#include #include #include #include #include #include "fio.h" #include "diskutil.h" #include "lib/ieee754.h" #include "json.h" #include "lib/getrusage.h" #include "idletime.h" #include "lib/pow2.h" #include "lib/output_buffer.h" #include "helper_thread.h" #include "smalloc.h" #include "zbd.h" #define LOG_MSEC_SLACK 1 struct fio_sem *stat_sem; void clear_rusage_stat(struct thread_data *td) { struct thread_stat *ts = &td->ts; fio_getrusage(&td->ru_start); ts->usr_time = ts->sys_time = 0; ts->ctx = 0; ts->minf = ts->majf = 0; } void update_rusage_stat(struct thread_data *td) { struct thread_stat *ts = &td->ts; fio_getrusage(&td->ru_end); ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime, &td->ru_end.ru_utime); ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime, &td->ru_end.ru_stime); ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw); ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt; ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt; memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end)); } /* * Given a latency, return the index of the corresponding bucket in * the structure tracking percentiles. * * (1) find the group (and error bits) that the value (latency) * belongs to by looking at its MSB. (2) find the bucket number in the * group by looking at the index bits. * */ static unsigned int plat_val_to_idx(unsigned long long val) { unsigned int msb, error_bits, base, offset, idx; /* Find MSB starting from bit 0 */ if (val == 0) msb = 0; else msb = (sizeof(val)*8) - __builtin_clzll(val) - 1; /* * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use * all bits of the sample as index */ if (msb <= FIO_IO_U_PLAT_BITS) return val; /* Compute the number of error bits to discard*/ error_bits = msb - FIO_IO_U_PLAT_BITS; /* Compute the number of buckets before the group */ base = (error_bits + 1) << FIO_IO_U_PLAT_BITS; /* * Discard the error bits and apply the mask to find the * index for the buckets in the group */ offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits); /* Make sure the index does not exceed (array size - 1) */ idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ? (base + offset) : (FIO_IO_U_PLAT_NR - 1); return idx; } /* * Convert the given index of the bucket array to the value * represented by the bucket */ static unsigned long long plat_idx_to_val(unsigned int idx) { unsigned int error_bits; unsigned long long k, base; assert(idx < FIO_IO_U_PLAT_NR); /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use * all bits of the sample as index */ if (idx < (FIO_IO_U_PLAT_VAL << 1)) return idx; /* Find the group and compute the minimum value of that group */ error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1; base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS); /* Find its bucket number of the group */ k = idx % FIO_IO_U_PLAT_VAL; /* Return the mean of the range of the bucket */ return base + ((k + 0.5) * (1 << error_bits)); } static int double_cmp(const void *a, const void *b) { const fio_fp64_t fa = *(const fio_fp64_t *) a; const fio_fp64_t fb = *(const fio_fp64_t *) b; int cmp = 0; if (fa.u.f > fb.u.f) cmp = 1; else if (fa.u.f < fb.u.f) cmp = -1; return cmp; } unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr, fio_fp64_t *plist, unsigned long long **output, unsigned long long *maxv, unsigned long long *minv) { unsigned long long sum = 0; unsigned int len, i, j = 0; unsigned int oval_len = 0; unsigned long long *ovals = NULL; bool is_last; *minv = -1ULL; *maxv = 0; len = 0; while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0) len++; if (!len) return 0; /* * Sort the percentile list. Note that it may already be sorted if * we are using the default values, but since it's a short list this * isn't a worry. Also note that this does not work for NaN values. */ if (len > 1) qsort((void *)plist, len, sizeof(plist[0]), double_cmp); /* * Calculate bucket values, note down max and min values */ is_last = false; for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) { sum += io_u_plat[i]; while (sum >= (plist[j].u.f / 100.0 * nr)) { assert(plist[j].u.f <= 100.0); if (j == oval_len) { oval_len += 100; ovals = realloc(ovals, oval_len * sizeof(*ovals)); } ovals[j] = plat_idx_to_val(i); if (ovals[j] < *minv) *minv = ovals[j]; if (ovals[j] > *maxv) *maxv = ovals[j]; is_last = (j == len - 1) != 0; if (is_last) break; j++; } } *output = ovals; return len; } /* * Find and display the p-th percentile of clat */ static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr, fio_fp64_t *plist, unsigned int precision, const char *pre, struct buf_output *out) { unsigned int divisor, len, i, j = 0; unsigned long long minv, maxv; unsigned long long *ovals; int per_line, scale_down, time_width; bool is_last; char fmt[32]; len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv); if (!len || !ovals) goto out; /* * We default to nsecs, but if the value range is such that we * should scale down to usecs or msecs, do that. */ if (minv > 2000000 && maxv > 99999999ULL) { scale_down = 2; divisor = 1000000; log_buf(out, " %s percentiles (msec):\n |", pre); } else if (minv > 2000 && maxv > 99999) { scale_down = 1; divisor = 1000; log_buf(out, " %s percentiles (usec):\n |", pre); } else { scale_down = 0; divisor = 1; log_buf(out, " %s percentiles (nsec):\n |", pre); } time_width = max(5, (int) (log10(maxv / divisor) + 1)); snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3, precision, time_width); /* fmt will be something like " %5.2fth=[%4llu]%c" */ per_line = (80 - 7) / (precision + 10 + time_width); for (j = 0; j < len; j++) { /* for formatting */ if (j != 0 && (j % per_line) == 0) log_buf(out, " |"); /* end of the list */ is_last = (j == len - 1) != 0; for (i = 0; i < scale_down; i++) ovals[j] = (ovals[j] + 999) / 1000; log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ','); if (is_last) break; if ((j % per_line) == per_line - 1) /* for formatting */ log_buf(out, "\n"); } out: if (ovals) free(ovals); } bool calc_lat(struct io_stat *is, unsigned long long *min, unsigned long long *max, double *mean, double *dev) { double n = (double) is->samples; if (n == 0) return false; *min = is->min_val; *max = is->max_val; *mean = is->mean.u.f; if (n > 1.0) *dev = sqrt(is->S.u.f / (n - 1.0)); else *dev = 0; return true; } void show_group_stats(struct group_run_stats *rs, struct buf_output *out) { char *io, *agg, *min, *max; char *ioalt, *aggalt, *minalt, *maxalt; const char *str[] = { " READ", " WRITE" , " TRIM"}; int i; log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid); for (i = 0; i < DDIR_RWDIR_CNT; i++) { const int i2p = is_power_of_2(rs->kb_base); if (!rs->max_run[i]) continue; io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE); ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE); agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base); aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base); min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base); minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base); max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base); maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base); log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n", rs->unified_rw_rep ? " MIXED" : str[i], agg, aggalt, min, max, minalt, maxalt, io, ioalt, (unsigned long long) rs->min_run[i], (unsigned long long) rs->max_run[i]); free(io); free(agg); free(min); free(max); free(ioalt); free(aggalt); free(minalt); free(maxalt); } } void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist) { int i; /* * Do depth distribution calculations */ for (i = 0; i < FIO_IO_U_MAP_NR; i++) { if (total) { io_u_dist[i] = (double) map[i] / (double) total; io_u_dist[i] *= 100.0; if (io_u_dist[i] < 0.1 && map[i]) io_u_dist[i] = 0.1; } else io_u_dist[i] = 0.0; } } static void stat_calc_lat(struct thread_stat *ts, double *dst, uint64_t *src, int nr) { unsigned long total = ddir_rw_sum(ts->total_io_u); int i; /* * Do latency distribution calculations */ for (i = 0; i < nr; i++) { if (total) { dst[i] = (double) src[i] / (double) total; dst[i] *= 100.0; if (dst[i] < 0.01 && src[i]) dst[i] = 0.01; } else dst[i] = 0.0; } } /* * To keep the terse format unaltered, add all of the ns latency * buckets to the first us latency bucket */ static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u) { unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u); int i; stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR); for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) ntotal += ts->io_u_lat_n[i]; io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total; } void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat) { stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR); } void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat) { stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR); } void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat) { stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR); } static void display_lat(const char *name, unsigned long long min, unsigned long long max, double mean, double dev, struct buf_output *out) { const char *base = "(nsec)"; char *minp, *maxp; if (nsec_to_msec(&min, &max, &mean, &dev)) base = "(msec)"; else if (nsec_to_usec(&min, &max, &mean, &dev)) base = "(usec)"; minp = num2str(min, 6, 1, 0, N2S_NONE); maxp = num2str(max, 6, 1, 0, N2S_NONE); log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f," " stdev=%5.02f\n", name, base, minp, maxp, mean, dev); free(minp); free(maxp); } static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts, int ddir, struct buf_output *out) { const char *str[] = { " read", "write", " trim", "sync" }; unsigned long runt; unsigned long long min, max, bw, iops; double mean, dev; char *io_p, *bw_p, *bw_p_alt, *iops_p, *zbd_w_st = NULL; int i2p; if (ddir_sync(ddir)) { if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) { log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range"); display_lat(str[ddir], min, max, mean, dev, out); show_clat_percentiles(ts->io_u_sync_plat, ts->sync_stat.samples, ts->percentile_list, ts->percentile_precision, str[ddir], out); } return; } assert(ddir_rw(ddir)); if (!ts->runtime[ddir]) return; i2p = is_power_of_2(rs->kb_base); runt = ts->runtime[ddir]; bw = (1000 * ts->io_bytes[ddir]) / runt; io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE); bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base); bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base); iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt; iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE); if (ddir == DDIR_WRITE) zbd_w_st = zbd_write_status(ts); log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n", rs->unified_rw_rep ? "mixed" : str[ddir], iops_p, bw_p, bw_p_alt, io_p, (unsigned long long) ts->runtime[ddir], zbd_w_st ? : ""); free(zbd_w_st); free(io_p); free(bw_p); free(bw_p_alt); free(iops_p); if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) display_lat("slat", min, max, mean, dev, out); if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) display_lat("clat", min, max, mean, dev, out); if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) display_lat(" lat", min, max, mean, dev, out); if (ts->clat_percentiles || ts->lat_percentiles) { const char *name = ts->clat_percentiles ? "clat" : " lat"; uint64_t samples; if (ts->clat_percentiles) samples = ts->clat_stat[ddir].samples; else samples = ts->lat_stat[ddir].samples; show_clat_percentiles(ts->io_u_plat[ddir], samples, ts->percentile_list, ts->percentile_precision, name, out); } if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { double p_of_agg = 100.0, fkb_base = (double)rs->kb_base; const char *bw_str; if ((rs->unit_base == 1) && i2p) bw_str = "Kibit"; else if (rs->unit_base == 1) bw_str = "kbit"; else if (i2p) bw_str = "KiB"; else bw_str = "kB"; if (rs->agg[ddir]) { p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024); if (p_of_agg > 100.0) p_of_agg = 100.0; } if (rs->unit_base == 1) { min *= 8.0; max *= 8.0; mean *= 8.0; dev *= 8.0; } if (mean > fkb_base * fkb_base) { min /= fkb_base; max /= fkb_base; mean /= fkb_base; dev /= fkb_base; bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB"); } log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, " "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n", bw_str, min, max, p_of_agg, mean, dev, (&ts->bw_stat[ddir])->samples); } if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) { log_buf(out, " iops : min=%5llu, max=%5llu, " "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n", min, max, mean, dev, (&ts->iops_stat[ddir])->samples); } } static bool show_lat(double *io_u_lat, int nr, const char **ranges, const char *msg, struct buf_output *out) { bool new_line = true, shown = false; int i, line = 0; for (i = 0; i < nr; i++) { if (io_u_lat[i] <= 0.0) continue; shown = true; if (new_line) { if (line) log_buf(out, "\n"); log_buf(out, " lat (%s) : ", msg); new_line = false; line = 0; } if (line) log_buf(out, ", "); log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]); line++; if (line == 5) new_line = true; } if (shown) log_buf(out, "\n"); return true; } static void show_lat_n(double *io_u_lat_n, struct buf_output *out) { const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", "250=", "500=", "750=", "1000=", }; show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out); } static void show_lat_u(double *io_u_lat_u, struct buf_output *out) { const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", "250=", "500=", "750=", "1000=", }; show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out); } static void show_lat_m(double *io_u_lat_m, struct buf_output *out) { const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=", "250=", "500=", "750=", "1000=", "2000=", ">=2000=", }; show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out); } static void show_latencies(struct thread_stat *ts, struct buf_output *out) { double io_u_lat_n[FIO_IO_U_LAT_N_NR]; double io_u_lat_u[FIO_IO_U_LAT_U_NR]; double io_u_lat_m[FIO_IO_U_LAT_M_NR]; stat_calc_lat_n(ts, io_u_lat_n); stat_calc_lat_u(ts, io_u_lat_u); stat_calc_lat_m(ts, io_u_lat_m); show_lat_n(io_u_lat_n, out); show_lat_u(io_u_lat_u, out); show_lat_m(io_u_lat_m, out); } static int block_state_category(int block_state) { switch (block_state) { case BLOCK_STATE_UNINIT: return 0; case BLOCK_STATE_TRIMMED: case BLOCK_STATE_WRITTEN: return 1; case BLOCK_STATE_WRITE_FAILURE: case BLOCK_STATE_TRIM_FAILURE: return 2; default: /* Silence compile warning on some BSDs and have a return */ assert(0); return -1; } } static int compare_block_infos(const void *bs1, const void *bs2) { uint64_t block1 = *(uint64_t *)bs1; uint64_t block2 = *(uint64_t *)bs2; int state1 = BLOCK_INFO_STATE(block1); int state2 = BLOCK_INFO_STATE(block2); int bscat1 = block_state_category(state1); int bscat2 = block_state_category(state2); int cycles1 = BLOCK_INFO_TRIMS(block1); int cycles2 = BLOCK_INFO_TRIMS(block2); if (bscat1 < bscat2) return -1; if (bscat1 > bscat2) return 1; if (cycles1 < cycles2) return -1; if (cycles1 > cycles2) return 1; if (state1 < state2) return -1; if (state1 > state2) return 1; assert(block1 == block2); return 0; } static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos, fio_fp64_t *plist, unsigned int **percentiles, unsigned int *types) { int len = 0; int i, nr_uninit; qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos); while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0) len++; if (!len) return 0; /* * Sort the percentile list. Note that it may already be sorted if * we are using the default values, but since it's a short list this * isn't a worry. Also note that this does not work for NaN values. */ if (len > 1) qsort((void *)plist, len, sizeof(plist[0]), double_cmp); /* Start only after the uninit entries end */ for (nr_uninit = 0; nr_uninit < nr_block_infos && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT; nr_uninit ++) ; if (nr_uninit == nr_block_infos) return 0; *percentiles = calloc(len, sizeof(**percentiles)); for (i = 0; i < len; i++) { int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100) + nr_uninit; (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]); } memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT); for (i = 0; i < nr_block_infos; i++) types[BLOCK_INFO_STATE(block_infos[i])]++; return len; } static const char *block_state_names[] = { [BLOCK_STATE_UNINIT] = "unwritten", [BLOCK_STATE_TRIMMED] = "trimmed", [BLOCK_STATE_WRITTEN] = "written", [BLOCK_STATE_TRIM_FAILURE] = "trim failure", [BLOCK_STATE_WRITE_FAILURE] = "write failure", }; static void show_block_infos(int nr_block_infos, uint32_t *block_infos, fio_fp64_t *plist, struct buf_output *out) { int len, pos, i; unsigned int *percentiles = NULL; unsigned int block_state_counts[BLOCK_STATE_COUNT]; len = calc_block_percentiles(nr_block_infos, block_infos, plist, &percentiles, block_state_counts); log_buf(out, " block lifetime percentiles :\n |"); pos = 0; for (i = 0; i < len; i++) { uint32_t block_info = percentiles[i]; #define LINE_LENGTH 75 char str[LINE_LENGTH]; int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c", plist[i].u.f, block_info, i == len - 1 ? '\n' : ','); assert(strln < LINE_LENGTH); if (pos + strln > LINE_LENGTH) { pos = 0; log_buf(out, "\n |"); } log_buf(out, "%s", str); pos += strln; #undef LINE_LENGTH } if (percentiles) free(percentiles); log_buf(out, " states :"); for (i = 0; i < BLOCK_STATE_COUNT; i++) log_buf(out, " %s=%u%c", block_state_names[i], block_state_counts[i], i == BLOCK_STATE_COUNT - 1 ? '\n' : ','); } static void show_ss_normal(struct thread_stat *ts, struct buf_output *out) { char *p1, *p1alt, *p2; unsigned long long bw_mean, iops_mean; const int i2p = is_power_of_2(ts->kb_base); if (!ts->ss_dur) return; bw_mean = steadystate_bw_mean(ts); iops_mean = steadystate_iops_mean(ts); p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base); p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base); p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE); log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n", ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no", p1, p1alt, p2, ts->ss_state & FIO_SS_IOPS ? "iops" : "bw", ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev", ts->ss_criterion.u.f, ts->ss_state & FIO_SS_PCT ? "%" : ""); free(p1); free(p1alt); free(p2); } static void show_thread_status_normal(struct thread_stat *ts, struct group_run_stats *rs, struct buf_output *out) { double usr_cpu, sys_cpu; unsigned long runtime; double io_u_dist[FIO_IO_U_MAP_NR]; time_t time_p; char time_buf[32]; if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u)) return; memset(time_buf, 0, sizeof(time_buf)); time(&time_p); os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf)); if (!ts->error) { log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s", ts->name, ts->groupid, ts->members, ts->error, (int) ts->pid, time_buf); } else { log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s", ts->name, ts->groupid, ts->members, ts->error, ts->verror, (int) ts->pid, time_buf); } if (strlen(ts->description)) log_buf(out, " Description : [%s]\n", ts->description); if (ts->io_bytes[DDIR_READ]) show_ddir_status(rs, ts, DDIR_READ, out); if (ts->io_bytes[DDIR_WRITE]) show_ddir_status(rs, ts, DDIR_WRITE, out); if (ts->io_bytes[DDIR_TRIM]) show_ddir_status(rs, ts, DDIR_TRIM, out); show_latencies(ts, out); if (ts->sync_stat.samples) show_ddir_status(rs, ts, DDIR_SYNC, out); runtime = ts->total_run_time; if (runtime) { double runt = (double) runtime; usr_cpu = (double) ts->usr_time * 100 / runt; sys_cpu = (double) ts->sys_time * 100 / runt; } else { usr_cpu = 0; sys_cpu = 0; } log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu," " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu, (unsigned long long) ts->ctx, (unsigned long long) ts->majf, (unsigned long long) ts->minf); stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%," " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], io_u_dist[4], io_u_dist[5], io_u_dist[6]); stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist); log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], io_u_dist[4], io_u_dist[5], io_u_dist[6]); stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist); log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%," " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], io_u_dist[4], io_u_dist[5], io_u_dist[6]); log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu" " short=%llu,%llu,%llu,0" " dropped=%llu,%llu,%llu,0\n", (unsigned long long) ts->total_io_u[0], (unsigned long long) ts->total_io_u[1], (unsigned long long) ts->total_io_u[2], (unsigned long long) ts->total_io_u[3], (unsigned long long) ts->short_io_u[0], (unsigned long long) ts->short_io_u[1], (unsigned long long) ts->short_io_u[2], (unsigned long long) ts->drop_io_u[0], (unsigned long long) ts->drop_io_u[1], (unsigned long long) ts->drop_io_u[2]); if (ts->continue_on_error) { log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n", (unsigned long long)ts->total_err_count, ts->first_error, strerror(ts->first_error)); } if (ts->latency_depth) { log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n", (unsigned long long)ts->latency_target, (unsigned long long)ts->latency_window, ts->latency_percentile.u.f, ts->latency_depth); } if (ts->nr_block_infos) show_block_infos(ts->nr_block_infos, ts->block_infos, ts->percentile_list, out); if (ts->ss_dur) show_ss_normal(ts, out); } static void show_ddir_status_terse(struct thread_stat *ts, struct group_run_stats *rs, int ddir, int ver, struct buf_output *out) { unsigned long long min, max, minv, maxv, bw, iops; unsigned long long *ovals = NULL; double mean, dev; unsigned int len; int i, bw_stat; assert(ddir_rw(ddir)); iops = bw = 0; if (ts->runtime[ddir]) { uint64_t runt = ts->runtime[ddir]; bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */ iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt; } log_buf(out, ";%llu;%llu;%llu;%llu", (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops, (unsigned long long) ts->runtime[ddir]); if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000); else log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0); if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000); else log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0); if (ts->clat_percentiles || ts->lat_percentiles) { len = calc_clat_percentiles(ts->io_u_plat[ddir], ts->clat_stat[ddir].samples, ts->percentile_list, &ovals, &maxv, &minv); } else len = 0; for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) { if (i >= len) { log_buf(out, ";0%%=0"); continue; } log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000); } if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000); else log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0); if (ovals) free(ovals); bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev); if (bw_stat) { double p_of_agg = 100.0; if (rs->agg[ddir]) { p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024); if (p_of_agg > 100.0) p_of_agg = 100.0; } log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev); } else log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0); if (ver == 5) { if (bw_stat) log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples); else log_buf(out, ";%lu", 0UL); if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max, mean, dev, (&ts->iops_stat[ddir])->samples); else log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL); } } static void add_ddir_status_json(struct thread_stat *ts, struct group_run_stats *rs, int ddir, struct json_object *parent) { unsigned long long min, max, minv, maxv; unsigned long long bw_bytes, bw; unsigned long long *ovals = NULL; double mean, dev, iops; unsigned int len; int i; const char *ddirname[] = { "read", "write", "trim", "sync" }; struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL; char buf[120]; double p_of_agg = 100.0; assert(ddir_rw(ddir) || ddir_sync(ddir)); if (ts->unified_rw_rep && ddir != DDIR_READ) return; dir_object = json_create_object(); json_object_add_value_object(parent, ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object); if (ddir_rw(ddir)) { bw_bytes = 0; bw = 0; iops = 0.0; if (ts->runtime[ddir]) { uint64_t runt = ts->runtime[ddir]; bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */ bw = bw_bytes / 1024; /* KiB/s */ iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt; } json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]); json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10); json_object_add_value_int(dir_object, "bw_bytes", bw_bytes); json_object_add_value_int(dir_object, "bw", bw); json_object_add_value_float(dir_object, "iops", iops); json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]); json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]); json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]); json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]); if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) { min = max = 0; mean = dev = 0.0; } tmp_object = json_create_object(); json_object_add_value_object(dir_object, "slat_ns", tmp_object); json_object_add_value_int(tmp_object, "min", min); json_object_add_value_int(tmp_object, "max", max); json_object_add_value_float(tmp_object, "mean", mean); json_object_add_value_float(tmp_object, "stddev", dev); if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) { min = max = 0; mean = dev = 0.0; } tmp_object = json_create_object(); json_object_add_value_object(dir_object, "clat_ns", tmp_object); json_object_add_value_int(tmp_object, "min", min); json_object_add_value_int(tmp_object, "max", max); json_object_add_value_float(tmp_object, "mean", mean); json_object_add_value_float(tmp_object, "stddev", dev); } else { if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) { min = max = 0; mean = dev = 0.0; } tmp_object = json_create_object(); json_object_add_value_object(dir_object, "lat_ns", tmp_object); json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]); json_object_add_value_int(tmp_object, "min", min); json_object_add_value_int(tmp_object, "max", max); json_object_add_value_float(tmp_object, "mean", mean); json_object_add_value_float(tmp_object, "stddev", dev); } if (ts->clat_percentiles || ts->lat_percentiles) { if (ddir_rw(ddir)) { len = calc_clat_percentiles(ts->io_u_plat[ddir], ts->clat_stat[ddir].samples, ts->percentile_list, &ovals, &maxv, &minv); } else { len = calc_clat_percentiles(ts->io_u_sync_plat, ts->sync_stat.samples, ts->percentile_list, &ovals, &maxv, &minv); } if (len > FIO_IO_U_LIST_MAX_LEN) len = FIO_IO_U_LIST_MAX_LEN; } else len = 0; percentile_object = json_create_object(); json_object_add_value_object(tmp_object, "percentile", percentile_object); for (i = 0; i < len; i++) { snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f); json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]); } if (output_format & FIO_OUTPUT_JSON_PLUS) { clat_bins_object = json_create_object(); if (ts->clat_percentiles) json_object_add_value_object(tmp_object, "bins", clat_bins_object); for(i = 0; i < FIO_IO_U_PLAT_NR; i++) { if (ddir_rw(ddir)) { if (ts->io_u_plat[ddir][i]) { snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i)); json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]); } } else { if (ts->io_u_sync_plat[i]) { snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i)); json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]); } } } } if (!ddir_rw(ddir)) return; if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) { min = max = 0; mean = dev = 0.0; } tmp_object = json_create_object(); json_object_add_value_object(dir_object, "lat_ns", tmp_object); json_object_add_value_int(tmp_object, "min", min); json_object_add_value_int(tmp_object, "max", max); json_object_add_value_float(tmp_object, "mean", mean); json_object_add_value_float(tmp_object, "stddev", dev); if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles) json_object_add_value_object(tmp_object, "bins", clat_bins_object); if (ovals) free(ovals); if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) { if (rs->agg[ddir]) { p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024); if (p_of_agg > 100.0) p_of_agg = 100.0; } } else { min = max = 0; p_of_agg = mean = dev = 0.0; } json_object_add_value_int(dir_object, "bw_min", min); json_object_add_value_int(dir_object, "bw_max", max); json_object_add_value_float(dir_object, "bw_agg", p_of_agg); json_object_add_value_float(dir_object, "bw_mean", mean); json_object_add_value_float(dir_object, "bw_dev", dev); json_object_add_value_int(dir_object, "bw_samples", (&ts->bw_stat[ddir])->samples); if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) { min = max = 0; mean = dev = 0.0; } json_object_add_value_int(dir_object, "iops_min", min); json_object_add_value_int(dir_object, "iops_max", max); json_object_add_value_float(dir_object, "iops_mean", mean); json_object_add_value_float(dir_object, "iops_stddev", dev); json_object_add_value_int(dir_object, "iops_samples", (&ts->iops_stat[ddir])->samples); } static void show_thread_status_terse_all(struct thread_stat *ts, struct group_run_stats *rs, int ver, struct buf_output *out) { double io_u_dist[FIO_IO_U_MAP_NR]; double io_u_lat_u[FIO_IO_U_LAT_U_NR]; double io_u_lat_m[FIO_IO_U_LAT_M_NR]; double usr_cpu, sys_cpu; int i; /* General Info */ if (ver == 2) log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error); else log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string, ts->name, ts->groupid, ts->error); /* Log Read Status */ show_ddir_status_terse(ts, rs, DDIR_READ, ver, out); /* Log Write Status */ show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out); /* Log Trim Status */ if (ver == 2 || ver == 4 || ver == 5) show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out); /* CPU Usage */ if (ts->total_run_time) { double runt = (double) ts->total_run_time; usr_cpu = (double) ts->usr_time * 100 / runt; sys_cpu = (double) ts->sys_time * 100 / runt; } else { usr_cpu = 0; sys_cpu = 0; } log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu, (unsigned long long) ts->ctx, (unsigned long long) ts->majf, (unsigned long long) ts->minf); /* Calc % distribution of IO depths, usecond, msecond latency */ stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); stat_calc_lat_nu(ts, io_u_lat_u); stat_calc_lat_m(ts, io_u_lat_m); /* Only show fixed 7 I/O depth levels*/ log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%", io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3], io_u_dist[4], io_u_dist[5], io_u_dist[6]); /* Microsecond latency */ for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) log_buf(out, ";%3.2f%%", io_u_lat_u[i]); /* Millisecond latency */ for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) log_buf(out, ";%3.2f%%", io_u_lat_m[i]); /* disk util stats, if any */ if (ver >= 3 && is_running_backend()) show_disk_util(1, NULL, out); /* Additional output if continue_on_error set - default off*/ if (ts->continue_on_error) log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error); if (ver == 2) log_buf(out, "\n"); /* Additional output if description is set */ if (strlen(ts->description)) log_buf(out, ";%s", ts->description); log_buf(out, "\n"); } static void json_add_job_opts(struct json_object *root, const char *name, struct flist_head *opt_list) { struct json_object *dir_object; struct flist_head *entry; struct print_option *p; if (flist_empty(opt_list)) return; dir_object = json_create_object(); json_object_add_value_object(root, name, dir_object); flist_for_each(entry, opt_list) { const char *pos = ""; p = flist_entry(entry, struct print_option, list); if (p->value) pos = p->value; json_object_add_value_string(dir_object, p->name, pos); } } static struct json_object *show_thread_status_json(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *opt_list) { struct json_object *root, *tmp; struct jobs_eta *je; double io_u_dist[FIO_IO_U_MAP_NR]; double io_u_lat_n[FIO_IO_U_LAT_N_NR]; double io_u_lat_u[FIO_IO_U_LAT_U_NR]; double io_u_lat_m[FIO_IO_U_LAT_M_NR]; double usr_cpu, sys_cpu; int i; size_t size; root = json_create_object(); json_object_add_value_string(root, "jobname", ts->name); json_object_add_value_int(root, "groupid", ts->groupid); json_object_add_value_int(root, "error", ts->error); /* ETA Info */ je = get_jobs_eta(true, &size); if (je) { json_object_add_value_int(root, "eta", je->eta_sec); json_object_add_value_int(root, "elapsed", je->elapsed_sec); } if (opt_list) json_add_job_opts(root, "job options", opt_list); add_ddir_status_json(ts, rs, DDIR_READ, root); add_ddir_status_json(ts, rs, DDIR_WRITE, root); add_ddir_status_json(ts, rs, DDIR_TRIM, root); add_ddir_status_json(ts, rs, DDIR_SYNC, root); /* CPU Usage */ if (ts->total_run_time) { double runt = (double) ts->total_run_time; usr_cpu = (double) ts->usr_time * 100 / runt; sys_cpu = (double) ts->sys_time * 100 / runt; } else { usr_cpu = 0; sys_cpu = 0; } json_object_add_value_int(root, "job_runtime", ts->total_run_time); json_object_add_value_float(root, "usr_cpu", usr_cpu); json_object_add_value_float(root, "sys_cpu", sys_cpu); json_object_add_value_int(root, "ctx", ts->ctx); json_object_add_value_int(root, "majf", ts->majf); json_object_add_value_int(root, "minf", ts->minf); /* Calc % distribution of IO depths */ stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); tmp = json_create_object(); json_object_add_value_object(root, "iodepth_level", tmp); /* Only show fixed 7 I/O depth levels*/ for (i = 0; i < 7; i++) { char name[20]; if (i < 6) snprintf(name, 20, "%d", 1 << i); else snprintf(name, 20, ">=%d", 1 << i); json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]); } /* Calc % distribution of submit IO depths */ stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist); tmp = json_create_object(); json_object_add_value_object(root, "iodepth_submit", tmp); /* Only show fixed 7 I/O depth levels*/ for (i = 0; i < 7; i++) { char name[20]; if (i == 0) snprintf(name, 20, "0"); else if (i < 6) snprintf(name, 20, "%d", 1 << (i+1)); else snprintf(name, 20, ">=%d", 1 << i); json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]); } /* Calc % distribution of completion IO depths */ stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist); tmp = json_create_object(); json_object_add_value_object(root, "iodepth_complete", tmp); /* Only show fixed 7 I/O depth levels*/ for (i = 0; i < 7; i++) { char