/* * Code related to writing an iolog of what a thread is doing, and to * later read that back and replay */ #include #include #include #include #include #include #ifdef CONFIG_ZLIB #include #endif #include "flist.h" #include "fio.h" #include "trim.h" #include "filelock.h" #include "smalloc.h" #include "blktrace.h" #include "pshared.h" #include #include #include #include #include #include static int iolog_flush(struct io_log *log); static const char iolog_ver2[] = "fio version 2 iolog"; void queue_io_piece(struct thread_data *td, struct io_piece *ipo) { flist_add_tail(&ipo->list, &td->io_log_list); td->total_io_size += ipo->len; } void log_io_u(const struct thread_data *td, const struct io_u *io_u) { if (!td->o.write_iolog_file) return; fprintf(td->iolog_f, "%s %s %llu %llu\n", io_u->file->file_name, io_ddir_name(io_u->ddir), io_u->offset, io_u->buflen); } void log_file(struct thread_data *td, struct fio_file *f, enum file_log_act what) { const char *act[] = { "add", "open", "close" }; assert(what < 3); if (!td->o.write_iolog_file) return; /* * this happens on the pre-open/close done before the job starts */ if (!td->iolog_f) return; fprintf(td->iolog_f, "%s %s\n", f->file_name, act[what]); } static void iolog_delay(struct thread_data *td, unsigned long delay) { uint64_t usec = utime_since_now(&td->last_issue); unsigned long orig_delay = delay; uint64_t this_delay; struct timespec ts; if (delay < td->time_offset) { td->time_offset = 0; return; } delay -= td->time_offset; if (delay < usec) return; delay -= usec; fio_gettime(&ts, NULL); while (delay && !td->terminate) { this_delay = delay; if (this_delay > 500000) this_delay = 500000; usec_sleep(td, this_delay); delay -= this_delay; } usec = utime_since_now(&ts); if (usec > orig_delay) td->time_offset = usec - orig_delay; else td->time_offset = 0; } static int ipo_special(struct thread_data *td, struct io_piece *ipo) { struct fio_file *f; int ret; /* * Not a special ipo */ if (ipo->ddir != DDIR_INVAL) return 0; f = td->files[ipo->fileno]; switch (ipo->file_action) { case FIO_LOG_OPEN_FILE: if (td->o.replay_redirect && fio_file_open(f)) { dprint(FD_FILE, "iolog: ignoring re-open of file %s\n", f->file_name); break; } ret = td_io_open_file(td, f); if (!ret) break; td_verror(td, ret, "iolog open file"); return -1; case FIO_LOG_CLOSE_FILE: td_io_close_file(td, f); break; case FIO_LOG_UNLINK_FILE: td_io_unlink_file(td, f); break; default: log_err("fio: bad file action %d\n", ipo->file_action); break; } return 1; } static bool read_iolog2(struct thread_data *td); int read_iolog_get(struct thread_data *td, struct io_u *io_u) { struct io_piece *ipo; unsigned long elapsed; while (!flist_empty(&td->io_log_list)) { int ret; if (td->o.read_iolog_chunked) { if (td->io_log_checkmark == td->io_log_current) { if (!read_iolog2(td)) return 1; } td->io_log_current--; } ipo = flist_first_entry(&td->io_log_list, struct io_piece, list); flist_del(&ipo->list); remove_trim_entry(td, ipo); ret = ipo_special(td, ipo); if (ret < 0) { free(ipo); break; } else if (ret > 0) { free(ipo); continue; } io_u->ddir = ipo->ddir; if (ipo->ddir != DDIR_WAIT) { io_u->offset = ipo->offset; io_u->buflen = ipo->len; io_u->file = td->files[ipo->fileno]; get_file(io_u->file); dprint(FD_IO, "iolog: get %llu/%llu/%s\n", io_u->offset, io_u->buflen, io_u->file->file_name); if (ipo->delay) iolog_delay(td, ipo->delay); } else { elapsed = mtime_since_genesis(); if (ipo->delay > elapsed) usec_sleep(td, (ipo->delay - elapsed) * 1000); } free(ipo); if (io_u->ddir != DDIR_WAIT) return 0; } td->done = 1; return 1; } void prune_io_piece_log(struct thread_data *td) { struct io_piece *ipo; struct fio_rb_node *n; while ((n = rb_first(&td->io_hist_tree)) != NULL) { ipo = rb_entry(n, struct io_piece, rb_node); rb_erase(n, &td->io_hist_tree); remove_trim_entry(td, ipo); td->io_hist_len--; free(ipo); } while (!flist_empty(&td->io_hist_list)) { ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list); flist_del(&ipo->list); remove_trim_entry(td, ipo); td->io_hist_len--; free(ipo); } } /* * log a successful write, so we can unwind the log for verify */ void log_io_piece(struct