/* * Status and ETA code */ #include #include #ifdef CONFIG_VALGRIND_DEV #include #else #define DRD_IGNORE_VAR(x) do { } while (0) #endif #include "fio.h" #include "lib/pow2.h" static char __run_str[REAL_MAX_JOBS + 1]; static char run_str[__THREAD_RUNSTR_SZ(REAL_MAX_JOBS) + 1]; static void update_condensed_str(char *rstr, char *run_str_condensed) { if (*rstr) { while (*rstr) { int nr = 1; *run_str_condensed++ = *rstr++; while (*(rstr - 1) == *rstr) { rstr++; nr++; } run_str_condensed += sprintf(run_str_condensed, "(%u),", nr); } run_str_condensed--; } *run_str_condensed = '\0'; } /* * Sets the status of the 'td' in the printed status map. */ static void check_str_update(struct thread_data *td) { char c = __run_str[td->thread_number - 1]; switch (td->runstate) { case TD_REAPED: if (td->error) c = 'X'; else if (td->sig) c = 'K'; else c = '_'; break; case TD_EXITED: c = 'E'; break; case TD_RAMP: c = '/'; break; case TD_RUNNING: if (td_rw(td)) { if (td_random(td)) { if (td->o.rwmix[DDIR_READ] == 100) c = 'r'; else if (td->o.rwmix[DDIR_WRITE] == 100) c = 'w'; else c = 'm'; } else { if (td->o.rwmix[DDIR_READ] == 100) c = 'R'; else if (td->o.rwmix[DDIR_WRITE] == 100) c = 'W'; else c = 'M'; } } else if (td_read(td)) { if (td_random(td)) c = 'r'; else c = 'R'; } else if (td_write(td)) { if (td_random(td)) c = 'w'; else c = 'W'; } else { if (td_random(td)) c = 'd'; else c = 'D'; } break; case TD_PRE_READING: c = 'p'; break; case TD_VERIFYING: c = 'V'; break; case TD_FSYNCING: c = 'F'; break; case TD_FINISHING: c = 'f'; break; case TD_CREATED: c = 'C'; break; case TD_INITIALIZED: case TD_SETTING_UP: c = 'I'; break; case TD_NOT_CREATED: c = 'P'; break; default: log_err("state %d\n", td->runstate); } __run_str[td->thread_number - 1] = c; update_condensed_str(__run_str, run_str); } /* * Convert seconds to a printable string. */ void eta_to_str(char *str, unsigned long eta_sec) { unsigned int d, h, m, s; int disp_hour = 0; if (eta_sec == -1) { sprintf(str, "--"); return; } s = eta_sec % 60; eta_sec /= 60; m = eta_sec % 60; eta_sec /= 60; h = eta_sec % 24; eta_sec /= 24; d = eta_sec; if (d) { disp_hour = 1; str += sprintf(str, "%02ud:", d); } if (h || disp_hour) str += sprintf(str, "%02uh:", h); str += sprintf(str, "%02um:", m); sprintf(str, "%02us", s); } /* * Best effort calculation of the estimated pending runtime of a job. */ static unsigned long thread_eta(struct thread_data *td) { unsigned long long bytes_total, bytes_done; unsigned long eta_sec = 0; unsigned long elapsed; uint64_t timeout; elapsed = (mtime_since_now(&td->epoch) + 999) / 1000; timeout = td->o.timeout / 1000000UL; bytes_total = td->total_io_size; if (td->flags & TD_F_NO_PROGRESS) return -1; if (td->o.fill_device && td->o.size == -1ULL) { if (!td->fill_device_size || td->fill_device_size == -1ULL) return 0; bytes_total = td->fill_device_size; } if (td->o.zone_size && td->o.zone_skip && bytes_total) { unsigned int nr_zones; uint64_t zone_bytes; zone_bytes = bytes_total + td->o.zone_size + td->o.zone_skip; nr_zones = (zone_bytes - 1) / (td->o.zone_size + td->o.zone_skip); bytes_total -= nr_zones * td->o.zone_skip; } /* * if writing and verifying