name[20]; if (i == 0) snprintf(name, 20, "0"); else if (i < 6) snprintf(name, 20, "%d", 1 << (i+1)); else snprintf(name, 20, ">=%d", 1 << i); json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]); } /* Calc % distribution of nsecond, usecond, msecond latency */ stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist); stat_calc_lat_n(ts, io_u_lat_n); stat_calc_lat_u(ts, io_u_lat_u); stat_calc_lat_m(ts, io_u_lat_m); /* Nanosecond latency */ tmp = json_create_object(); json_object_add_value_object(root, "latency_ns", tmp); for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) { const char *ranges[] = { "2", "4", "10", "20", "50", "100", "250", "500", "750", "1000", }; json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]); } /* Microsecond latency */ tmp = json_create_object(); json_object_add_value_object(root, "latency_us", tmp); for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) { const char *ranges[] = { "2", "4", "10", "20", "50", "100", "250", "500", "750", "1000", }; json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]); } /* Millisecond latency */ tmp = json_create_object(); json_object_add_value_object(root, "latency_ms", tmp); for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) { const char *ranges[] = { "2", "4", "10", "20", "50", "100", "250", "500", "750", "1000", "2000", ">=2000", }; json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]); } /* Additional output if continue_on_error set - default off*/ if (ts->continue_on_error) { json_object_add_value_int(root, "total_err", ts->total_err_count); json_object_add_value_int(root, "first_error", ts->first_error); } if (ts->latency_depth) { json_object_add_value_int(root, "latency_depth", ts->latency_depth); json_object_add_value_int(root, "latency_target", ts->latency_target); json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f); json_object_add_value_int(root, "latency_window", ts->latency_window); } /* Additional output if description is set */ if (strlen(ts->description)) json_object_add_value_string(root, "desc", ts->description); if (ts->nr_block_infos) { /* Block error histogram and types */ int len; unsigned int *percentiles = NULL; unsigned int block_state_counts[BLOCK_STATE_COUNT]; len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos, ts->percentile_list, &percentiles, block_state_counts); if (len) { struct json_object *block, *percentile_object, *states; int state; block = json_create_object(); json_object_add_value_object(root, "block", block); percentile_object = json_create_object(); json_object_add_value_object(block, "percentiles", percentile_object); for (i = 0; i < len; i++) { char buf[20]; snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f); json_object_add_value_int(percentile_object, (const char *)buf, percentiles[i]); } states = json_create_object(); json_object_add_value_object(block, "states", states); for (state = 0; state < BLOCK_STATE_COUNT; state++) { json_object_add_value_int(states, block_state_names[state], block_state_counts[state]); } free(percentiles); } } if (ts->ss_dur) { struct json_object *data; struct json_array *iops, *bw; int j, k, l; char ss_buf[64]; snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s", ts->ss_state & FIO_SS_IOPS ? "iops" : "bw", ts->ss_state & FIO_SS_SLOPE ? "_slope" : "", (float) ts->ss_limit.u.f, ts->ss_state & FIO_SS_PCT ? "%" : ""); tmp = json_create_object(); json_object_add_value_object(root, "steadystate", tmp); json_object_add_value_string(tmp, "ss", ss_buf); json_object_add_value_int(tmp, "duration", (int)ts->ss_dur); json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0); snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f, ts->ss_state & FIO_SS_PCT ? "%" : ""); json_object_add_value_string(tmp, "criterion", ss_buf); json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f); json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f); data = json_create_object(); json_object_add_value_object(tmp, "data", data); bw = json_create_array(); iops = json_create_array(); /* ** if ss was attained or the buffer is not full, ** ss->head points to the first element in the list. ** otherwise it actually points to the second element ** in the list */ if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL)) j = ts->ss_head; else j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1; for (l = 0; l < ts->ss_dur; l++) { k = (j + l) % ts->ss_dur; json_array_add_value_int(bw, ts->ss_bw_data[k]); json_array_add_value_int(iops, ts->ss_iops_data[k]); } json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts)); json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts)); json_object_add_value_array(data, "iops", iops); json_object_add_value_array(data, "bw", bw); } return root; } static void show_thread_status_terse(struct thread_stat *ts, struct group_run_stats *rs, struct buf_output *out) { if (terse_version >= 2 && terse_version <= 5) show_thread_status_terse_all(ts, rs, terse_version, out); else log_err("fio: bad terse version!? %d\n", terse_version); } struct json_object *show_thread_status(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *opt_list, struct buf_output *out) { struct json_object *ret = NULL; if (output_format & FIO_OUTPUT_TERSE) show_thread_status_terse(ts, rs, out); if (output_format & FIO_OUTPUT_JSON) ret = show_thread_status_json(ts, rs, opt_list); if (output_format & FIO_OUTPUT_NORMAL) show_thread_status_normal(ts, rs, out); return ret; } static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first) { double mean, S; if (src->samples == 0) return; dst->min_val = min(dst->min_val, src->min_val); dst->max_val = max(dst->max_val, src->max_val); /* * Compute new mean and S after the merge * */ if (first) { mean = src->mean.u.f; S = src->S.u.f; } else { double delta = src->mean.u.f - dst->mean.u.f; mean = ((src->mean.u.f * src->samples) + (dst->mean.u.f * dst->samples)) / (dst->samples + src->samples); S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) * (dst->samples * src->samples) / (dst->samples + src->samples); } dst->samples += src->samples; dst->mean.u.f = mean; dst->S.u.f = S; } void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src) { int i; for (i = 0; i < DDIR_RWDIR_CNT; i++) { if (dst->max_run[i] < src->max_run[i]) dst->max_run[i] = src->max_run[i]; if (dst->min_run[i] && dst->min_run[i] > src->min_run[i]) dst->min_run[i] = src->min_run[i]; if (dst->max_bw[i] < src->max_bw[i]) dst->max_bw[i] = src->max_bw[i]; if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i]) dst->min_bw[i] = src->min_bw[i]; dst->iobytes[i] += src->iobytes[i]; dst->agg[i] += src->agg[i]; } if (!dst->kb_base) dst->kb_base = src->kb_base; if (!dst->unit_base) dst->unit_base = src->unit_base; if (!dst->sig_figs) dst->sig_figs = src->sig_figs; } void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, bool first) { int l, k; for (l = 0; l < DDIR_RWDIR_CNT; l++) { if (!dst->unified_rw_rep) { sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first); sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first); sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first); sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first); sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first); dst->io_bytes[l] += src->io_bytes[l]; if (dst->runtime[l] < src->runtime[l]) dst->runtime[l] = src->runtime[l]; } else { sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first); sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first); sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first); sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first); sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first); dst->io_bytes[0] += src->io_bytes[l]; if (dst->runtime[0] < src->runtime[l]) dst->runtime[0] = src->runtime[l]; /* * We're summing to the same destination, so override * 'first' after the first iteration of the loop */ first = false; } } sum_stat(&dst->sync_stat, &src->sync_stat, first); dst->usr_time += src->usr_time; dst->sys_time += src->sys_time; dst->ctx += src->ctx; dst->majf += src->majf; dst->minf += src->minf; for (k = 0; k < FIO_IO_U_MAP_NR; k++) { dst->io_u_map[k] += src->io_u_map[k]; dst->io_u_submit[k] += src->io_u_submit[k]; dst->io_u_complete[k] += src->io_u_complete[k]; } for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) { dst->io_u_lat_n[k] += src->io_u_lat_n[k]; dst->io_u_lat_u[k] += src->io_u_lat_u[k]; dst->io_u_lat_m[k] += src->io_u_lat_m[k]; } for (k = 0; k < FIO_IO_U_PLAT_NR; k++) dst->io_u_sync_plat[k] += src->io_u_sync_plat[k]; for (k = 0; k < DDIR_RWDIR_CNT; k++) { if (!dst->unified_rw_rep) { dst->total_io_u[k] += src->total_io_u[k]; dst->short_io_u[k] += src->short_io_u[k]; dst->drop_io_u[k] += src->drop_io_u[k]; } else { dst->total_io_u[0] += src->total_io_u[k]; dst->short_io_u[0] += src->short_io_u[k]; dst->drop_io_u[0] += src->drop_io_u[k]; } } dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC]; for (k = 0; k < DDIR_RWDIR_CNT; k++) { int m; for (m = 0; m < FIO_IO_U_PLAT_NR; m++) { if (!dst->unified_rw_rep) dst->io_u_plat[k][m] += src->io_u_plat[k][m]; else dst->io_u_plat[0][m] += src->io_u_plat[k][m]; } } dst->total_run_time += src->total_run_time; dst->total_submit += src->total_submit; dst->total_complete += src->total_complete; dst->nr_zone_resets += src->nr_zone_resets; } void init_group_run_stat(struct group_run_stats *gs) { int i; memset(gs, 0, sizeof(*gs)); for (i = 0; i < DDIR_RWDIR_CNT; i++) gs->min_bw[i] = gs->min_run[i] = ~0UL; } void init_thread_stat(struct thread_stat *ts) { int j; memset(ts, 0, sizeof(*ts)); for (j = 0; j < DDIR_RWDIR_CNT; j++) { ts->lat_stat[j].min_val = -1UL; ts->clat_stat[j].min_val = -1UL; ts->slat_stat[j].min_val = -1UL; ts->bw_stat[j].min_val = -1UL; ts->iops_stat[j].min_val = -1UL; } ts->sync_stat.min_val = -1UL; ts->groupid = -1; } void __show_run_stats(void) { struct group_run_stats *runstats, *rs; struct thread_data *td; struct thread_stat *threadstats, *ts; int i, j, k, nr_ts, last_ts, idx; bool kb_base_warned = false; bool unit_base_warned = false; struct json_object *root = NULL; struct json_array *array = NULL; struct buf_output output[FIO_OUTPUT_NR]; struct flist_head **opt_lists; runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1)); for (i = 0; i < groupid + 1; i++) init_group_run_stat(&runstats[i]); /* * find out how many threads stats we need. if group reporting isn't * enabled, it's one-per-td. */ nr_ts = 0; last_ts = -1; for_each_td(td, i) { if (!td->o.group_reporting) { nr_ts++; continue; } if (last_ts == td->groupid) continue; if (!td->o.stats) continue; last_ts = td->groupid; nr_ts++; } threadstats = malloc(nr_ts * sizeof(struct thread_stat)); opt_lists = malloc(nr_ts * sizeof(struct flist_head *)); for (i = 0; i < nr_ts; i++) { init_thread_stat(&threadstats[i]); opt_lists[i] = NULL; } j = 0; last_ts = -1; idx = 0; for_each_td(td, i) { if (!td->o.stats) continue; if (idx && (!td->o.group_reporting || (td->o.group_reporting && last_ts != td->groupid))) { idx = 0; j++; } last_ts = td->groupid; ts = &threadstats[j]; ts->clat_percentiles = td->o.clat_percentiles; ts->lat_percentiles = td->o.lat_percentiles; ts->percentile_precision = td->o.percentile_precision; memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list)); opt_lists[j] = &td->opt_list; idx++; ts->members++; if (ts->groupid == -1) { /* * These are per-group shared already */ strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1); if (td->o.description) strncpy(ts->description, td->o.description, FIO_JOBDESC_SIZE - 1); else memset(ts->description, 0, FIO_JOBDESC_SIZE); /* * If multiple entries in this group, this is * the first member. */ ts->thread_number = td->thread_number; ts->groupid = td->groupid; /* * first pid in group, not very useful... */ ts->pid = td->pid; ts->kb_base = td->o.kb_base; ts->unit_base = td->o.unit_base; ts->sig_figs = td->o.sig_figs; ts->unified_rw_rep = td->o.unified_rw_rep; } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) { log_info("fio: kb_base differs for jobs in group, using" " %u as the base\n", ts->kb_base); kb_base_warned = true; } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) { log_info("fio: unit_base differs for jobs in group, using" " %u as the base\n", ts->unit_base); unit_base_warned = true; } ts->continue_on_error = td->o.continue_on_error; ts->total_err_count += td->total_err_count; ts->first_error = td->first_error; if (!ts->error) { if (!td->error && td->o.continue_on_error && td->first_error) { ts->error = td->first_error; ts->verror[sizeof(ts->verror) - 1] = '\0'; strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); } else if (td->error) { ts->error = td->error; ts->verror[sizeof(ts->verror) - 1] = '\0'; strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1); } } ts->latency_depth = td->latency_qd; ts->latency_target = td->o.latency_target; ts->latency_percentile = td->o.latency_percentile; ts->latency_window = td->o.latency_window; ts->nr_block_infos = td->ts.nr_block_infos; for (k = 0; k < ts->nr_block_infos; k++) ts->block_infos[k] = td->ts.block_infos[k]; sum_thread_stats(ts, &td->ts, idx == 1); if (td->o.ss_dur) { ts->ss_state = td->ss.state; ts->ss_dur = td->ss.dur; ts->ss_head = td->ss.head; ts->ss_bw_data = td->ss.bw_data; ts->ss_iops_data = td->ss.iops_data; ts->ss_limit.u.f = td->ss.limit; ts->ss_slope.u.f = td->ss.slope; ts->ss_deviation.u.f = td->ss.deviation; ts->ss_criterion.u.f = td->ss.criterion; } else ts->ss_dur = ts->ss_state = 0; } for (i = 0; i < nr_ts; i++) { unsigned long long bw; ts = &threadstats[i]; if (ts->groupid == -1) continue; rs = &runstats[ts->groupid]; rs->kb_base = ts->kb_base; rs->unit_base = ts->unit_base; rs->sig_figs = ts->sig_figs; rs->unified_rw_rep += ts->unified_rw_rep; for (j = 0; j < DDIR_RWDIR_CNT; j++) { if (!ts->runtime[j]) continue; if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j]) rs->min_run[j] = ts->runtime[j]; if (ts->runtime[j] > rs->max_run[j]) rs->max_run[j] = ts->runtime[j]; bw = 0; if (ts->runtime[j]) bw = ts->io_bytes[j] * 1000 / ts->runtime[j]; if (bw < rs->min_bw[j]) rs->min_bw[j] = bw; if (bw > rs->max_bw[j]) rs->max_bw[j] = bw; rs->iobytes[j] += ts->io_bytes[j]; } } for (i = 0; i < groupid + 1; i++) { int ddir; rs = &runstats[i]; for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { if (rs->max_run[ddir]) rs->agg[ddir] = (rs->iobytes[ddir] * 1000) / rs->max_run[ddir]; } } for (i = 0; i < FIO_OUTPUT_NR; i++) buf_output_init(&output[i]); /* * don't overwrite last signal output */ if (output_format & FIO_OUTPUT_NORMAL) log_buf(&output[__FIO_OUTPUT_NORMAL], "\n"); if (output_format & FIO_OUTPUT_JSON) { struct thread_data *global; char time_buf[32]; struct timeval now; unsigned long long ms_since_epoch; time_t tv_sec; gettimeofday(&now, NULL); ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 + (unsigned long long)(now.tv_usec) / 1000; tv_sec = now.tv_sec; os_ctime_r(&tv_sec, time_buf, sizeof(time_buf)); if (time_buf[strlen(time_buf) - 1] == '\n') time_buf[strlen(time_buf) - 1] = '\0'; root = json_create_object(); json_object_add_value_string(root, "fio version", fio_version_string); json_object_add_value_int(root, "timestamp", now.tv_sec); json_object_add_value_int(root, "timestamp_ms", ms_since_epoch); json_object_add_value_string(root, "time", time_buf); global = get_global_options(); json_add_job_opts(root, "global options", &global->opt_list); array = json_create_array(); json_object_add_value_array(root, "jobs", array); } if (is_backend) fio_server_send_job_options(&get_global_options()->opt_list, -1U); for (i = 0; i < nr_ts; i++) { ts = &threadstats[i]; rs = &runstats[ts->groupid]; if (is_backend) { fio_server_send_job_options(opt_lists[i], i); fio_server_send_ts(ts, rs); if (output_format & FIO_OUTPUT_TERSE) show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]); } else { if (output_format & FIO_OUTPUT_TERSE) show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]); if (output_format & FIO_OUTPUT_JSON) { struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]); json_array_add_value_object(array, tmp); } if (output_format & FIO_OUTPUT_NORMAL) show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]); } } if (!is_backend && (output_format & FIO_OUTPUT_JSON)) { /* disk util stats, if any */ show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]); show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]); json_print_object(root, &output[__FIO_OUTPUT_JSON]); log_buf(&output[__FIO_OUTPUT_JSON], "\n"); json_free_object(root); } for (i = 0; i < groupid + 1; i++) { rs = &runstats[i]; rs->groupid = i; if (is_backend) fio_server_send_gs(rs); else if (output_format & FIO_OUTPUT_NORMAL) show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]); } if (is_backend) fio_server_send_du(); else if (output_format & FIO_OUTPUT_NORMAL) { show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]); show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]); } for (i = 0; i < FIO_OUTPUT_NR; i++) { struct buf_output *out = &output[i]; log_info_buf(out->buf, out->buflen); buf_output_free(out); } fio_idle_prof_cleanup(); log_info_flush(); free(runstats); free(threadstats); free(opt_lists); } void __show_running_run_stats(void) { struct thread_data *td; unsigned long long *rt; struct timespec ts; int