/* * fio - the flexible io tester * * Copyright (C) 2005 Jens Axboe * Copyright (C) 2006-2012 Jens Axboe * * The license below covers all files distributed with fio unless otherwise * noted in the file itself. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include #include #include #include #include #include #include #include #include "fio.h" #include "smalloc.h" #include "verify.h" #include "diskutil.h" #include "cgroup.h" #include "profile.h" #include "lib/rand.h" #include "lib/memalign.h" #include "server.h" #include "lib/getrusage.h" #include "idletime.h" #include "err.h" #include "workqueue.h" #include "lib/mountcheck.h" #include "rate-submit.h" #include "helper_thread.h" #include "pshared.h" #include "zone-dist.h" static struct fio_sem *startup_sem; static struct flist_head *cgroup_list; static struct cgroup_mnt *cgroup_mnt; static int exit_value; static volatile int fio_abort; static unsigned int nr_process = 0; static unsigned int nr_thread = 0; struct io_log *agg_io_log[DDIR_RWDIR_CNT]; int groupid = 0; unsigned int thread_number = 0; unsigned int stat_number = 0; int shm_id = 0; int temp_stall_ts; unsigned long done_secs = 0; #define JOB_START_TIMEOUT (5 * 1000) static void sig_int(int sig) { if (threads) { if (is_backend) fio_server_got_signal(sig); else { log_info("\nfio: terminating on signal %d\n", sig); log_info_flush(); exit_value = 128; } fio_terminate_threads(TERMINATE_ALL); } } void sig_show_status(int sig) { show_running_run_stats(); } static void set_sig_handlers(void) { struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGINT, &act, NULL); memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGTERM, &act, NULL); /* Windows uses SIGBREAK as a quit signal from other applications */ #ifdef WIN32 memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGBREAK, &act, NULL); #endif memset(&act, 0, sizeof(act)); act.sa_handler = sig_show_status; act.sa_flags = SA_RESTART; sigaction(SIGUSR1, &act, NULL); if (is_backend) { memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGPIPE, &act, NULL); } } /* * Check if we are above the minimum rate given. */ static bool __check_min_rate(struct thread_data *td, struct timespec *now, enum fio_ddir ddir) { unsigned long long bytes = 0; unsigned long iops = 0; unsigned long spent; unsigned long rate; unsigned int ratemin = 0; unsigned int rate_iops = 0; unsigned int rate_iops_min = 0; assert(ddir_rw(ddir)); if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir]) return false; /* * allow a 2 second settle period in the beginning */ if (mtime_since(&td->start, now) < 2000) return false; iops += td->this_io_blocks[ddir]; bytes += td->this_io_bytes[ddir]; ratemin += td->o.ratemin[ddir]; rate_iops += td->o.rate_iops[ddir]; rate_iops_min += td->o.rate_iops_min[ddir]; /* * if rate blocks is set, sample is running */ if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) { spent = mtime_since(&td->lastrate[ddir], now); if (spent < td->o.ratecycle) return false; if (td->o.rate[ddir] || td->o.ratemin[ddir]) { /* * check bandwidth specified rate */ if (bytes < td->rate_bytes[ddir]) { log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n", td->o.name, ratemin, bytes); return true; } else { if (spent) rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent; else rate = 0; if (rate < ratemin || bytes < td->rate_bytes[ddir]) { log_err("%s: rate_min=%uB/s not met, got %luB/s\n", td->o.name, ratemin, rate); return true; } } } else { /* * checks iops specified rate */ if (iops < rate_iops) { log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n", td->o.name, rate_iops, iops); return true; } else { if (spent) rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent; else rate = 0; if (rate < rate_iops_min || iops < td->rate_blocks[ddir]) { log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n", td->o.name, rate_iops_min, rate); return true; } } } } td->rate_bytes[ddir] = bytes; td->rate_blocks[ddir] = iops; memcpy(&td->lastrate[ddir], now, sizeof(*now)); return false; } static bool check_min_rate(struct thread_data *td, struct timespec *now) { bool ret = false; if (td->bytes_done[DDIR_READ]) ret |= __check_min_rate(td, now, DDIR_READ); if (td->bytes_done[DDIR_WRITE]) ret |= __check_min_rate(td, now, DDIR_WRITE); if (td->bytes_done[DDIR_TRIM]) ret |= __check_min_rate(td, now, DDIR_TRIM); return ret; } /* * When job exits, we can cancel the in-flight IO if we are using async * io. Attempt to do so. */ static void cleanup_pending_aio(struct thread_data *td) { int r; /* * get immediately available events, if any */ r = io_u_queued_complete(td, 0); if (r < 0) return; /* * now cancel remaining active events */ if (td->io_ops->cancel) { struct io_u *io_u; int i; io_u_qiter(&td->io_u_all, io_u, i) { if (io_u->flags & IO_U_F_FLIGHT) { r = td->io_ops->cancel(td, io_u); if (!r) put_io_u(td, io_u); } } } if (td->cur_depth) r = io_u_queued_complete(td, td->cur_depth); } /* * Helper to handle the final sync of a file. Works just like the normal * io path, just does everything sync. */ static bool fio_io_sync(struct thread_data *td, struct fio_file *f) { struct io_u *io_u = __get_io_u(td); enum fio_q_status ret; if (!io_u) return true; io_u->ddir = DDIR_SYNC; io_u->file = f; if (td_io_prep(td, io_u)) { put_io_u(td, io_u); return true; } requeue: ret = td_io_queue(td, io_u); switch (ret) { case FIO_Q_QUEUED: td_io_commit(td); if (io_u_queued_complete(td, 1) < 0) return true; break; case FIO_Q_COMPLETED: if (io_u->error) { td_verror(td, io_u->error, "td_io_queue"); return true; } if (io_u_sync_complete(td, io_u) < 0) return true; break; case FIO_Q_BUSY: td_io_commit(td); goto requeue; } return false; } static int fio_file_fsync(struct thread_data *td, struct fio_file *f) { int ret; if (fio_file_open(f)) return fio_io_sync(td, f); if (td_io_open_file(td, f)) return 1; ret = fio_io_sync(td, f); td_io_close_file(td, f); return ret; } static inline void __update_ts_cache(struct thread_data *td) { fio_gettime(&td->ts_cache, NULL); } static inline void update_ts_cache(struct thread_data *td) { if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask) __update_ts_cache(td); } static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t) { if (in_ramp_time(td)) return false; if (!td->o.timeout) return false; if (utime_since(&td->epoch, t) >= td->o.timeout) return true; return false; } /* * We need to update the runtime consistently in ms, but keep a running * tally of the current elapsed time in microseconds for sub millisecond * updates. */ static inline void update_runtime(struct thread_data *td, unsigned long long *elapsed_us, const enum fio_ddir ddir) { if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only) return; td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000; elapsed_us[ddir] += utime_since_now(&td->start); td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000; } static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir, int *retptr) { int ret = *retptr; if (ret < 0 || td->error) { int err = td->error; enum error_type_bit eb; if (ret < 0) err = -ret; eb = td_error_type(ddir, err); if (!(td->o.continue_on_error & (1 << eb))) return true; if (td_non_fatal_error(td, eb, err)) { /* * Continue with the I/Os in case of * a non fatal error. */ update_error_count(td, err); td_clear_error(td); *retptr = 0; return false; } else if (td->o.fill_device && err == ENOSPC) { /* * We expect to hit this error if * fill_device option is set. */ td_clear_error(td); fio_mark_td_terminate(td); return true; } else { /* * Stop the I/O in case of a fatal * error. */ update_error_count(td, err); return true; } } return false; } static void check_update_rusage(struct thread_data *td) { if (td->update_rusage) { td->update_rusage = 0; update_rusage_stat(td); fio_sem_up(td->rusage_sem); } } static int wait_for_completions(struct thread_data *td, struct timespec *time) { const int full = queue_full(td); int min_evts = 0; int ret; if (td->flags & TD_F_REGROW_LOGS) return io_u_quiesce(td); /* * if the queue is full, we MUST reap at least 1 event */ min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth); if ((full && !min_evts) || !td->o.iodepth_batch_complete_min) min_evts = 1; if (time && __should_check_rate(td)) fio_gettime(time, NULL); do { ret = io_u_queued_complete(td, min_evts); if (ret < 0) break; } while (full && (td->cur_depth > td->o.iodepth_low)); return ret; } int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret, enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify, struct timespec *comp_time) { switch (*ret) { case FIO_Q_COMPLETED: if (io_u->error) { *ret = -io_u->error; clear_io_u(td, io_u); } else if (io_u->resid) { long long bytes = io_u->xfer_buflen - io_u->resid; struct fio_file *f = io_u->file; if (bytes_issued) *bytes_issued += bytes; if (!from_verify) trim_io_piece(io_u); /* * zero read, fail */ if (!bytes) { if (!from_verify) unlog_io_piece(td, io_u); td_verror(td, EIO, "full resid"); put_io_u(td, io_u); break; } io_u->xfer_buflen = io_u->resid; io_u->xfer_buf += bytes; io_u->offset += bytes; if (ddir_rw(io_u->ddir)) td->ts.short_io_u[io_u->ddir]++; if (io_u->offset == f->real_file_size) goto sync_done; requeue_io_u(td, &io_u); } else { sync_done: if (comp_time && __should_check_rate(td)) fio_gettime(comp_time, NULL); *ret = io_u_sync_complete(td, io_u); if (*ret < 0) break; } if (td->flags & TD_F_REGROW_LOGS) regrow_logs(td); /* * when doing I/O (not when verifying), * check for any errors that are to be ignored */ if (!from_verify) break; return 0; case FIO_Q_QUEUED: /* * if the engine doesn't have a commit hook, * the io_u is really queued. if it does have such * a hook, it has to call io_u_queued() itself. */ if (td->io_ops->commit == NULL) io_u_queued(td, io_u); if (bytes_issued) *bytes_issued += io_u->xfer_buflen; break; case FIO_Q_BUSY: if (!from_verify) unlog_io_piece(td, io_u); requeue_io_u(td, &io_u); td_io_commit(td); break; default: assert(*ret < 0); td_verror(td, -(*ret), "td_io_queue"); break; } if (break_on_this_error(td, ddir, ret)) return 1; return 0; } static inline bool io_in_polling(struct thread_data *td) { return !td->o.iodepth_batch_complete_min && !td->o.iodepth_batch_complete_max; } /* * Unlinks files from thread data fio_file structure */ static int unlink_all_files(struct thread_data *td) { struct fio_file *f; unsigned int i; int ret = 0; for_each_file(td, f, i) { if (f->filetype != FIO_TYPE_FILE) continue; ret = td_io_unlink_file(td, f); if (ret) break; } if (ret) td_verror(td, ret, "unlink_all_files"); return ret; } /* * Check if io_u will overlap an in-flight IO in the queue */ static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u) { bool overlap; struct io_u *check_io_u; unsigned long long x1, x2, y1, y2; int i; x1 = io_u->offset; x2 = io_u->offset + io_u->buflen; overlap = false; io_u_qiter(q, check_io_u, i) { if (check_io_u->flags & IO_U_F_FLIGHT) { y1 = check_io_u->offset; y2 = check_io_u->offset + check_io_u->buflen; if (x1 < y2 && y1 < x2) { overlap = true; dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n", x1, io_u->buflen, y1, check_io_u->buflen); break; } } } return overlap; } static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u) { /* * Check for overlap if the user asked us to, and we have * at least one IO in flight besides this one. */ if (td->o.serialize_overlap && td->cur_depth > 1 && in_flight_overlap(&td->io_u_all, io_u)) return FIO_Q_BUSY; return td_io_queue(td, io_u); } /* * The main verify engine. Runs over the writes we previously submitted, * reads the blocks back in, and checks the crc/md5 of the