afterwards, bytes_total will be twice the * size. In a mixed workload, verify phase will be the size of the * first stage writes. */ if (td->o.do_verify && td->o.verify && td_write(td)) { if (td_rw(td)) { unsigned int perc = 50; if (td->o.rwmix[DDIR_WRITE]) perc = td->o.rwmix[DDIR_WRITE]; bytes_total += (bytes_total * perc) / 100; } else bytes_total <<= 1; } if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) { double perc, perc_t; bytes_done = ddir_rw_sum(td->io_bytes); if (bytes_total) { perc = (double) bytes_done / (double) bytes_total; if (perc > 1.0) perc = 1.0; } else perc = 0.0; if (td->o.time_based) { if (timeout) { perc_t = (double) elapsed / (double) timeout; if (perc_t < perc) perc = perc_t; } else { /* * Will never hit, we can't have time_based * without a timeout set. */ perc = 0.0; } } if (perc == 0.0) { eta_sec = timeout; } else { eta_sec = (unsigned long) (elapsed * (1.0 / perc)) - elapsed; } if (td->o.timeout && eta_sec > (timeout + done_secs - elapsed)) eta_sec = timeout + done_secs - elapsed; } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED || td->runstate == TD_INITIALIZED || td->runstate == TD_SETTING_UP || td->runstate == TD_RAMP || td->runstate == TD_PRE_READING) { int64_t t_eta = 0, r_eta = 0; unsigned long long rate_bytes; /* * We can only guess - assume it'll run the full timeout * if given, otherwise assume it'll run at the specified rate. */ if (td->o.timeout) { uint64_t __timeout = td->o.timeout; uint64_t start_delay = td->o.start_delay; uint64_t ramp_time = td->o.ramp_time; t_eta = __timeout + start_delay; if (!td->ramp_time_over) { t_eta += ramp_time; } t_eta /= 1000000ULL; if ((td->runstate == TD_RAMP) && in_ramp_time(td)) { unsigned long ramp_left; ramp_left = mtime_since_now(&td->epoch); ramp_left = (ramp_left + 999) / 1000; if (ramp_left <= t_eta) t_eta -= ramp_left; } } rate_bytes = 0; if (td_read(td)) rate_bytes = td->o.rate[DDIR_READ]; if (td_write(td)) rate_bytes += td->o.rate[DDIR_WRITE]; if (td_trim(td)) rate_bytes += td->o.rate[DDIR_TRIM]; if (rate_bytes) { r_eta = bytes_total / rate_bytes; r_eta += (td->o.start_delay / 1000000ULL); } if (r_eta && t_eta) eta_sec = min(r_eta, t_eta); else if (r_eta) eta_sec = r_eta; else if (t_eta) eta_sec = t_eta; else eta_sec = 0; } else { /* * thread is already done or waiting for fsync */ eta_sec = 0; } return eta_sec; } static void calc_rate(int unified_rw_rep, unsigned long mtime, unsigned long long *io_bytes, unsigned long long *prev_io_bytes, uint64_t *rate) { int i; for (i = 0; i < DDIR_RWDIR_CNT; i++) { unsigned long long diff, this_rate; diff = io_bytes[i] - prev_io_bytes[i]; if (mtime) this_rate = ((1000 * diff) / mtime) / 1024; /* KiB/s */ else this_rate = 0; if (unified_rw_rep) { rate[i] = 0; rate[0] += this_rate; } else rate[i] = this_rate; prev_io_bytes[i] = io_bytes[i]; } } static void calc_iops(int unified_rw_rep, unsigned long mtime, unsigned long long *io_iops, unsigned long long *prev_io_iops, unsigned int *iops) { int i; for (i = 0; i < DDIR_RWDIR_CNT; i++) { unsigned long long diff, this_iops; diff = io_iops[i] - prev_io_iops[i]; if (mtime) this_iops = (diff * 1000) / mtime; else this_iops = 0; if (unified_rw_rep) { iops[i] = 0; iops[0] += this_iops; } else iops[i] = this_iops; prev_io_iops[i] = io_iops[i]; } } /* * Allow a little slack - if we're within 95% of the time, allow ETA. */ bool eta_time_within_slack(unsigned int time) { return time > ((eta_interval_msec * 95) / 100); } /* * Print status of the jobs we know about. This includes rate estimates, * ETA, thread state, etc. */ bool calc_thread_status(struct jobs_eta *je, int force) { struct thread_data *td; int i, unified_rw_rep; uint64_t rate_time, disp_time, bw_avg_time, *eta_secs; unsigned long long io_bytes[DDIR_RWDIR_CNT]; unsigned long long io_iops[DDIR_RWDIR_CNT]; struct timespec now; static unsigned long long rate_io_bytes[DDIR_RWDIR_CNT]; static unsigned long long disp_io_bytes[DDIR_RWDIR_CNT]; static unsigned long long disp_io_iops[DDIR_RWDIR_CNT]; static struct timespec rate_prev_time, disp_prev_time; if (!force) { if (!(output_format & FIO_OUTPUT_NORMAL) && f_out == stdout) return false; if (temp_stall_ts || eta_print == FIO_ETA_NEVER) return false; if (!isatty(STDOUT_FILENO) && (eta_print != FIO_ETA_ALWAYS)) return false; } if (!ddir_rw_sum(rate_io_bytes)) fill_start_time(&rate_prev_time); if (!ddir_rw_sum(disp_io_bytes)) fill_start_time(&disp_prev_time); eta_secs = malloc(thread_number * sizeof(uint64_t)); memset(eta_secs, 0, thread_number * sizeof(uint64_t)); je->elapsed_sec = (mtime_since_genesis() + 999) / 1000; io_bytes[DDIR_READ] = io_bytes[DDIR_WRITE] = io_bytes[DDIR_TRIM] = 0; io_iops[DDIR_READ] = io_iops[DDIR_WRITE] = io_iops[DDIR_TRIM] = 0; bw_avg_time = ULONG_MAX; unified_rw_rep = 0; for_each_td(td, i) { unified_rw_rep += td->o.unified_rw_rep; if (is_power_of_2(td->o.kb_base)) je->is_pow2 = 1; je->unit_base = td->o.unit_base; if (td->o.bw_avg_time < bw_avg_time) bw_avg_time = td->o.bw_avg_time; if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING || td->runstate == TD_FSYNCING || td->runstate == TD_PRE_READING || td->runstate == TD_FINISHING) { je->nr_running++; if (td_read(td)) { je->t_rate[0] += td->o.rate[DDIR_READ]; je->t_iops[0] += td->o.rate_iops[DDIR_READ]; je->m_rate[0] += td->o.ratemin[DDIR_READ]; je->m_iops[0] += td->o.rate_iops_min[DDIR_READ]; } if (td_write(td)) { je->t_rate[1] += td->o.rate[DDIR_WRITE]; je->t_iops[1] += td->o.rate_iops[DDIR_WRITE]; je->m_rate[1] += td->o.ratemin[DDIR_WRITE]; je->m_iops[1] += td->o.rate_iops_min[DDIR_WRITE]; } if (td_trim(td)) { je->t_rate[2] += td->o.rate[DDIR_TRIM]; je->t_iops[2] += td->o.rate_iops[DDIR_TRIM]; je->m_rate[2] += td->o.ratemin[DDIR_TRIM]; je->m_iops[2] += td->o.rate_iops_min[DDIR_TRIM]; } je->files_open += td->nr_open_files; } else if (td->runstate == TD_RAMP) { je->nr_running++; je->nr_ramp++; } else if (td->runstate == TD_SETTING_UP) je->nr_setting_up++; else if (td->runstate < TD_RUNNING) je->nr_pending++; if (je->elapsed_sec >= 3) eta_secs[i] = thread_eta(td); else eta_secs[i] = INT_MAX; check_str_update(td); if (td->runstate > TD_SETTING_UP) { int ddir; for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { if (unified_rw_rep) { io_bytes[0] += td->io_bytes[ddir]; io_iops[0] += td->io_blocks[ddir]; } else { io_bytes[ddir] += td->io_bytes[ddir]; io_iops[ddir] += td->io_blocks[ddir]; } } } } if (exitall_on_terminate) { je->eta_sec = INT_MAX; for_each_td(td, i) { if (eta_secs[i] < je->eta_sec) je->eta_sec = eta_secs[i]; } } else { unsigned long eta_stone = 0; je->eta_sec = 0; for_each_td(td, i) { if ((td->runstate == TD_NOT_CREATED) && td->o.stonewall) eta_stone += eta_secs[i]; else { if (eta_secs[i] > je->eta_sec) je->eta_sec = eta_secs[i]; } } je->eta_sec += eta_stone; } free(eta_secs); fio_gettime(&now, NULL); rate_time = mtime_since(&rate_prev_time, &now); if (write_bw_log && rate_time > bw_avg_time && !in_ramp_time(td)) { calc_rate(unified_rw_rep, rate_time, io_bytes, rate_io_bytes, je->rate); memcpy(&rate_prev_time, &now, sizeof(now)); add_agg_sample(sample_val(je->rate[DDIR_READ]), DDIR_READ, 0); add_agg_sample(sample_val(je->rate[DDIR_WRITE]), DDIR_WRITE, 0); add_agg_sample(sample_val(je->rate[DDIR_TRIM]), DDIR_TRIM, 0); } disp_time = mtime_since(&disp_prev_time, &now); if (!force && !eta_time_within_slack(disp_time)) return false; calc_rate(unified_rw_rep, disp_time, io_bytes, disp_io_bytes, je->rate); calc_iops(unified_rw_rep, disp_time, io_iops, disp_io_iops, je->iops); memcpy(&disp_prev_time, &now, sizeof(now)); if (!force && !je->nr_running && !je->nr_pending) return false; je->nr_threads = thread_number; update_condensed_str(__run_str, run_str); memcpy(je->run_str, run_str, strlen(run_str)); return true; } static int gen_eta_str(struct jobs_eta *je, char *p, size_t left, char **rate_str, char **iops_str) { bool has_r = je->rate[DDIR_READ] || je->iops[DDIR_READ]; bool has_w = je->rate[DDIR_WRITE] || je->iops[DDIR_WRITE]; bool has_t = je->rate[DDIR_TRIM] || je->iops[DDIR_TRIM]; int l = 0; if (!has_r && !has_w && !has_t) return 0; if (has_r) { l += snprintf(p + l, left - l, "[r=%s", rate_str[DDIR_READ]); if (!has_w) l += snprintf(p + l, left - l, "]"); } if (has_w) { if (has_r) l += snprintf(p + l, left - l, ","); else l += snprintf(p + l, left - l, "["); l += snprintf(p + l, left - l, "w=%s", rate_str[DDIR_WRITE]); if (!has_t) l += snprintf(p + l, left - l, "]"); } if (has_t) { if (has_r || has_w) l += snprintf(p + l, left - l, ","); else if (!has_r && !has_w) l += snprintf(p + l, left - l, "["); l += snprintf(p + l, left - l, "t=%s]", rate_str[DDIR_TRIM]); } if (has_r) { l += snprintf(p + l, left - l, "[r=%s", iops_str[DDIR_READ]); if (!has_w) l += snprintf(p + l, left - l, " IOPS]"); } if (has_w) { if (has_r) l += snprintf(p + l, left - l, ","); else l += snprintf(p + l, left - l, "["); l += snprintf(p + l, left - l, "w=%s", iops_str[DDIR_WRITE]); if (!has_t) l += snprintf(p + l, left - l, " IOPS]"); } if (has_t) { if (has_r || has_w) l += snprintf(p + l, left - l, ","); else if (!has_r && !has_w) l += snprintf(p + l, left - l, "["); l += snprintf(p + l, left - l, "t=%s IOPS]", iops_str[DDIR_TRIM]); } return l; } void display_thread_status(struct jobs_eta *je) { static struct timespec disp_eta_new_line; static int eta_new_line_init, eta_new_line_pending; static int linelen_last; static int eta_good; char output[__THREAD_RUNSTR_SZ(REAL_MAX_JOBS) + 512], *p = output; char eta_str[128]; double perc = 0.0; if (je->eta_sec != INT_MAX && je->elapsed_sec) { perc = (double) je->elapsed_sec / (double) (je->elapsed_sec + je->eta_sec); eta_to_str(eta_str, je->eta_sec); } if (eta_new_line_pending) { eta_new_line_pending = 0; linelen_last = 0; p += sprintf(p, "\n"); } p += sprintf(p, "Jobs: %d (f=%d)", je->nr_running, je->files_open); /* rate limits, if any */ if (je->m_rate[0] || je->m_rate[1] || je->m_rate[2] || je->t_rate[0] || je->t_rate[1] || je->t_rate[2]) { char *tr, *mr; mr = num2str(je->m_rate[0] + je->m_rate[1] + je->m_rate[2], je->sig_figs, 0, je->is_pow2, N2S_BYTEPERSEC); tr = num2str(je->t_rate[0] + je->t_rate[1] + je->t_rate[2], je->sig_figs, 0, je->is_pow2, N2S_BYTEPERSEC); p += sprintf(p, ", %s-%s", mr, tr); free(tr); free(mr); } else if (je->m_iops[0] || je->m_iops[1] || je->m_iops[2] || je->t_iops[0] || je->t_iops[1] || je->t_iops[2]) { p += sprintf(p, ", %d-%d IOPS", je->m_iops[0] + je->m_iops[1] + je->m_iops[2], je->t_iops[0] + je->t_iops[1] + je->t_iops[2]); } /* current run string, % done, bandwidth, iops, eta */ if (je->eta_sec != INT_MAX && je->nr_running) { char perc_str[32]; char *iops_str[DDIR_RWDIR_CNT]; char *rate_str[DDIR_RWDIR_CNT]; size_t left; int l; int ddir; int linelen; if ((!je->eta_sec && !eta_good) || je->nr_ramp == je->nr_running || je->eta_sec == -1) strcpy(perc_str, "-.-%"); else { double mult = 100.0; if (je->nr_setting_up && je->nr_running) mult *= (1.0 - (double) je->nr_setting_up / (double) je->nr_running); eta_good = 1; perc *= mult; sprintf(perc_str, "%3.1f%%", perc); } for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { rate_str[ddir] = num2str(je->rate[ddir], 4, 1024, je->is_pow2, je->unit_base); iops_str[ddir] = num2str(je->iops[ddir], 4, 1, 0, N2S_NONE); } left = sizeof(output) - (p - output) - 1; l = snprintf(p, left, ": [%s][%s]", je->run_str, perc_str); l += gen_eta_str(je, p + l, left - l, rate_str, iops_str); l += snprintf(p + l, left - l, "[eta %s]", eta_str); /* If truncation occurred adjust l so p is on the null */ if (l >= left) l = left - 1; p += l; linelen = p - output; if (l >= 0 && linelen < linelen_last) p += sprintf(p, "%*s", linelen_last - linelen, ""); linelen_last = linelen; for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) { free(rate_str[ddir]); free(iops_str[ddir]); } } sprintf(p, "\r"); printf("%s", output); if (!eta_new_line_init) { fio_gettime(&disp_eta_new_line, NULL); eta_new_line_init = 1; } else if (eta_new_line && mtime_since_now(&disp_eta_new_line) > eta_new_line) { fio_gettime(&disp_eta_new_line, NULL); eta_new_line_pending = 1; } fflush(stdout); } struct jobs_eta *get_jobs_eta(bool force, size_t *size) { struct jobs_eta *je; if (!thread_number) return NULL; *size = sizeof(*je) + THREAD_RUNSTR_SZ + 8; je = malloc(*size); if (!je) return NULL; memset(je, 0, *size); if (!calc_thread_status(je, force)) { free(je); return NULL; } *size = sizeof(*je) + strlen((char *) je->run_str) + 1; return je; } void print_thread_status(void) { struct jobs_eta *je; size_t size; je = get_jobs_eta(false, &size); if (je) display_thread_status(je); free(je); } void print_status_init(int thr_number) { DRD_IGNORE_VAR(__run_str); __run_str[thr_number] = 'P'; update_condensed_str(__run_str, run_str); }