i; fio_sem_down(stat_sem); rt = malloc(thread_number * sizeof(unsigned long long)); fio_gettime(&ts, NULL); for_each_td(td, i) { td->update_rusage = 1; td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; td->ts.total_run_time = mtime_since(&td->epoch, &ts); rt[i] = mtime_since(&td->start, &ts); if (td_read(td) && td->ts.io_bytes[DDIR_READ]) td->ts.runtime[DDIR_READ] += rt[i]; if (td_write(td) && td->ts.io_bytes[DDIR_WRITE]) td->ts.runtime[DDIR_WRITE] += rt[i]; if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM]) td->ts.runtime[DDIR_TRIM] += rt[i]; } for_each_td(td, i) { if (td->runstate >= TD_EXITED) continue; if (td->rusage_sem) { td->update_rusage = 1; fio_sem_down(td->rusage_sem); } td->update_rusage = 0; } __show_run_stats(); for_each_td(td, i) { if (td_read(td) && td->ts.io_bytes[DDIR_READ]) td->ts.runtime[DDIR_READ] -= rt[i]; if (td_write(td) && td->ts.io_bytes[DDIR_WRITE]) td->ts.runtime[DDIR_WRITE] -= rt[i]; if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM]) td->ts.runtime[DDIR_TRIM] -= rt[i]; } free(rt); fio_sem_up(stat_sem); } static bool status_interval_init; static struct timespec status_time; static bool status_file_disabled; #define FIO_STATUS_FILE "fio-dump-status" static int check_status_file(void) { struct stat sb; const char *temp_dir; char fio_status_file_path[PATH_MAX]; if (status_file_disabled) return 0; temp_dir = getenv("TMPDIR"); if (temp_dir == NULL) { temp_dir = getenv("TEMP"); if (temp_dir && strlen(temp_dir) >= PATH_MAX) temp_dir = NULL; } if (temp_dir == NULL) temp_dir = "/tmp"; snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE); if (stat(fio_status_file_path, &sb)) return 0; if (unlink(fio_status_file_path) < 0) { log_err("fio: failed to unlink %s: %s\n", fio_status_file_path, strerror(errno)); log_err("fio: disabling status file updates\n"); status_file_disabled = true; } return 1; } void check_for_running_stats(void) { if (status_interval) { if (!status_interval_init) { fio_gettime(&status_time, NULL); status_interval_init = true; } else if (mtime_since_now(&status_time) >= status_interval) { show_running_run_stats(); fio_gettime(&status_time, NULL); return; } } if (check_status_file()) { show_running_run_stats(); return; } } static inline void add_stat_sample(struct io_stat *is, unsigned long long data) { double val = data; double delta; if (data > is->max_val) is->max_val = data; if (data < is->min_val) is->min_val = data; delta = val - is->mean.u.f; if (delta) { is->mean.u.f += delta / (is->samples + 1.0); is->S.u.f += delta * (val - is->mean.u.f); } is->samples++; } /* * Return a struct io_logs, which is added to the tail of the log * list for 'iolog'. */ static struct io_logs *get_new_log(struct io_log *iolog) { size_t new_size, new_samples; struct io_logs *cur_log; /* * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling * forever */ if (!iolog->cur_log_max) new_samples = DEF_LOG_ENTRIES; else { new_samples = iolog->cur_log_max * 2; if (new_samples > MAX_LOG_ENTRIES) new_samples = MAX_LOG_ENTRIES; } new_size = new_samples * log_entry_sz(iolog); cur_log = smalloc(sizeof(*cur_log)); if (cur_log) { INIT_FLIST_HEAD(&cur_log->list); cur_log->log = malloc(new_size); if (cur_log->log) { cur_log->nr_samples = 0; cur_log->max_samples = new_samples; flist_add_tail(&cur_log->list, &iolog->io_logs); iolog->cur_log_max = new_samples; return cur_log; } sfree(cur_log); } return NULL; } /* * Add and return a new log chunk, or return current log if big enough */ static struct io_logs *regrow_log(struct io_log *iolog) { struct io_logs *cur_log; int i; if (!iolog || iolog->disabled) goto disable; cur_log = iolog_cur_log(iolog); if (!cur_log) { cur_log = get_new_log(iolog); if (!cur_log) return NULL; } if (cur_log->nr_samples < cur_log->max_samples) return cur_log; /* * No room for a new sample. If we're compressing on the fly, flush * out the current chunk */ if (iolog->log_gz) { if (iolog_cur_flush(iolog, cur_log)) { log_err("fio: failed flushing iolog! Will stop logging.\n"); return NULL; } } /* * Get a new log array, and add to our list */ cur_log = get_new_log(iolog); if (!cur_log) { log_err("fio: failed extending iolog! Will stop logging.\n"); return NULL; } if (!iolog->pending || !iolog->pending->nr_samples) return cur_log; /* * Flush pending items to new log */ for (i = 0; i < iolog->pending->nr_samples; i++) { struct io_sample *src, *dst; src = get_sample(iolog, iolog->pending, i); dst = get_sample(iolog, cur_log, i); memcpy(dst, src, log_entry_sz(iolog)); } cur_log->nr_samples = iolog->pending->nr_samples; iolog->pending->nr_samples = 0; return cur_log; disable: if (iolog) iolog->disabled = true; return NULL; } void regrow_logs(struct thread_data *td) { regrow_log(td->slat_log); regrow_log(td->clat_log); regrow_log(td->clat_hist_log); regrow_log(td->lat_log); regrow_log(td->bw_log); regrow_log(td->iops_log); td->flags &= ~TD_F_REGROW_LOGS; } static struct io_logs *get_cur_log(struct io_log *iolog) { struct io_logs *cur_log; cur_log = iolog_cur_log(iolog); if (!cur_log) { cur_log = get_new_log(iolog); if (!cur_log) return NULL; } if (cur_log->nr_samples < cur_log->max_samples) return cur_log; /* * Out of space. If we're in IO offload mode, or we're not doing * per unit logging (hence logging happens outside of the IO thread * as well), add a new log chunk inline. If we're doing inline * submissions, flag 'td' as needing a log regrow and we'll take * care of it on the submission side. */ if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) || !per_unit_log(iolog)) return regrow_log(iolog); if (iolog->td) iolog->td->flags |= TD_F_REGROW_LOGS; if (iolog->pending) assert(iolog->pending->nr_samples < iolog->pending->max_samples); return iolog->pending; } static void __add_log_sample(struct io_log *iolog, union io_sample_data data, enum fio_ddir ddir, unsigned long long bs, unsigned long t, uint64_t offset) { struct io_logs *cur_log; if (iolog->disabled) return; if (flist_empty(&iolog->io_logs)) iolog->avg_last[ddir] = t; cur_log = get_cur_log(iolog); if (cur_log) { struct io_sample *s; s = get_sample(iolog, cur_log, cur_log->nr_samples); s->data = data; s->time = t + (iolog->td ? iolog->td->unix_epoch : 0); io_sample_set_ddir(iolog, s, ddir); s->bs = bs; if (iolog->log_offset) { struct io_sample_offset *so = (void *) s; so->offset = offset; } cur_log->nr_samples++; return; } iolog->disabled = true; } static inline void reset_io_stat(struct io_stat *ios) { ios->max_val = ios->min_val = ios->samples = 0; ios->mean.u.f = ios->S.u.f = 0; } void reset_io_stats(struct thread_data *td) { struct thread_stat *ts = &td->ts; int i, j; for (i = 0; i < DDIR_RWDIR_CNT; i++) { reset_io_stat(&ts->clat_stat[i]); reset_io_stat(&ts->slat_stat[i]); reset_io_stat(&ts->lat_stat[i]); reset_io_stat(&ts->bw_stat[i]); reset_io_stat(&ts->iops_stat[i]); ts->io_bytes[i] = 0; ts->runtime[i] = 0; ts->total_io_u[i] = 0; ts->short_io_u[i] = 0; ts->drop_io_u[i] = 0; for (j = 0; j < FIO_IO_U_PLAT_NR; j++) { ts->io_u_plat[i][j] = 0; if (!i) ts->io_u_sync_plat[j] = 0; } } ts->total_io_u[DDIR_SYNC] = 0; for (i = 0; i < FIO_IO_U_MAP_NR; i++) { ts->io_u_map[i] = 0; ts->io_u_submit[i] = 0; ts->io_u_complete[i] = 0; } for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) ts->io_u_lat_n[i] = 0; for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) ts->io_u_lat_u[i] = 0; for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) ts->io_u_lat_m[i] = 0; ts->total_submit = 0; ts->total_complete = 0; ts->nr_zone_resets = 0; } static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir, unsigned long elapsed, bool log_max) { /* * Note an entry in the log. Use the mean from the logged samples, * making sure to properly round up. Only write a log entry if we * had actual samples done. */ if (iolog->avg_window[ddir].samples) { union io_sample_data data; if (log_max) data.val = iolog->avg_window[ddir].max_val; else data.val = iolog->avg_window[ddir].mean.u.f + 0.50; __add_log_sample(iolog, data, ddir, 0, elapsed, 0); } reset_io_stat(&iolog->avg_window[ddir]); } static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed, bool log_max) { int ddir; for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) __add_stat_to_log(iolog, ddir, elapsed, log_max); } static unsigned long add_log_sample(struct thread_data *td, struct io_log *iolog, union io_sample_data data, enum fio_ddir ddir, unsigned long long bs, uint64_t offset) { unsigned long elapsed, this_window; if (!ddir_rw(ddir)) return 0; elapsed = mtime_since_now(&td->epoch); /* * If no time averaging, just add the log sample. */ if (!iolog->avg_msec) { __add_log_sample(iolog, data, ddir, bs, elapsed, offset); return 