data. */ static void do_verify(struct thread_data *td, uint64_t verify_bytes) { struct fio_file *f; struct io_u *io_u; int ret, min_events; unsigned int i; dprint(FD_VERIFY, "starting loop\n"); /* * sync io first and invalidate cache, to make sure we really * read from disk. */ for_each_file(td, f, i) { if (!fio_file_open(f)) continue; if (fio_io_sync(td, f)) break; if (file_invalidate_cache(td, f)) break; } check_update_rusage(td); if (td->error) return; /* * verify_state needs to be reset before verification * proceeds so that expected random seeds match actual * random seeds in headers. The main loop will reset * all random number generators if randrepeat is set. */ if (!td->o.rand_repeatable) td_fill_verify_state_seed(td); td_set_runstate(td, TD_VERIFYING); io_u = NULL; while (!td->terminate) { enum fio_ddir ddir; int full; update_ts_cache(td); check_update_rusage(td); if (runtime_exceeded(td, &td->ts_cache)) { __update_ts_cache(td); if (runtime_exceeded(td, &td->ts_cache)) { fio_mark_td_terminate(td); break; } } if (flow_threshold_exceeded(td)) continue; if (!td->o.experimental_verify) { io_u = __get_io_u(td); if (!io_u) break; if (get_next_verify(td, io_u)) { put_io_u(td, io_u); break; } if (td_io_prep(td, io_u)) { put_io_u(td, io_u); break; } } else { if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes) break; while ((io_u = get_io_u(td)) != NULL) { if (IS_ERR_OR_NULL(io_u)) { io_u = NULL; ret = FIO_Q_BUSY; goto reap; } /* * We are only interested in the places where * we wrote or trimmed IOs. Turn those into * reads for verification purposes. */ if (io_u->ddir == DDIR_READ) { /* * Pretend we issued it for rwmix * accounting */ td->io_issues[DDIR_READ]++; put_io_u(td, io_u); continue; } else if (io_u->ddir == DDIR_TRIM) { io_u->ddir = DDIR_READ; io_u_set(td, io_u, IO_U_F_TRIMMED); break; } else if (io_u->ddir == DDIR_WRITE) { io_u->ddir = DDIR_READ; populate_verify_io_u(td, io_u); break; } else { put_io_u(td, io_u); continue; } } if (!io_u) break; } if (verify_state_should_stop(td, io_u)) { put_io_u(td, io_u); break; } if (td->o.verify_async) io_u->end_io = verify_io_u_async; else io_u->end_io = verify_io_u; ddir = io_u->ddir; if (!td->o.disable_slat) fio_gettime(&io_u->start_time, NULL); ret = io_u_submit(td, io_u); if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL)) break; /* * if we can queue more, do so. but check if there are * completed io_u's first. Note that we can get BUSY even * without IO queued, if the system is resource starved. */ reap: full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); if (full || io_in_polling(td)) ret = wait_for_completions(td, NULL); if (ret < 0) break; } check_update_rusage(td); if (!td->error) { min_events = td->cur_depth; if (min_events) ret = io_u_queued_complete(td, min_events); } else cleanup_pending_aio(td); td_set_runstate(td, TD_RUNNING); dprint(FD_VERIFY, "exiting loop\n"); } static bool exceeds_number_ios(struct thread_data *td) { unsigned long long number_ios; if (!td->o.number_ios) return false; number_ios = ddir_rw_sum(td->io_blocks); number_ios += td->io_u_queued + td->io_u_in_flight; return number_ios >= (td->o.number_ios * td->loops); } static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes) { unsigned long long bytes, limit; if (td_rw(td)) bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE]; else if (td_write(td)) bytes = this_bytes[DDIR_WRITE]; else if (td_read(td)) bytes = this_bytes[DDIR_READ]; else bytes = this_bytes[DDIR_TRIM]; if (td->o.io_size) limit = td->o.io_size; else limit = td->o.size; limit *= td->loops; return bytes >= limit || exceeds_number_ios(td); } static bool io_issue_bytes_exceeded(struct thread_data *td) { return io_bytes_exceeded(td, td->io_issue_bytes); } static bool io_complete_bytes_exceeded(struct thread_data *td) { return io_bytes_exceeded(td, td->this_io_bytes); } /* * used to calculate the next io time for rate control * */ static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) { uint64_t bps = td->rate_bps[ddir]; assert(!(td->flags & TD_F_CHILD)); if (td->o.rate_process == RATE_PROCESS_POISSON) { uint64_t val, iops; iops = bps / td->o.bs[ddir]; val = (int64_t) (1000000 / iops) * -logf(__rand_0_1(&td->poisson_state[ddir])); if (val) { dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n", (unsigned long long) 1000000 / val, ddir); } td->last_usec[ddir] += val; return td->last_usec[ddir]; } else if (bps) { uint64_t bytes = td->rate_io_issue_bytes[ddir]; uint64_t secs = bytes / bps; uint64_t remainder = bytes % bps; return remainder * 1000000 / bps + secs * 1000000; } return 0; } static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir) { unsigned long long b; uint64_t total; int left; b = ddir_rw_sum(td->io_blocks); if (b % td->o.thinktime_blocks) return; io_u_quiesce(td); total = 0; if (td->o.thinktime_spin) total = usec_spin(td->o.thinktime_spin); left = td->o.thinktime - total; if (left) total += usec_sleep(td, left); /* * If we're ignoring thinktime for the rate, add the number of bytes * we would have done while sleeping, minus one block to ensure we * start issuing immediately after the sleep. */ if (total && td->rate_bps[ddir] && td->o.rate_ign_think) { uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL; uint64_t bs = td->o.min_bs[ddir]; uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir]; uint64_t over; if (usperop <= total) over = bs; else over = (usperop - total) / usperop * -bs; td->rate_io_issue_bytes[ddir] += (missed - over); /* adjust for rate_process=poisson */ td->last_usec[ddir] += total; } } /* * Main IO worker function. It retrieves io_u's to process and queues * and reaps them, checking for rate and errors along the way. * * Returns number of bytes written and trimmed. */ static void do_io(struct thread_data *td, uint64_t *bytes_done) { unsigned int i; int ret = 0; uint64_t total_bytes, bytes_issued = 0; for (i = 0; i < DDIR_RWDIR_CNT; i++) bytes_done[i] = td->bytes_done[i]; if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); lat_target_init(td); total_bytes = td->o.size; /* * Allow random overwrite workloads to write up to io_size * before starting verification phase as 'size' doesn't apply. */ if (td_write(td) && td_random(td) && td->o.norandommap) total_bytes = max(total_bytes, (uint64_t) td->o.io_size); /* * If verify_backlog is enabled, we'll run the verify in this * handler as well. For that case, we may need up to twice the * amount of bytes. */ if (td->o.verify != VERIFY_NONE && (td_write(td) && td->o.verify_backlog)) total_bytes += td->o.size; /* In trimwrite mode, each byte is trimmed and then written, so * allow total_bytes to be twice as big */ if (td_trimwrite(td)) total_bytes += td->total_io_size; while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) || td->o.time_based) { struct timespec comp_time; struct io_u *io_u; int full; enum fio_ddir ddir; check_update_rusage(td); if (td->terminate || td->done) break; update_ts_cache(td); if (runtime_exceeded(td, &td->ts_cache)) { __update_ts_cache(td); if (runtime_exceeded(td, &td->ts_cache)) { fio_mark_td_terminate(td); break; } } if (flow_threshold_exceeded(td)) continue; /* * Break if we exceeded the bytes. The exception is time * based runs, but we still need to break out of the loop * for those to run verification, if enabled. * Jobs read from iolog do not use this stop condition. */ if (bytes_issued >= total_bytes && !td->o.read_iolog_file && (!td->o.time_based || (td->o.time_based && td->o.verify != VERIFY_NONE))) break; io_u = get_io_u(td); if (IS_ERR_OR_NULL(io_u)) { int err = PTR_ERR(io_u); io_u = NULL; ddir = DDIR_INVAL; if (err == -EBUSY) { ret = FIO_Q_BUSY; goto reap; } if (td->o.latency_target) goto reap; break; } if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) populate_verify_io_u(td, io_u); ddir = io_u->ddir; /* * Add verification end_io handler if: * - Asked to verify (!td_rw(td)) * - Or the io_u is from our verify list (mixed write/ver) */ if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ && ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) { if (!td->o.verify_pattern_bytes) { io_u->rand_seed = __rand(&td->verify_state); if (sizeof(int) != sizeof(long *)) io_u->rand_seed *= __rand(&td->verify_state); } if (verify_state_should_stop(td, io_u)) { put_io_u(td, io_u); break; } if (td->o.verify_async) io_u->end_io = verify_io_u_async; else io_u->end_io = verify_io_u; td_set_runstate(td, TD_VERIFYING); } else if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); /* * Always log IO before it's issued, so we know the specific * order of it. The logged unit will track when the IO has * completed. */ if (td_write(td) && io_u->ddir == DDIR_WRITE && td->o.do_verify && td->o.verify != VERIFY_NONE && !td->o.experimental_verify) log_io_piece(td, io_u); if (td->o.io_submit_mode == IO_MODE_OFFLOAD) { const unsigned long long blen = io_u->xfer_buflen; const enum fio_ddir __ddir = acct_ddir(io_u); if (td->error) break; workqueue_enqueue(&td->io_wq, &io_u->work); ret = FIO_Q_QUEUED; if (ddir_rw(__ddir)) { td->io_issues[__ddir]++; td->io_issue_bytes[__ddir] += blen; td->rate_io_issue_bytes[__ddir] += blen; } if (should_check_rate(td)) td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir); } else { ret = io_u_submit(td, io_u); if (should_check_rate(td)) td->rate_next_io_time[ddir] = usec_for_io(td, ddir); if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time)) break; /* * See if we need to complete some commands. Note that * we can get BUSY even without IO queued, if the * system is resource starved. */ reap: full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); if (full || io_in_polling(td)) ret = wait_for_completions(td, &comp_time); } if (ret < 0) break; if (!ddir_rw_sum(td->bytes_done) && !td_ioengine_flagged(td, FIO_NOIO)) continue; if (!in_ramp_time(td) && should_check_rate(td)) { if (check_min_rate(td, &comp_time)) { if (exitall_on_terminate || td->o.exitall_error) fio_terminate_threads(td->groupid); td_verror(td, EIO, "check_min_rate"); break; } } if (!in_ramp_time(td) && td->o.latency_target) lat_target_check(td); if (ddir_rw(ddir) && td->o.thinktime) handle_thinktime(td, ddir); } check_update_rusage(td); if (td->trim_entries) log_err("fio: %lu trim entries leaked?\n", td->trim_entries); if (td->o.fill_device && td->error == ENOSPC) { td->error = 0; fio_mark_td_terminate(td); } if (!td->error) { struct fio_file *f; if (td->o.io_submit_mode == IO_MODE_OFFLOAD) { workqueue_flush(&td->io_wq); i = 0; } else i = td->cur_depth; if (i) { ret = io_u_queued_complete(td, i); if (td->o.fill_device && td->error == ENOSPC) td->error = 0; } if (should_fsync(td) && td->o.end_fsync) { td_set_runstate(td, TD_FSYNCING); for_each_file(td, f, i) { if (!fio_file_fsync(td, f)) continue; log_err("fio: end_fsync failed for file %s\n", f->file_name); } } } else cleanup_pending_aio(td); /* * stop job if we failed doing any IO */ if (!ddir_rw_sum(td->this_io_bytes)) td->done = 1; for (i = 0; i < DDIR_RWDIR_CNT; i++) bytes_done[i] = td->bytes_done[i] - bytes_done[i]; } static void free_file_completion_logging(struct thread_data *td) { struct fio_file *f; unsigned int i; for_each_file(td, f, i) { if (!f->last_write_comp) break; sfree(f->last_write_comp); } } static int init_file_completion_logging(struct thread_data *td, unsigned int depth) { struct fio_file *f; unsigned int i; if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save) return 0; for_each_file(td, f, i) { f->last_write_comp = scalloc(depth, sizeof(uint64_t)); if (!f->last_write_comp) goto cleanup; } return 0; cleanup: free_file_completion_logging(td); log_err("fio: failed to alloc write comp data\n"); return 1; } static void cleanup_io_u(struct thread_data *td) { struct io_u *io_u; while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) { if (td->io_ops->io_u_free) td->io_ops->io_u_free(td, io_u); fio_memfree(io_u, sizeof(*io_u)); } free_io_mem(td); io_u_rexit(&td->io_u_requeues); io_u_qexit(&td->io_u_freelist); io_u_qexit(&td->io_u_all); free_file_completion_logging(td); } static int init_io_u(struct thread_data *td) { struct io_u *io_u; int cl_align, i, max_units; int err; max_units = td->o.iodepth; err = 0; err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth); err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth); err += !io_u_qinit(&td->io_u_all, td->o.iodepth); if (err) { log_err("fio: failed setting up IO queues\n"); return 1; } cl_align = os_cache_line_size(); for (i = 0; i < max_units; i++) { void *ptr; if (td->terminate) return 1; ptr = fio_memalign(cl_align, sizeof(*io_u)); if (!ptr) { log_err("fio: unable to allocate aligned memory\n"); break; } io_u = ptr; memset(io_u, 0, sizeof(*io_u)); INIT_FLIST_HEAD(&io_u->verify_list); dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i); io_u->index = i; io_u->flags = IO_U_F_FREE; io_u_qpush(&td->io_u_freelist, io_u); /* * io_u never leaves this stack, used for iteration of all * io_u buffers. */ io_u_qpush(&td->io_u_all, io_u); if (td->io_ops->io_u_init) { int ret = td->io_ops->io_u_init(td, io_u); if (ret) { log_err("fio: failed to init engine data: %d\n", ret); return 1; } } } init_io_u_buffers(td); if (init_file_completion_logging(td, max_units)) return 1; return 0; } int init_io_u_buffers(struct thread_data *td) { struct io_u *io_u; unsigned long long max_bs, min_write; int i, max_units; int data_xfer = 1; char *p; max_units = td->o.iodepth; max_bs = td_max_bs(td); min_write = td->o.min_bs[DDIR_WRITE]; td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units; if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td))) data_xfer = 0; /* * if we may later need to do address alignment, then add any * possible adjustment here so that we don't cause a buffer * overflow later. this adjustment may be too much if we get * lucky and the allocator gives us an aligned address. */ if (td->o.odirect || td->o.mem_align || td->o.oatomic || td_ioengine_flagged(td, FIO_RAWIO)) td->orig_buffer_size += page_mask + td->o.mem_align; if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) { unsigned long long bs; bs = td->orig_buffer_size + td->o.hugepage_size - 1; td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1); } if (td->orig_buffer_size != (size_t) td->orig_buffer_size) { log_err("fio: IO memory too large. Reduce max_bs or iodepth\n"); return 1; } if (data_xfer && allocate_io_mem(td)) return 1; if (td->o.odirect || td->o.mem_align || td->o.oatomic || td_ioengine_flagged(td, FIO_RAWIO)) p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align; else p = td->orig_buffer; for (i = 0; i < max_units; i++) { io_u = td->io_u_all.io_us[i]; dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i); if (data_xfer) { io_u->buf = p; dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf); if (td_write(td)) io_u_fill_buffer(td, io_u, min_write, max_bs); if (td_write(td) && td->o.verify_pattern_bytes) { /* * Fill the buffer with the pattern if we are * going to be doing writes. */ fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0); } } p += max_bs; } return 0; } /* * This function is Linux specific. * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux. */ static int switch_ioscheduler(struct thread_data *td) { #ifdef FIO_HAVE_IOSCHED_SWITCH char tmp[256], tmp2[128], *p; FILE *f; int ret; if (td_ioengine_flagged(td, FIO_DISKLESSIO)) return 0; assert(td->files && td->files[0]); sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root); f = fopen(tmp, "r+"); if (!f) { if (errno == ENOENT) { log_err("fio: os or kernel doesn't support IO scheduler" " switching\n"); return 0; } td_verror(td, errno, "fopen iosched"); return 1; } /* * Set io scheduler. */ ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f); if (ferror(f) || ret != 1) { td_verror(td, errno, "fwrite"); fclose(f); return 1; } rewind(f); /* * Read back and check that the selected scheduler is now the default. */ ret = fread(tmp, 1, sizeof(tmp) - 1, f); if (ferror(f) || ret < 0) { td_verror(td, errno, "fread"); fclose(f); return 1; } tmp[ret] = '\0'; /* * either a list of io schedulers or "none\n" is expected. Strip the * trailing newline. */ p = tmp; strsep(&p, "\n"); /* * Write to "none" entry doesn't fail, so check the result here. */ if (!strcmp(tmp, "none")) { log_err("fio: io scheduler is not tunable\n"); fclose(f); return 0; } sprintf(tmp2, "[%s]", td->o.ioscheduler); if (!strstr(tmp, tmp2)) { log_err("fio: io scheduler %s not found\n", td->o.ioscheduler); td_verror(td, EINVAL, "iosched_switch"); fclose(f); return 1; } fclose(f); return 0; #else return 0; #endif } static bool keep_running(struct thread_data *td) { unsigned long long limit; if (td->done) return false; if (td->terminate) return false; if (td->o.time_based) return true; if (td->o.loops) { td->o.loops--; return true; } if (exceeds_number_ios(td)) return false; if (td->o.io_size) limit = td->o.io_size; else limit = td->o.size; if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) { uint64_t diff; /* * If the difference is less than the maximum IO size, we * are done. */ diff = limit - ddir_rw_sum(td->io_bytes); if (diff < td_max_bs(td)) return false; if (fio_files_done(td) && !td->o.io_size) return false; return true; } return false; } static int exec_string(struct thread_options *o, const char *string, const char *mode) { size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1; int ret; char *str; str = malloc(newlen); sprintf(str, "%s &> %s.