thread_data *td, struct io_u *io_u) { struct fio_rb_node **p, *parent; struct io_piece *ipo, *__ipo; ipo = calloc(1, sizeof(struct io_piece)); init_ipo(ipo); ipo->file = io_u->file; ipo->offset = io_u->offset; ipo->len = io_u->buflen; ipo->numberio = io_u->numberio; ipo->flags = IP_F_IN_FLIGHT; io_u->ipo = ipo; if (io_u_should_trim(td, io_u)) { flist_add_tail(&ipo->trim_list, &td->trim_list); td->trim_entries++; } /* * Only sort writes if we don't have a random map in which case we need * to check for duplicate blocks and drop the old one, which we rely on * the rb insert/lookup for handling. */ if (file_randommap(td, ipo->file)) { INIT_FLIST_HEAD(&ipo->list); flist_add_tail(&ipo->list, &td->io_hist_list); ipo->flags |= IP_F_ONLIST; td->io_hist_len++; return; } RB_CLEAR_NODE(&ipo->rb_node); /* * Sort the entry into the verification list */ restart: p = &td->io_hist_tree.rb_node; parent = NULL; while (*p) { int overlap = 0; parent = *p; __ipo = rb_entry(parent, struct io_piece, rb_node); if (ipo->file < __ipo->file) p = &(*p)->rb_left; else if (ipo->file > __ipo->file) p = &(*p)->rb_right; else if (ipo->offset < __ipo->offset) { p = &(*p)->rb_left; overlap = ipo->offset + ipo->len > __ipo->offset; } else if (ipo->offset > __ipo->offset) { p = &(*p)->rb_right; overlap = __ipo->offset + __ipo->len > ipo->offset; } else overlap = 1; if (overlap) { dprint(FD_IO, "iolog: overlap %llu/%lu, %llu/%lu\n", __ipo->offset, __ipo->len, ipo->offset, ipo->len); td->io_hist_len--; rb_erase(parent, &td->io_hist_tree); remove_trim_entry(td, __ipo); if (!(__ipo->flags & IP_F_IN_FLIGHT)) free(__ipo); goto restart; } } rb_link_node(&ipo->rb_node, parent, p); rb_insert_color(&ipo->rb_node, &td->io_hist_tree); ipo->flags |= IP_F_ONRB; td->io_hist_len++; } void unlog_io_piece(struct thread_data *td, struct io_u *io_u) { struct io_piece *ipo = io_u->ipo; if (td->ts.nr_block_infos) { uint32_t *info = io_u_block_info(td, io_u); if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) { if (io_u->ddir == DDIR_TRIM) *info = BLOCK_INFO_SET_STATE(*info, BLOCK_STATE_TRIM_FAILURE); else if (io_u->ddir == DDIR_WRITE) *info = BLOCK_INFO_SET_STATE(*info, BLOCK_STATE_WRITE_FAILURE); } } if (!ipo) return; if (ipo->flags & IP_F_ONRB) rb_erase(&ipo->rb_node, &td->io_hist_tree); else if (ipo->flags & IP_F_ONLIST) flist_del(&ipo->list); free(ipo); io_u->ipo = NULL; td->io_hist_len--; } void trim_io_piece(const struct io_u *io_u) { struct io_piece *ipo = io_u->ipo; if (!ipo) return; ipo->len = io_u->xfer_buflen - io_u->resid; } void write_iolog_close(struct thread_data *td) { fflush(td->iolog_f); fclose(td->iolog_f); free(td->iolog_buf); td->iolog_f = NULL; td->iolog_buf = NULL; } static int64_t iolog_items_to_fetch(struct thread_data *td) { struct timespec now; uint64_t elapsed; uint64_t for_1s; int64_t items_to_fetch; if (!td->io_log_highmark) return 10; fio_gettime(&now, NULL); elapsed = ntime_since(&td->io_log_highmark_time, &now); if (elapsed) { for_1s = (td->io_log_highmark - td->io_log_current) * 1000000000 / elapsed; items_to_fetch = for_1s - td->io_log_current; if (items_to_fetch < 0) items_to_fetch = 0; } else items_to_fetch = 0; td->io_log_highmark = td->io_log_current + items_to_fetch; td->io_log_checkmark = (td->io_log_highmark + 1) / 2; fio_gettime(&td->io_log_highmark_time, NULL); return items_to_fetch; } /* * Read version 2 iolog data. It is enhanced to include per-file logging, * syncs, etc. */ static bool read_iolog2(struct thread_data *td) { unsigned long long offset; unsigned int bytes; int reads, writes, waits, fileno = 0, file_action = 0; /* stupid gcc */ char *rfname, *fname, *act; char *str, *p; enum fio_ddir rw; bool realloc = false; int64_t items_to_fetch = 0; if (td->o.read_iolog_chunked) { items_to_fetch = iolog_items_to_fetch(td); if (!items_to_fetch) return true; } /* * Read in the read iolog and store it, reuse the infrastructure * for doing verifications. */ str = malloc(4096); rfname = fname = malloc(256+16); act = malloc(256+16); reads = writes = waits = 0; while ((p = fgets(str, 4096, td->io_log_rfile)) != NULL) { struct io_piece *ipo; int r; r = sscanf(p, "%256s %256s %llu %u", rfname, act, &offset, &bytes); if (td->o.replay_redirect) fname = td->o.replay_redirect; if (r == 4) { /* * Check action first */ if (!strcmp(act, "wait")) rw = DDIR_WAIT; else if (!strcmp(act, "read")) rw = DDIR_READ; else if (!strcmp(act, "write")) rw = DDIR_WRITE; else if (!strcmp(act, "sync")) rw = DDIR_SYNC; else if (!strcmp(act, "datasync")) rw = DDIR_DATASYNC; else if (!strcmp(act, "trim")) rw = DDIR_TRIM; else { log_err("fio: bad iolog file action: %s\n", act); continue; } fileno = get_fileno(td, fname); } else if (r == 2) { rw = DDIR_INVAL; if (!strcmp(act, "add")) { if (td->o.replay_redirect && get_fileno(td, fname) != -1) { dprint(FD_FILE, "iolog: ignoring" " re-add of file %s\n", fname); } else { fileno = add_file(td, fname, td->subjob_number, 1); file_action = FIO_LOG_ADD_FILE; } continue; } else if (!strcmp(act, "open")) { fileno = get_fileno(td, fname); file_action = FIO_LOG_OPEN_FILE; } else if (!strcmp(act, "close")) { fileno = get_fileno(td, fname); file_action = FIO_LOG_CLOSE_FILE; } else { log_err("fio: bad iolog file action: %s\n", act); continue; } } else { log_err("bad iolog2: %s\n", p); continue; } if (rw == DDIR_READ) reads++; else if (rw == DDIR_WRITE) { /* * Don't add a write for ro mode */ if (read_only) continue; writes++; } else if (rw == DDIR_WAIT) { if (td->o.no_stall) continue; waits++; } else if (rw == DDIR_INVAL) { } else if (!ddir_sync(rw)) { log_err("bad ddir: %d\n", rw); continue; } /* * Make note of file */ ipo = calloc(1, sizeof(*ipo)); init_ipo(ipo); ipo->ddir = rw; if (rw == DDIR_WAIT) { ipo->delay = offset; } else { if (td->o.replay_scale) ipo->offset = offset / td->o.replay_scale; else ipo->offset = offset; ipo_bytes_align(td->o.replay_align, ipo); ipo->len = bytes; if (rw != DDIR_INVAL && bytes > td->o.max_bs[rw]) { realloc = true; td->o.max_bs[rw] = bytes; } ipo->fileno = fileno; ipo->file_action = file_action; td->o.size += bytes; } queue_io_piece(td, ipo); if (td->o.read_iolog_chunked) { td->io_log_current++; items_to_fetch--; if (items_to_fetch == 0) break; } } free(str); free(act); free(rfname); if (td->o.read_iolog_chunked) { td->io_log_highmark = td->io_log_current; td->io_log_checkmark = (td->io_log_highmark + 1) / 2; fio_gettime(&td->io_log_highmark_time, NULL); } if (writes && read_only) { log_err("fio: <%s> skips replay of %d writes due to" " read-only\n", td->o.name, writes); writes = 0; } if (td->o.read_iolog_chunked) { if (td->io_log_current == 0) { return false; } td->o.td_ddir = TD_DDIR_RW; if (realloc && td->orig_buffer) { io_u_quiesce(td); free_io_mem(td); init_io_u_buffers(td); } return true; } if (!reads && !writes && !waits) return false; else if (reads && !writes) td->o.td_ddir = TD_DDIR_READ; else if (!reads && writes) td->o.td_ddir = TD_DDIR_WRITE; else td->o.td_ddir = TD_DDIR_RW; return true; } static bool is_socket(const char *path) { struct stat buf; int r = stat(path, &buf); if (r == -1) return false; return S_ISSOCK(buf.st_mode); } static int open_socket(const char *path) { int fd = socket(AF_UNIX, SOCK_STREAM, 0); struct sockaddr_un addr; if (fd < 0) return fd; addr.sun_family = AF_UNIX; strncpy(addr.sun_path, path, sizeof(addr.sun_path)); if (connect(fd, (const struct sockaddr *)&addr, strlen(path) + sizeof(addr.sun_family)) == 0) return fd; else close(fd); return -1; } /* * open iolog, check version, and call appropriate parser */ static bool init_iolog_read(struct thread_data *td) { char buffer[256], *p; FILE *f = NULL; bool ret; char* fname = get_name_by_idx(td->o.read_iolog_file, td->subjob_number); dprint(FD_IO, "iolog: name=%s\n", fname); if (is_socket(fname)) { int fd = open_socket(fname); if (fd >= 0) { f = fdopen(fd, "r"); } } else f = fopen(fname, "r"); free(fname); if (!f) { perror("fopen read iolog"); return false; } p = fgets(buffer, sizeof(buffer), f); if (!p) { td_verror(td, errno, "iolog read"); log_err("fio: unable to read iolog\n"); fclose(f); return false; } td->io_log_rfile = f; /* * version 2 of the iolog stores a specific string as the * first line, check for that */ if (!strncmp(iolog_ver2, buffer, strlen(iolog_ver2))) { free_release_files(td); ret = read_iolog2(td); } else { log_err("fio: iolog version 1 is no longer supported\n"); ret = false; } return ret; } /* * Set up a log for storing io patterns. */ static bool init_iolog_write(struct thread_data *td) { struct fio_file *ff; FILE *f; unsigned int i; f = fopen(td->o.write_iolog_file, "a"); if (!f) { perror("fopen write iolog"); return false; } /* * That's it for writing, setup a log buffer and we're done. */ td->iolog_f = f; td->iolog_buf = malloc(8192); setvbuf(f, td->iolog_buf, _IOFBF, 8192); /* * write our version line */ if (fprintf(f, "%s\n", iolog_ver2) < 0) { perror("iolog init\n"); return false; } /* * add all known files */ for_each_file(td, ff, i) log_file(td, ff, FIO_LOG_ADD_FILE); return true; } bool init_iolog(struct thread_data *td) { bool ret; if (td->o.read_iolog_file) { int need_swap; /* * Check if it's a blktrace file and load that if possible. * Otherwise assume it's a normal log file and load that. */ if (is_blktrace(td->o.read_iolog_file, &need_swap)) ret = load_blktrace(td, td->o.read_iolog_file, need_swap); else ret = init_iolog_read(td); } else if (td->o.write_iolog_file) ret = init_iolog_write(td); else ret = true; if (!ret) td_verror(td, EINVAL, "failed initializing iolog"); return ret; } void setup_log(struct io_log **log, struct log_params *p, const char *filename) { struct io_log *l; int i; struct io_u_plat_entry *entry; struct flist_head *list; l = scalloc(1, sizeof(*l)); INIT_FLIST_HEAD(&l->io_logs); l->log_type = p->log_type; l->log_offset = p->log_offset; l->log_gz = p->log_gz; l->log_gz_store = p->log_gz_store; l->avg_msec = p->avg_msec; l->hist_msec = p->hist_msec; l->hist_coarseness = p->hist_coarseness; l->filename = strdup(filename); l->td = p->td; /* Initialize histogram lists for each r/w direction, * with initial io_u_plat of all zeros: */ for (i = 0; i < DDIR_RWDIR_CNT; i++) { list = &l->hist_window[i].list; INIT_FLIST_HEAD(list); entry = calloc(1, sizeof(struct io_u_plat_entry)); flist_add(&entry->list, list); } if (l->td && l->td->o.io_submit_mode != IO_MODE_OFFLOAD) { struct io_logs *__p; __p = calloc(1, sizeof(*l->pending)); __p->max_samples = DEF_LOG_ENTRIES; __p->log = calloc(__p->max_samples, log_entry_sz(l)); l->pending = __p; } if (l->log_offset) l->log_ddir_mask = LOG_OFFSET_SAMPLE_BIT; INIT_FLIST_HEAD(&l->chunk_list); if (l->log_gz && !p->td) l->log_gz = 0; else if (l->log_gz || l->log_gz_store) { mutex_init_pshared(&l->chunk_lock); mutex_init_pshared(&l->deferred_free_lock); p->td->flags |= TD_F_COMPRESS_LOG; } *log = l; } #ifdef CONFIG_SETVBUF static void *set_file_buffer(FILE *f) { size_t size = 1048576; void *buf; buf = malloc(size); setvbuf(f, buf, _IOFBF, size); return buf; } static void clear_file_buffer(void *buf) { free(buf); } #else static void *set_file_buffer(FILE *f) { return NULL; } static void clear_file_buffer(void *buf) { } #endif void free_log(struct io_log *log) { while (!flist_empty(&log->io_logs)) { struct io_logs *cur_log; cur_log = flist_first_entry(&log->io_logs, struct io_logs, list); flist_del_init(&cur_log->list); free(cur_log->log); sfree(cur_log); } if (log->pending) { free(log->pending->log); free(log->pending); log->pending = NULL; } free(log->pending); free(log->filename); sfree(log); } uint64_t hist_sum(int j, int stride, uint64_t *io_u_plat, uint64_t *io_u_plat_last) { uint64_t sum; int k; if (io_u_plat_last) { for (k = sum = 0; k < stride; k++) sum += io_u_plat[j + k] - io_u_plat_last[j + k]; } else { for (k = sum = 0; k < stride; k++) sum += io_u_plat[j + k]; } return sum; } static void flush_hist_samples(FILE *f, int hist_coarseness, void *samples, uint64_t sample_size) { struct io_sample *s; int log_offset; uint64_t i, j, nr_samples; struct io_u_plat_entry *entry, *entry_before; uint64_t *io_u_plat; uint64_t *io_u_plat_before; int stride = 1 << hist_coarseness; if (!sample_size) return; s = __get_sample(samples, 0, 0); log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0; nr_samples = sample_size / __log_entry_sz(log_offset); for (i = 0; i < nr_samples; i++) { s = __get_sample(samples, log_offset, i); entry = s->data.plat_entry; io_u_plat = entry->io_u_plat; entry_before = flist_first_entry(&entry->list, struct io_u_plat_entry, list); io_u_plat_before = entry_before->io_u_plat; fprintf(f, "%lu, %u, %llu, ", (unsigned long) s->time, io_sample_ddir(s), (unsigned long long) s->bs); for (j = 0; j < FIO_IO_U_PLAT_NR - stride; j += stride) { fprintf(f, "%llu, ", (unsigned long long) hist_sum(j, stride, io_u_plat, io_u_plat_before)); } fprintf(f, "%llu\n", (unsigned long long) hist_sum(FIO_IO_U_PLAT_NR - stride, stride, io_u_plat, io_u_plat_before)); flist_del(&entry_before->list); free(entry_before); } } void flush_samples(FILE *f, void *samples, uint64_t sample_size) { struct io_sample *s; int log_offset; uint64_t i, nr_samples; if (!sample_size) return; s = __get_sample(samples, 0, 0); log_offset = (s->__ddir & LOG_OFFSET_SAMPLE_BIT) != 0; nr_samples = sample_size / __log_entry_sz(log_offset); for (i = 0; i < nr_samples; i++) { s = __get_sample(samples, log_offset, i); if (!log_offset) { fprintf(f, "%lu, %" PRId64 ", %u, %llu\n", (unsigned long) s->time, s->data.val, io_sample_ddir(s), (unsigned long long) s->bs); } else { struct io_sample_offset *so = (void *) s; fprintf(f, "%lu, %" PRId64 ", %u, %llu, %llu\n", (unsigned long) s->time, s->data.val, io_sample_ddir(s), (unsigned long long) s->bs, (unsigned long long) so->offset); } } } #ifdef CONFIG_ZLIB struct iolog_flush_data { struct workqueue_work work; struct io_log *log; void *samples; uint32_t nr_samples; bool free; }; #define GZ_CHUNK 131072 static struct iolog_compress *get_new_chunk(unsigned int seq) { struct iolog_compress *c; c = malloc(sizeof(*c)); INIT_FLIST_HEAD(&c->list); c->buf = malloc(GZ_CHUNK); c->len = 0; c->seq = seq; return c; } static void free_chunk(struct iolog_compress *ic) { free(ic->buf); free(ic); } static int z_stream_init(z_stream *stream, int gz_hdr) { int wbits = 15; memset(stream, 0, sizeof(*stream)); stream->zalloc = Z_NULL; stream->zfree = Z_NULL; stream->opaque = Z_NULL; stream->next_in = Z_NULL; /* * zlib magic - add 32 for auto-detection of gz header or not, * if we decide to store files in a gzip friendly format. */ if (gz_hdr) wbits += 32; if (inflateInit2(stream, wbits) != Z_OK) return 1; return 0; } struct inflate_chunk_iter { unsigned int seq; int err; void *buf; size_t buf_size; size_t buf_used; size_t chunk_sz; }; static void finish_chunk(z_stream *stream, FILE *f, struct inflate_chunk_iter *iter) { int ret; ret = inflateEnd(stream); if (ret != Z_OK) log_err("fio: failed to end log inflation seq %d (%d)\n", iter->seq, ret); flush_samples(f, iter->buf, iter->buf_used); free(iter->buf); iter->buf = NULL; iter->buf_size = iter->buf_used = 0; } /* * Iterative chunk inflation. Handles cases where we cross into a new * sequence, doing flush finish of previous chunk if needed. */ static size_t inflate_chunk(struct iolog_compress *ic, int gz_hdr, FILE *f, z_stream *stream, struct inflate_chunk_iter *iter) { size_t ret; dprint(FD_COMPRESS, "inflate chunk size=%lu, seq=%u\n", (unsigned long) ic->len, ic->seq); if (ic->seq != iter->seq) { if (iter->seq) finish_chunk(stream, f, iter); z_stream_init(stream, gz_hdr); iter->seq = ic->seq; } stream->avail_in = ic->len; stream->next_in = ic->buf; if (!iter->buf_size) { iter->buf_size = iter->chunk_sz; iter->buf = malloc(iter->buf_size); } while (stream->avail_in) { size_t this_out = iter->buf_size - iter->buf_used; int err; stream->avail_out = this_out; stream->next_out = iter->buf + iter->buf_used; err = inflate(stream, Z_NO_FLUSH); if (err < 0) { log_err("fio: failed inflating log: %d\n", err); iter->err = err; break; } iter->buf_used += this_out - stream->avail_out; if (!stream->avail_out) { iter->buf_size += iter->chunk_sz; iter->buf = realloc(iter->buf, iter->buf_size); continue; } if (err == Z_STREAM_END) break; } ret = (void *) stream->next_in - ic->buf; dprint(FD_COMPRESS, "inflated to size=%lu\n", (unsigned long) iter->buf_size); return ret; } /* * Inflate stored compressed chunks, or write them directly to the log * file if so instructed. */ static int inflate_gz_chunks(struct io_log *log, FILE *f) { struct inflate_chunk_iter iter = { .chunk_sz = log->log_gz, }; z_stream stream; while (!flist_empty(&log->chunk_list)) { struct