum_y += ss->bw_data[i]; j = (ss->head + i) % ss->dur; if (ss->state & FIO_SS_IOPS) ss->sum_xy += i * ss->iops_data[j]; else ss->sum_xy += i * ss->bw_data[j]; } ss->state |= FIO_SS_BUFFER_FULL; } else { /* easy to update the sums */ ss->sum_y -= ss->oldest_y; ss->sum_y += new_val; ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val; } if (ss->state & FIO_SS_IOPS) ss->oldest_y = ss->iops_data[ss->head]; else ss->oldest_y = ss->bw_data[ss->head]; /* * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2) * - (sum_x)^2 / n) This code assumes that all x values are * equally spaced when they are often off by a few milliseconds. * This assumption greatly simplifies the calculations. */ ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) / (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur); if (ss->state & FIO_SS_PCT) ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur); else ss->criterion = ss->slope; dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, " "criterion: %f, limit: %f\n", (unsigned long long) ss->sum_y, (unsigned long long) ss->sum_xy, ss->slope, ss->criterion, ss->limit); result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0); if (result < ss->limit) return true; } ss->tail = (ss->tail + 1) % ss->dur; if (ss->tail <= ss->head) ss->head = (ss->head + 1) % ss->dur; return false; } static bool steadystate_deviation(uint64_t iops, uint64_t bw, struct thread_data *td) { int i; double diff; double mean; struct steadystate_data *ss = &td->ss; ss->bw_data[ss->tail] = bw; ss->iops_data[ss->tail] = iops; if (ss->state & FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) { if (!(ss->state & FIO_SS_BUFFER_FULL)) { /* first time through */ for(i = 0, ss->sum_y = 0; i < ss->dur; i++) if (ss->state & FIO_SS_IOPS) ss->sum_y += ss->iops_data[i]; else ss->sum_y += ss->bw_data[i]; ss->state |= FIO_SS_BUFFER_FULL; } else { /* easy to update the sum */ ss->sum_y -= ss->oldest_y; if (ss->state & FIO_SS_IOPS) ss->sum_y += ss->iops_data[ss->tail]; else ss->sum_y += ss->bw_data[ss->tail]; } if (ss->state & FIO_SS_IOPS) ss->oldest_y = ss->iops_data[ss->head]; else ss->oldest_y = ss->bw_data[ss->head]; mean = (double) ss->sum_y / ss->dur; ss->deviation = 0.0; for (i = 0; i < ss->dur; i++) { if (ss->state & FIO_SS_IOPS) diff = ss->iops_data[i] - mean; else diff = ss->bw_data[i] - mean; ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0)); } if (ss->state & FIO_SS_PCT) ss->criterion = 100.0 * ss->deviation / mean; else ss->criterion = ss->deviation; dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, " "objective: %f, limit: %f\n", (unsigned long long) ss->sum_y, mean, ss->deviation, ss->criterion, ss->limit); if (ss->criterion < ss->limit) return true; } ss->tail = (ss->tail + 1) % ss->dur; if (ss->tail <= ss->head) ss->head = (ss->head + 1) % ss->dur; return false; } void steadystate_check(void) { int i, j, ddir, prev_groupid, group_ramp_time_over = 0; unsigned long rate_time; struct thread_data *td, *td2; struct timespec now; uint64_t group_bw = 0, group_iops = 0; uint64_t td_iops, td_bytes; bool ret; prev_groupid = -1; for_each_td(td, i) { const bool needs_lock = td_async_processing(td); struct steadystate_data *ss = &td->ss; if (!ss->dur || td->runstate <= TD_SETTING_UP || td->runstate >= TD_EXITED || !ss->state || ss->state & FIO_SS_ATTAINED) continue; td_iops = 0; td_bytes = 0; if (!td->o.group_reporting || (td->o.group_reporting && td->groupid != prev_groupid)) { group_bw = 0; group_iops = 0; group_ramp_time_over = 0; } prev_groupid = td->groupid; fio_gettime(&now, NULL); if (ss->ramp_time && !(ss->state & FIO_SS_RAMP_OVER)) { /* * Begin recording data one second after ss->ramp_time * has elapsed */ if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L)) ss->state |= FIO_SS_RAMP_OVER; } if (needs_lock) __td_io_u_lock(td); for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { td_iops += td->io_blocks[ddir]; td_bytes += td->io_bytes[ddir]; } if (needs_lock) __td_io_u_unlock(td); rate_time = mtime_since(&ss->prev_time, &now); memcpy(&ss->prev_time, &now, sizeof(now)); /* * Begin monitoring when job starts but don't actually use * data in checking stopping criterion until ss->ramp_time is * over. This ensures that we will have a sane value in * prev_iops/bw the first time through after ss->ramp_time * is done. */ if (ss->state & FIO_SS_RAMP_OVER) { group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time; group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time; ++group_ramp_time_over; } ss->prev_iops = td_iops; ss->prev_bytes = td_bytes; if (td->o.group_reporting && !(ss->state & FIO_SS_DATA)) continue; /* * Don't begin checking criterion until ss->ramp_time is over * for at least one thread in group */ if (!group_ramp_time_over) continue; dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, " "groupid: %u, rate_msec: %ld, " "iops: %llu, bw: %llu, head: %d, tail: %d\n", i, td->groupid, rate_time, (unsigned long long) group_iops, (unsigned long long) group_bw, ss->head, ss->tail); if (ss->state & FIO_SS_SLOPE) ret = steadystate_slope(group_iops, group_bw, td); else ret = steadystate_deviation(group_iops, group_bw, td); if (ret) { if (td->o.group_reporting) { for_each_td(td2, j) { if (td2->groupid == td->groupid) { td2->ss.state |= FIO_SS_ATTAINED; fio_mark_td_terminate(td2); } } } else { ss->state |= FIO_SS_ATTAINED; fio_mark_td_terminate(td); } } } } int td_steadystate_init(struct thread_data *td) { struct steadystate_data *ss = &td->ss; struct thread_options *o = &td->o; struct thread_data *td2; int j; memset(ss, 0, sizeof(*ss)); if (o->ss_dur) { steadystate_enabled = true; o->ss_dur /= 1000000L; /* put all steady state info in one place */ ss->dur = o->ss_dur; ss->limit = o->ss_limit.u.f; ss->ramp_time = o->ss_ramp_time; ss->state = o->ss_state; if (!td->ss.ramp_time) ss->state |= FIO_SS_RAMP_OVER; ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2; ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6; } /* make sure that ss options are consistent within reporting group */ for_each_td(td2, j) { if (td2->groupid == td->groupid) { struct steadystate_data *ss2 = &td2->ss; if (ss2->dur != ss->dur || ss2->limit != ss->limit || ss2->ramp_time != ss->ramp_time || ss2->state != ss->state || ss2->sum_x != ss->sum_x || ss2->sum_x_sq != ss->sum_x_sq) { td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups"); return 1; } } } return 0; } uint64_t steadystate_bw_mean(struct thread_stat *ts) { int i; uint64_t sum; if (!ts->ss_dur) return 0; for (i = 0, sum = 0; i < ts->ss_dur; i++) sum += ts->ss_bw_data[i]; return sum / ts->ss_dur; } uint64_t steadystate_iops_mean(struct thread_stat *ts) { int i; uint64_t sum; if (!ts->ss_dur) return 0; for (i = 0, sum = 0; i < ts->ss_dur; i++) sum += ts->ss_iops_data[i]; return sum / ts->ss_dur; }