%s.txt", string, o->name, mode); log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode); ret = system(str); if (ret == -1) log_err("fio: exec of cmd <%s> failed\n", str); free(str); return ret; } /* * Dry run to compute correct state of numberio for verification. */ static uint64_t do_dry_run(struct thread_data *td) { td_set_runstate(td, TD_RUNNING); while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) { struct io_u *io_u; int ret; if (td->terminate || td->done) break; io_u = get_io_u(td); if (IS_ERR_OR_NULL(io_u)) break; io_u_set(td, io_u, IO_U_F_FLIGHT); io_u->error = 0; io_u->resid = 0; if (ddir_rw(acct_ddir(io_u))) td->io_issues[acct_ddir(io_u)]++; if (ddir_rw(io_u->ddir)) { io_u_mark_depth(td, 1); td->ts.total_io_u[io_u->ddir]++; } if (td_write(td) && io_u->ddir == DDIR_WRITE && td->o.do_verify && td->o.verify != VERIFY_NONE && !td->o.experimental_verify) log_io_piece(td, io_u); ret = io_u_sync_complete(td, io_u); (void) ret; } return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM]; } struct fork_data { struct thread_data *td; struct sk_out *sk_out; }; /* * Entry point for the thread based jobs. The process based jobs end up * here as well, after a little setup. */ static void *thread_main(void *data) { struct fork_data *fd = data; unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, }; struct thread_data *td = fd->td; struct thread_options *o = &td->o; struct sk_out *sk_out = fd->sk_out; uint64_t bytes_done[DDIR_RWDIR_CNT]; int deadlock_loop_cnt; bool clear_state, did_some_io; int ret; sk_out_assign(sk_out); free(fd); if (!o->use_thread) { setsid(); td->pid = getpid(); } else td->pid = gettid(); fio_local_clock_init(); dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid); if (is_backend) fio_server_send_start(td); INIT_FLIST_HEAD(&td->io_log_list); INIT_FLIST_HEAD(&td->io_hist_list); INIT_FLIST_HEAD(&td->verify_list); INIT_FLIST_HEAD(&td->trim_list); td->io_hist_tree = RB_ROOT; ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond); if (ret) { td_verror(td, ret, "mutex_cond_init_pshared"); goto err; } ret = cond_init_pshared(&td->verify_cond); if (ret) { td_verror(td, ret, "mutex_cond_pshared"); goto err; } td_set_runstate(td, TD_INITIALIZED); dprint(FD_MUTEX, "up startup_sem\n"); fio_sem_up(startup_sem); dprint(FD_MUTEX, "wait on td->sem\n"); fio_sem_down(td->sem); dprint(FD_MUTEX, "done waiting on td->sem\n"); /* * A new gid requires privilege, so we need to do this before setting * the uid. */ if (o->gid != -1U && setgid(o->gid)) { td_verror(td, errno, "setgid"); goto err; } if (o->uid != -1U && setuid(o->uid)) { td_verror(td, errno, "setuid"); goto err; } td_zone_gen_index(td); /* * Do this early, we don't want the compress threads to be limited * to the same CPUs as the IO workers. So do this before we set * any potential CPU affinity */ if (iolog_compress_init(td, sk_out)) goto err; /* * If we have a gettimeofday() thread, make sure we exclude that * thread from this job */ if (o->gtod_cpu) fio_cpu_clear(&o->cpumask, o->gtod_cpu); /* * Set affinity first, in case it has an impact on the memory * allocations. */ if (fio_option_is_set(o, cpumask)) { if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) { ret = fio_cpus_split(&o->cpumask, td->thread_number - 1); if (!ret) { log_err("fio: no CPUs set\n"); log_err("fio: Try increasing number of available CPUs\n"); td_verror(td, EINVAL, "cpus_split"); goto err; } } ret = fio_setaffinity(td->pid, o->cpumask); if (ret == -1) { td_verror(td, errno, "cpu_set_affinity"); goto err; } } #ifdef CONFIG_LIBNUMA /* numa node setup */ if (fio_option_is_set(o, numa_cpunodes) || fio_option_is_set(o, numa_memnodes)) { struct bitmask *mask; if (numa_available() < 0) { td_verror(td, errno, "Does not support NUMA API\n"); goto err; } if (fio_option_is_set(o, numa_cpunodes)) { mask = numa_parse_nodestring(o->numa_cpunodes); ret = numa_run_on_node_mask(mask); numa_free_nodemask(mask); if (ret == -1) { td_verror(td, errno, \ "numa_run_on_node_mask failed\n"); goto err; } } if (fio_option_is_set(o, numa_memnodes)) { mask = NULL; if (o->numa_memnodes) mask = numa_parse_nodestring(o->numa_memnodes); switch (o->numa_mem_mode) { case MPOL_INTERLEAVE: numa_set_interleave_mask(mask); break; case MPOL_BIND: numa_set_membind(mask); break; case MPOL_LOCAL: numa_set_localalloc(); break; case MPOL_PREFERRED: numa_set_preferred(o->numa_mem_prefer_node); break; case MPOL_DEFAULT: default: break; } if (mask) numa_free_nodemask(mask); } } #endif if (fio_pin_memory(td)) goto err; /* * May alter parameters that init_io_u() will use, so we need to * do this first. */ if (!init_iolog(td)) goto err; if (init_io_u(td)) goto err; if (o->verify_async && verify_async_init(td)) goto err; if (fio_option_is_set(o, ioprio) || fio_option_is_set(o, ioprio_class)) { ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio); if (ret == -1) { td_verror(td, errno, "ioprio_set"); goto err; } } if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt)) goto err; errno = 0; if (nice(o->nice) == -1 && errno != 0) { td_verror(td, errno, "nice"); goto err; } if (o->ioscheduler && switch_ioscheduler(td)) goto err; if (!o->create_serialize && setup_files(td)) goto err; if (td_io_init(td)) goto err; if (!init_random_map(td)) goto err; if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun")) goto err; if (o->pre_read && !pre_read_files(td)) goto err; fio_verify_init(td); if (rate_submit_init(td, sk_out)) goto