iolog_compress *ic; ic = flist_first_entry(&log->chunk_list, struct iolog_compress, list); flist_del(&ic->list); if (log->log_gz_store) { size_t ret; dprint(FD_COMPRESS, "log write chunk size=%lu, " "seq=%u\n", (unsigned long) ic->len, ic->seq); ret = fwrite(ic->buf, ic->len, 1, f); if (ret != 1 || ferror(f)) { iter.err = errno; log_err("fio: error writing compressed log\n"); } } else inflate_chunk(ic, log->log_gz_store, f, &stream, &iter); free_chunk(ic); } if (iter.seq) { finish_chunk(&stream, f, &iter); free(iter.buf); } return iter.err; } /* * Open compressed log file and decompress the stored chunks and * write them to stdout. The chunks are stored sequentially in the * file, so we iterate over them and do them one-by-one. */ int iolog_file_inflate(const char *file) { struct inflate_chunk_iter iter = { .chunk_sz = 64 * 1024 * 1024, }; struct iolog_compress ic; z_stream stream; struct stat sb; size_t ret; size_t total; void *buf; FILE *f; f = fopen(file, "r"); if (!f) { perror("fopen"); return 1; } if (stat(file, &sb) < 0) { fclose(f); perror("stat"); return 1; } ic.buf = buf = malloc(sb.st_size); ic.len = sb.st_size; ic.seq = 1; ret = fread(ic.buf, ic.len, 1, f); if (ret == 0 && ferror(f)) { perror("fread"); fclose(f); free(buf); return 1; } else if (ferror(f) || (!feof(f) && ret != 1)) { log_err("fio: short read on reading log\n"); fclose(f); free(buf); return 1; } fclose(f); /* * Each chunk will return Z_STREAM_END. We don't know how many * chunks are in the file, so we just keep looping and incrementing * the sequence number until we have consumed the whole compressed * file. */ total = ic.len; do { size_t iret; iret = inflate_chunk(&ic, 1, stdout, &stream, &iter); total -= iret; if (!total) break; if (iter.err) break; ic.seq++; ic.len -= iret; ic.buf += iret; } while (1); if (iter.seq) { finish_chunk(&stream, stdout, &iter); free(iter.buf); } free(buf); return iter.err; } #else static int inflate_gz_chunks(struct io_log *log, FILE *f) { return 0; } int iolog_file_inflate(const char *file) { log_err("fio: log inflation not possible without zlib\n"); return 1; } #endif void flush_log(struct io_log *log, bool do_append) { void *buf; FILE *f; if (!do_append) f = fopen(log->filename, "w"); else f = fopen(log->filename, "a"); if (!f) { perror("fopen log"); return; } buf = set_file_buffer(f); inflate_gz_chunks(log, f); while (!flist_empty(&log->io_logs)) { struct io_logs *cur_log; cur_log = flist_first_entry(&log->io_logs, struct io_logs, list); flist_del_init(&cur_log->list); if (log->td && log == log->td->clat_hist_log) flush_hist_samples(f, log->hist_coarseness, cur_log->log, log_sample_sz(log, cur_log)); else flush_samples(f, cur_log->log, log_sample_sz(log, cur_log)); sfree(cur_log); } fclose(f); clear_file_buffer(buf); } static int finish_log(struct thread_data *td, struct io_log *log, int trylock) { if (td->flags & TD_F_COMPRESS_LOG) iolog_flush(log); if (trylock) { if (fio_trylock_file(log->filename)) return 1; } else fio_lock_file(log->filename); if (td->client_type == FIO_CLIENT_TYPE_GUI || is_backend) fio_send_iolog(td, log, log->filename); else flush_log(log, !td->o.per_job_logs); fio_unlock_file(log->filename); free_log(log); return 0; } size_t log_chunk_sizes(struct io_log *log) { struct flist_head *entry; size_t ret; if (flist_empty(&log->chunk_list)) return 0; ret = 0; pthread_mutex_lock(&log->chunk_lock); flist_for_each(entry, &log->chunk_list) { struct iolog_compress *c; c = flist_entry(entry, struct iolog_compress, list); ret += c->len; } pthread_mutex_unlock(&log->chunk_lock); return ret; } #ifdef CONFIG_ZLIB static void iolog_put_deferred(struct io_log *log, void *ptr) { if (!ptr) return; pthread_mutex_lock(&log->deferred_free_lock); if (log->deferred < IOLOG_MAX_DEFER) { log->deferred_items[log->deferred] = ptr; log->deferred++; } else if (!fio_did_warn(FIO_WARN_IOLOG_DROP)) log_err("fio: had to drop log entry free\n"); pthread_mutex_unlock(&log->deferred_free_lock); } static void iolog_free_deferred(struct io_log *log) { int i; if (!log->deferred) return; pthread_mutex_lock(&log->deferred_free_lock); for (i = 0; i < log->deferred; i++) { free(log->deferred_items[i]); log->deferred_items[i] = NULL; } log->deferred = 0; pthread_mutex_unlock(&log->deferred_free_lock); } static int gz_work(struct iolog_flush_data *data) { struct iolog_compress *c = NULL; struct flist_head list; unsigned int seq; z_stream stream; size_t total = 0; int ret; INIT_FLIST_HEAD(&list); memset(&stream, 0, sizeof(stream)); stream.zalloc = Z_NULL; stream.zfree = Z_NULL; stream.opaque = Z_NULL; ret = deflateInit(&stream, Z_DEFAULT_COMPRESSION); if (ret != Z_OK) { log_err("fio: failed to init gz stream\n"); goto err; } seq = ++data->log->chunk_seq; stream.next_in = (void *) data->samples; stream.avail_in = data->nr_samples * log_entry_sz(data->log); dprint(FD_COMPRESS, "deflate input size=%lu, seq=%u, log=%s\n", (unsigned long) stream.avail_in, seq, data->log->filename); do { if (c) dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len); c = get_new_chunk(seq); stream.avail_out = GZ_CHUNK; stream.next_out = c->buf; ret = deflate(&stream, Z_NO_FLUSH); if (ret < 0) { log_err("fio: deflate log (%d)\n", ret); free_chunk(c); goto err; } c->len = GZ_CHUNK - stream.avail_out; flist_add_tail(&c->list, &list); total += c->len; } while (stream.avail_in); stream.next_out = c->buf + c->len; stream.avail_out = GZ_CHUNK - c->len; ret = deflate(&stream, Z_FINISH); if (ret < 0) { /* * Z_BUF_ERROR is special, it just means we need more * output space. We'll handle that below. Treat any other * error as fatal. */ if (ret != Z_BUF_ERROR) { log_err("fio: deflate log (%d)\n", ret); flist_del(&c->list); free_chunk(c); goto err; } } total -= c->len; c->len = GZ_CHUNK - stream.avail_out; total += c->len; dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len); if (ret != Z_STREAM_END) { do { c = get_new_chunk(seq); stream.avail_out = GZ_CHUNK; stream.next_out = c->buf; ret = deflate(&stream, Z_FINISH); c->len = GZ_CHUNK - stream.avail_out; total += c->len; flist_add_tail(&c->list, &list); dprint(FD_COMPRESS, "seq=%d, chunk=%lu\n", seq, (unsigned long) c->len); } while (ret != Z_STREAM_END); } dprint(FD_COMPRESS, "deflated to size=%lu\n", (unsigned long) total); ret = deflateEnd(&stream); if (ret != Z_OK) log_err("fio: deflateEnd %d\n", ret); iolog_put_deferred(data->log, data->samples); if (!flist_empty(&list)) { pthread_mutex_lock(&data->log->chunk_lock); flist_splice_tail(&list, &data->log->chunk_list); pthread_mutex_unlock(&data->log->chunk_lock); } ret = 0; done: if (data->free) sfree(data); return ret; err: while (!flist_empty(&list)) { c = flist_first_entry(list.next, struct iolog_compress, list); flist_del(&c->list); free_chunk(c); } ret = 1; goto done; } /* * Invoked from our compress helper thread, when logging would have exceeded * the specified memory limitation. Compresses the previously stored * entries. */ static int gz_work_async(struct submit_worker *sw, struct workqueue_work *work) { return gz_work(container_of(work, struct iolog_flush_data, work)); } static int gz_init_worker(struct submit_worker *sw) { struct thread_data *td = sw->wq->td; if (!fio_option_is_set(&td->o, log_gz_cpumask)) return 0; if (fio_setaffinity(gettid(), td->o.log_gz_cpumask) == -1) { log_err("gz: failed to set CPU affinity\n"); return 1; } return 0; } static struct workqueue_ops log_compress_wq_ops = { .fn = gz_work_async, .init_worker_fn = gz_init_worker, .nice = 1, }; int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out) { if (!(td->flags & TD_F_COMPRESS_LOG)) return 0; workqueue_init(td, &td->log_compress_wq, &log_compress_wq_ops, 1, sk_out); return 0; } void iolog_compress_exit(struct thread_data *td) { if (!