0; } /* * Add the sample. If the time period has passed, then * add that entry to the log and clear. */ add_stat_sample(&iolog->avg_window[ddir], data.val); /* * If period hasn't passed, adding the above sample is all we * need to do. */ this_window = elapsed - iolog->avg_last[ddir]; if (elapsed < iolog->avg_last[ddir]) return iolog->avg_last[ddir] - elapsed; else if (this_window < iolog->avg_msec) { unsigned long diff = iolog->avg_msec - this_window; if (inline_log(iolog) || diff > LOG_MSEC_SLACK) return diff; } __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0); iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec); return iolog->avg_msec; } void finalize_logs(struct thread_data *td, bool unit_logs) { unsigned long elapsed; elapsed = mtime_since_now(&td->epoch); if (td->clat_log && unit_logs) _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0); if (td->slat_log && unit_logs) _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0); if (td->lat_log && unit_logs) _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0); if (td->bw_log && (unit_logs == per_unit_log(td->bw_log))) _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0); if (td->iops_log && (unit_logs == per_unit_log(td->iops_log))) _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0); } void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs) { struct io_log *iolog; if (!ddir_rw(ddir)) return; iolog = agg_io_log[ddir]; __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0); } void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec) { unsigned int idx = plat_val_to_idx(nsec); assert(idx < FIO_IO_U_PLAT_NR); ts->io_u_sync_plat[idx]++; add_stat_sample(&ts->sync_stat, nsec); } static void add_clat_percentile_sample(struct thread_stat *ts, unsigned long long nsec, enum fio_ddir ddir) { unsigned int idx = plat_val_to_idx(nsec); assert(idx < FIO_IO_U_PLAT_NR); ts->io_u_plat[ddir][idx]++; } void add_clat_sample(struct thread_data *td, enum fio_ddir ddir, unsigned long long nsec, unsigned long long bs, uint64_t offset) { const bool needs_lock = td_async_processing(td); unsigned long elapsed, this_window; struct thread_stat *ts = &td->ts; struct io_log *iolog = td->clat_hist_log; if (needs_lock) __td_io_u_lock(td); add_stat_sample(&ts->clat_stat[ddir], nsec); if (td->clat_log) add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs, offset); if (ts->clat_percentiles) add_clat_percentile_sample(ts, nsec, ddir); if (iolog && iolog->hist_msec) { struct io_hist *hw = &iolog->hist_window[ddir]; hw->samples++; elapsed = mtime_since_now(&td->epoch); if (!hw->hist_last) hw->hist_last = elapsed; this_window = elapsed - hw->hist_last; if (this_window >= iolog->hist_msec) { uint64_t *io_u_plat; struct io_u_plat_entry *dst; /* * Make a byte-for-byte copy of the latency histogram * stored in td->ts.io_u_plat[ddir], recording it in a * log sample. Note that the matching call to free() is * located in iolog.c after printing this sample to the * log file. */ io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir]; dst = malloc(sizeof(struct io_u_plat_entry)); memcpy(&(dst->io_u_plat), io_u_plat, FIO_IO_U_PLAT_NR * sizeof(unsigned int)); flist_add(&dst->list, &hw->list); __add_log_sample(iolog, sample_plat(dst), ddir, bs, elapsed, offset); /* * Update the last time we recorded as being now, minus * any drift in time we encountered before actually * making the record. */ hw->hist_last = elapsed - (this_window - iolog->hist_msec); hw->samples = 0; } } if (needs_lock) __td_io_u_unlock(td); } void add_slat_sample(struct thread_data *td, enum fio_ddir ddir, unsigned long usec, unsigned long long bs, uint64_t offset) { const bool needs_lock = td_async_processing(td); struct thread_stat *ts = &td->ts; if (!ddir_rw(ddir)) return; if (needs_lock) __td_io_u_lock(td); add_stat_sample(&ts->slat_stat[ddir], usec); if (td->slat_log) add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset); if (needs_lock) __td_io_u_unlock(td); } void add_lat_sample(struct thread_data *td, enum fio_ddir ddir, unsigned long long nsec, unsigned long long bs, uint64_t offset) { const bool needs_lock = td_async_processing(td); struct thread_stat *ts = &td->ts; if (!ddir_rw(ddir)) return; if (needs_lock) __td_io_u_lock(td); add_stat_sample(&ts->lat_stat[ddir], nsec); if (td->lat_log) add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs, offset); if (ts->lat_percentiles) add_clat_percentile_sample(ts, nsec, ddir); if (needs_lock) __td_io_u_unlock(td); } void add_bw_sample(struct thread_data *td, struct io_u *io_u, unsigned int bytes, unsigned long long spent) { const bool needs_lock = td_async_processing(td); struct thread_stat *ts = &td->ts; unsigned long rate; if (spent) rate = (unsigned long) (bytes * 1000000ULL / spent); else rate = 0; if (needs_lock) __td_io_u_lock(td); add_stat_sample(&ts->bw_stat[io_u->ddir], rate); if (td->bw_log) add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir, bytes, io_u->offset); td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir]; if (needs_lock) __td_io_u_unlock(td); } static int __add_samples(struct thread_data *td, struct timespec *parent_tv, struct timespec *t, unsigned int avg_time, uint64_t *this_io_bytes, uint64_t *stat_io_bytes, struct io_stat *stat, struct io_log *log, bool is_kb) { const bool needs_lock = td_async_processing(td); unsigned long spent, rate; enum fio_ddir ddir; unsigned long next, next_log; next_log = avg_time; spent = mtime_since(parent_tv, t); if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK) return avg_time - spent; if (needs_lock) __td_io_u_lock(td); /* * Compute both read and write rates for the interval. */ for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { uint64_t delta; delta = this_io_bytes[ddir] - stat_io_bytes[ddir]; if (!delta) continue; /* No entries for interval */ if (spent) { if (is_kb) rate = delta * 1000 / spent / 1024; /* KiB/s */ else rate = (delta * 1000) / spent; } else rate = 0; add_stat_sample(&stat[ddir], rate); if (log) { unsigned long long bs = 0; if (td->o.min_bs[ddir] == td->o.max_bs[ddir]) bs = td->o.min_bs[ddir]; next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0); next_log = min(next_log, next); } stat_io_bytes[ddir] = this_io_bytes[ddir]; } timespec_add_msec(parent_tv, avg_time); if (needs_lock) __td_io_u_unlock(td); if (spent <= avg_time) next = avg_time; else next = avg_time - (1 + spent - avg_time); return min(next, next_log); } static int add_bw_samples(struct thread_data *td, struct timespec *t) { return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time, td->this_io_bytes, td->stat_io_bytes, td->ts.bw_stat, td->bw_log, true); } void add_iops_sample(struct thread_data *td, struct io_u *io_u, unsigned int bytes) { const bool needs_lock = td_async_processing(td); struct thread_stat *ts = &td->ts; if (needs_lock) __td_io_u_lock(td); add_stat_sample(&ts->iops_stat[io_u->ddir], 1); if (td->iops_log) add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir, bytes, io_u->offset); td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir]; if (needs_lock) __td_io_u_unlock(td); } static int add_iops_samples(struct thread_data *td, struct timespec *t) { return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time, td->this_io_blocks, td->stat_io_blocks, td->ts.iops_stat, td->iops_log, false); } /* * Returns msecs to next event */ int calc_log_samples(void) { struct thread_data *td; unsigned int next = ~0U, tmp; struct timespec now; int i; fio_gettime(&now, NULL); for_each_td(td, i) { if (!td->o.stats) continue; if (in_ramp_time(td) || !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) { next = min(td->o.iops_avg_time, td->o.bw_avg_time); continue; } if (!td->bw_log || (td->bw_log && !per_unit_log(td->bw_log))) { tmp = add_bw_samples(td, &now); if (tmp < next) next = tmp; } if (!td->iops_log || (td->iops_log && !per_unit_log(td->iops_log))) { tmp = add_iops_samples(td, &now); if (tmp < next) next = tmp; } } return next == ~0U ? 0 : next; } void stat_init(void) { stat_sem = fio_sem_init(FIO_SEM_UNLOCKED); } void stat_exit(void) { /* * When we have the mutex, we know out-of-band access to it * have ended. */ fio_sem_down(stat_sem); fio_sem_remove(stat_sem); } /* * Called from signal handler. Wake up status thread. */ void show_running_run_stats(void) { helper_do_stat(); } uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u) { /* Ignore io_u's which span multiple blocks--they will just get * inaccurate counts. */ int idx = (io_u->offset - io_u->file->file_offset) / td->o.bs[DDIR_TRIM]; uint32_t *info = &td->ts.block_infos[idx]; assert(idx < td->ts.nr_block_infos); return info; }