err; set_epoch_time(td, o->log_unix_epoch); fio_getrusage(&td->ru_start); memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch)); memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch)); memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch)); if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] || o->ratemin[DDIR_TRIM]) { memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time, sizeof(td->bw_sample_time)); memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time, sizeof(td->bw_sample_time)); memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time, sizeof(td->bw_sample_time)); } memset(bytes_done, 0, sizeof(bytes_done)); clear_state = false; did_some_io = false; while (keep_running(td)) { uint64_t verify_bytes; fio_gettime(&td->start, NULL); memcpy(&td->ts_cache, &td->start, sizeof(td->start)); if (clear_state) { clear_io_state(td, 0); if (o->unlink_each_loop && unlink_all_files(td)) break; } prune_io_piece_log(td); if (td->o.verify_only && td_write(td)) verify_bytes = do_dry_run(td); else { do_io(td, bytes_done); if (!ddir_rw_sum(bytes_done)) { fio_mark_td_terminate(td); verify_bytes = 0; } else { verify_bytes = bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; } } /* * If we took too long to shut down, the main thread could * already consider us reaped/exited. If that happens, break * out and clean up. */ if (td->runstate >= TD_EXITED) break; clear_state = true; /* * Make sure we've successfully updated the rusage stats * before waiting on the stat mutex. Otherwise we could have * the stat thread holding stat mutex and waiting for * the rusage_sem, which would never get upped because * this thread is waiting for the stat mutex. */ deadlock_loop_cnt = 0; do { check_update_rusage(td); if (!fio_sem_down_trylock(stat_sem)) break; usleep(1000); if (deadlock_loop_cnt++ > 5000) { log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n"); td->error = EDEADLK; goto err; } } while (1); if (td_read(td) && td->io_bytes[DDIR_READ]) update_runtime(td, elapsed_us, DDIR_READ); if (td_write(td) && td->io_bytes[DDIR_WRITE]) update_runtime(td, elapsed_us, DDIR_WRITE); if (td_trim(td) && td->io_bytes[DDIR_TRIM]) update_runtime(td, elapsed_us, DDIR_TRIM); fio_gettime(&td->start, NULL); fio_sem_up(stat_sem); if (td->error || td->terminate) break; if (!o->do_verify || o->verify == VERIFY_NONE || td_ioengine_flagged(td, FIO_UNIDIR)) continue; if (ddir_rw_sum(bytes_done)) did_some_io = true; clear_io_state(td, 0); fio_gettime(&td->start, NULL); do_verify(td, verify_bytes); /* * See comment further up for why this is done here. */ check_update_rusage(td); fio_sem_down(stat_sem); update_runtime(td, elapsed_us, DDIR_READ); fio_gettime(&td->start, NULL); fio_sem_up(stat_sem); if (td->error || td->terminate) break; } /* * If td ended up with no I/O when it should have had, * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO. * (Are we not missing other flags that can be ignored ?) */ if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) && !did_some_io && !td->o.create_only && !(td_ioengine_flagged(td, FIO_NOIO) || td_ioengine_flagged(td, FIO_DISKLESSIO))) log_err("%s: No I/O performed by %s, " "perhaps try --debug=io option for details?\n", td->o.name, td->io_ops->name); td_set_runstate(td, TD_FINISHING); update_rusage_stat(td); td->ts.total_run_time = mtime_since_now(&td->epoch); td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) && (td->o.verify != VERIFY_NONE && td_write(td))) verify_save_state(td->thread_number); fio_unpin_memory(td); td_writeout_logs(td, true); iolog_compress_exit(td); rate_submit_exit(td); if (o->exec_postrun) exec_string(o, o->exec_postrun, (const char *)"postrun"); if (exitall_on_terminate || (o->exitall_error && td->error)) fio_terminate_threads(td->groupid); err: if (td->error) log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, td->verror); if (o->verify_async) verify_async_exit(td); close_and_free_files(td); cleanup_io_u(td); close_ioengine(td); cgroup_shutdown(td, cgroup_mnt); verify_free_state(td); td_zone_free_index(td); if (fio_option_is_set(o, cpumask)) { ret = fio_cpuset_exit(&o->cpumask); if (ret) td_verror(td, ret, "fio_cpuset_exit"); } /* * do this very late, it will log file closing as well */ if (o->write_iolog_file) write_iolog_close(td); if (td->io_log_rfile) fclose(td->io_log_rfile); td_set_runstate(td, TD_EXITED); /* * Do this last after setting our runstate to exited, so we * know that the stat thread is signaled. */ check_update_rusage(td); sk_out_drop(); return (void *) (uintptr_t) td->error; } /* * Run over the job map and reap the threads that have exited, if any. */ static void reap_threads(unsigned int *nr_running, uint64_t *t_rate, uint64_t *m_rate) { struct thread_data *td; unsigned int cputhreads, realthreads, pending; int i, status, ret; /* * reap exited threads (TD_EXITED -> TD_REAPED) */ realthreads = pending = cputhreads = 0; for_each_td(td, i) { int flags = 0; if (!strcmp(td->o.ioengine, "cpuio")) cputhreads++; else realthreads++; if (!td->pid) { pending++; continue; } if (td->runstate == TD_REAPED) continue; if (td->o.use_thread) { if (td->runstate == TD_EXITED) { td_set_runstate(td, TD_REAPED); goto reaped; } continue; } flags = WNOHANG; if (td->runstate == TD_EXITED) flags = 0; /* * check if someone quit or got killed in an unusual way */ ret = waitpid(td->pid, &status, flags); if (ret < 0) { if (errno == ECHILD) { log_err("fio: pid=%d disappeared %d\n", (int) td->pid, td->runstate); td->sig = ECHILD; td_set_runstate(td, TD_REAPED); goto reaped; } perror("waitpid"); } else if (ret == td->pid) { if (WIFSIGNALED(status)) { int sig = WTERMSIG(status); if (sig != SIGTERM && sig != SIGUSR2) log_err("fio: pid=%d, got signal=%d\n", (int) td->pid, sig); td->sig = sig; td_set_runstate(td, TD_REAPED); goto reaped; } if (WIFEXITED(status)) { if (WEXITSTATUS(status) && !td->error) td->error = WEXITSTATUS(status); td_set_runstate(td, TD_REAPED); goto reaped; } } /* * If the job is stuck, do a forceful timeout of it and * move on. */ if (td->terminate && td->runstate < TD_FSYNCING && time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) { log_err("fio: job '%s' (state=%d) hasn't exited in " "%lu seconds, it appears to be stuck. Doing " "forceful exit of this job.