(td->flags & TD_F_COMPRESS_LOG)) return; workqueue_exit(&td->log_compress_wq); } /* * Queue work item to compress the existing log entries. We reset the * current log to a small size, and reference the existing log in the * data that we queue for compression. Once compression has been done, * this old log is freed. If called with finish == true, will not return * until the log compression has completed, and will flush all previous * logs too */ static int iolog_flush(struct io_log *log) { struct iolog_flush_data *data; data = malloc(sizeof(*data)); if (!data) return 1; data->log = log; data->free = false; while (!flist_empty(&log->io_logs)) { struct io_logs *cur_log; cur_log = flist_first_entry(&log->io_logs, struct io_logs, list); flist_del_init(&cur_log->list); data->samples = cur_log->log; data->nr_samples = cur_log->nr_samples; sfree(cur_log); gz_work(data); } free(data); return 0; } int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log) { struct iolog_flush_data *data; data = smalloc(sizeof(*data)); if (!data) return 1; data->log = log; data->samples = cur_log->log; data->nr_samples = cur_log->nr_samples; data->free = true; cur_log->nr_samples = cur_log->max_samples = 0; cur_log->log = NULL; workqueue_enqueue(&log->td->log_compress_wq, &data->work); iolog_free_deferred(log); return 0; } #else static int iolog_flush(struct io_log *log) { return 1; } int iolog_cur_flush(struct io_log *log, struct io_logs *cur_log) { return 1; } int iolog_compress_init(struct thread_data *td, struct sk_out *sk_out) { return 0; } void iolog_compress_exit(struct thread_data *td) { } #endif struct io_logs *iolog_cur_log(struct io_log *log) { if (flist_empty(&log->io_logs)) return NULL; return flist_last_entry(&log->io_logs, struct io_logs, list); } uint64_t iolog_nr_samples(struct io_log *iolog) { struct flist_head *entry; uint64_t ret = 0; flist_for_each(entry, &iolog->io_logs) { struct io_logs *cur_log; cur_log = flist_entry(entry, struct io_logs, list); ret += cur_log->nr_samples; } return ret; } static int __write_log(struct thread_data *td, struct io_log *log, int try) { if (log) return finish_log(td, log, try); return 0; } static int write_iops_log(struct thread_data *td, int try, bool unit_log) { int ret; if (per_unit_log(td->iops_log) != unit_log) return 0; ret = __write_log(td, td->iops_log, try); if (!ret) td->iops_log = NULL; return ret; } static int write_slat_log(struct thread_data *td, int try, bool unit_log) { int ret; if (!unit_log) return 0; ret = __write_log(td, td->slat_log, try); if (!ret) td->slat_log = NULL; return ret; } static int write_clat_log(struct thread_data *td, int try, bool unit_log) { int ret; if (!unit_log) return 0; ret = __write_log(td, td->clat_log, try); if (!ret) td->clat_log = NULL; return ret; } static int write_clat_hist_log(struct thread_data *td, int try, bool unit_log) { int ret; if (!unit_log) return 0; ret = __write_log(td, td->clat_hist_log, try); if (!ret) td->clat_hist_log = NULL; return ret; } static int write_lat_log(struct thread_data *td, int try, bool unit_log) { int ret; if (!unit_log) return 0; ret = __write_log(td, td->lat_log, try); if (!ret) td->lat_log = NULL; return ret; } static int write_bandw_log(struct thread_data *td, int try, bool unit_log) { int ret; if (per_unit_log(td->bw_log) != unit_log) return 0; ret = __write_log(td, td->bw_log, try); if (!ret) td->bw_log = NULL; return ret; } enum { BW_LOG_MASK = 1, LAT_LOG_MASK = 2, SLAT_LOG_MASK = 4, CLAT_LOG_MASK = 8, IOPS_LOG_MASK = 16, CLAT_HIST_LOG_MASK = 32, ALL_LOG_NR = 6, }; struct log_type { unsigned int mask; int (*fn)(struct thread_data *, int, bool); }; static struct log_type log_types[] = { { .mask = BW_LOG_MASK, .fn = write_bandw_log, }, { .mask = LAT_LOG_MASK, .fn = write_lat_log, }, { .mask = SLAT_LOG_MASK, .fn = write_slat_log, }, { .mask = CLAT_LOG_MASK, .fn = write_clat_log, }, { .mask = IOPS_LOG_MASK, .fn = write_iops_log, }, { .mask = CLAT_HIST_LOG_MASK, .fn = write_clat_hist_log, } }; void td_writeout_logs(struct thread_data *td, bool unit_logs) { unsigned int log_mask = 0; unsigned int log_left = ALL_LOG_NR; int old_state, i; old_state = td_bump_runstate(td, TD_FINISHING); finalize_logs(td, unit_logs); while (log_left) { int prev_log_left = log_left; for (i = 0; i < ALL_LOG_NR && log_left; i++) { struct log_type *lt = &log_types[i]; int ret; if (!(log_mask & lt->mask)) { ret = lt->fn(td, log_left != 1, unit_logs); if (!ret) { log_left--; log_mask |= lt->mask; } } } if (prev_log_left == log_left) usleep(5000); } td_restore_runstate(td, old_state); } void fio_writeout_logs(bool unit_logs) { struct thread_data *td; int i; for_each_td(td, i) td_writeout_logs(td, unit_logs); }