\n", td->o.name, td->runstate, (unsigned long) time_since_now(&td->terminate_time)); td_set_runstate(td, TD_REAPED); goto reaped; } /* * thread is not dead, continue */ pending++; continue; reaped: (*nr_running)--; (*m_rate) -= ddir_rw_sum(td->o.ratemin); (*t_rate) -= ddir_rw_sum(td->o.rate); if (!td->pid) pending--; if (td->error) exit_value++; done_secs += mtime_since_now(&td->epoch) / 1000; profile_td_exit(td); } if (*nr_running == cputhreads && !pending && realthreads) fio_terminate_threads(TERMINATE_ALL); } static bool __check_trigger_file(void) { struct stat sb; if (!trigger_file) return false; if (stat(trigger_file, &sb)) return false; if (unlink(trigger_file) < 0) log_err("fio: failed to unlink %s: %s\n", trigger_file, strerror(errno)); return true; } static bool trigger_timedout(void) { if (trigger_timeout) if (time_since_genesis() >= trigger_timeout) { trigger_timeout = 0; return true; } return false; } void exec_trigger(const char *cmd) { int ret; if (!cmd || cmd[0] == '\0') return; ret = system(cmd); if (ret == -1) log_err("fio: failed executing %s trigger\n", cmd); } void check_trigger_file(void) { if (__check_trigger_file() || trigger_timedout()) { if (nr_clients) fio_clients_send_trigger(trigger_remote_cmd); else { verify_save_state(IO_LIST_ALL); fio_terminate_threads(TERMINATE_ALL); exec_trigger(trigger_cmd); } } } static int fio_verify_load_state(struct thread_data *td) { int ret; if (!td->o.verify_state) return 0; if (is_backend) { void *data; ret = fio_server_get_verify_state(td->o.name, td->thread_number - 1, &data); if (!ret) verify_assign_state(td, data); } else ret = verify_load_state(td, "local"); return ret; } static void do_usleep(unsigned int usecs) { check_for_running_stats(); check_trigger_file(); usleep(usecs); } static bool check_mount_writes(struct thread_data *td) { struct fio_file *f; unsigned int i; if (!td_write(td) || td->o.allow_mounted_write) return false; /* * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs * are mkfs'd and mounted. */ for_each_file(td, f, i) { #ifdef FIO_HAVE_CHARDEV_SIZE if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR) #else if (f->filetype != FIO_TYPE_BLOCK) #endif continue; if (device_is_mounted(f->file_name)) goto mounted; } return false; mounted: log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name); return true; } static bool waitee_running(struct thread_data *me) { const char *waitee = me->o.wait_for; const char *self = me->o.name; struct thread_data *td; int i; if (!waitee) return false; for_each_td(td, i) { if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee)) continue; if (td->runstate < TD_EXITED) { dprint(FD_PROCESS, "%s fenced by %s(%s)\n", self, td->o.name, runstate_to_name(td->runstate)); return true; } } dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee); return false; } /* * Main function for kicking off and reaping jobs, as needed. */ static void run_threads(struct sk_out *sk_out) { struct thread_data *td; unsigned int i, todo, nr_running, nr_started; uint64_t m_rate, t_rate; uint64_t spent; if (fio_gtod_offload && fio_start_gtod_thread()) return; fio_idle_prof_init(); set_sig_handlers(); nr_thread = nr_process = 0; for_each_td(td, i) { if (check_mount_writes(td)) return; if (td->o.use_thread) nr_thread++; else nr_process++; } if (output_format & FIO_OUTPUT_NORMAL) { log_info("Starting "); if (nr_thread) log_info("%d thread%s", nr_thread, nr_thread > 1 ? "s" : ""); if (nr_process) { if (nr_thread) log_info(" and "); log_info("%d process%s", nr_process, nr_process > 1 ? "es" : ""); } log_info("\n"); log_info_flush(); } todo = thread_number; nr_running = 0; nr_started = 0; m_rate = t_rate = 0; for_each_td(td, i) { print_status_init(td->thread_number - 1); if (!td->o.create_serialize) continue; if (fio_verify_load_state(td)) goto reap; /* * do file setup here so it happens sequentially, * we don't want X number of threads getting their * client data interspersed on disk */ if (setup_files(td)) { reap: exit_value++; if (td->error) log_err("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, td->verror); td_set_runstate(td, TD_REAPED); todo--; } else { struct fio_file *f; unsigned int j; /* * for sharing to work, each job must always open * its own files. so close them, if we opened them * for creation */ for_each_file(td, f, j) { if (fio_file_open(f)) td_io_close_file(td, f); } } } /* start idle threads before io threads start to run */ fio_idle_prof_start(); set_genesis_time(); while (todo) { struct thread_data *map[REAL_MAX_JOBS]; struct timespec this_start; int this_jobs = 0, left; struct fork_data *fd; /* * create threads (TD_NOT_CREATED -> TD_CREATED) */ for_each_td(td, i) { if (td->runstate != TD_NOT_CREATED) continue; /* * never got a chance to start, killed by other * thread for some reason */ if (td->terminate) { todo--; continue; } if (td->o.start_delay) { spent = utime_since_genesis(); if (td->o.start_delay > spent) continue; } if (td->o.stonewall && (nr_started || nr_running)) { dprint(FD_PROCESS, "%s: stonewall wait\n", td->o.name); break; } if (waitee_running(td)) { dprint(FD_PROCESS, "%s: waiting for %s\n", td->o.name, td->o.wait_for); continue; } init_disk_util(td); td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED); td->update_rusage = 0; /* * Set state to created. Thread will transition * to TD_INITIALIZED when it's done setting up. */ td_set_runstate(td, TD_CREATED); map[this_jobs++] = td; nr_started++; fd = calloc(1, sizeof(*fd)); fd->td = td; fd->sk_out = sk_out; if (td->o.use_thread) { int ret; dprint(FD_PROCESS, "will pthread_create\n"); ret = pthread_create(&td->thread, NULL, thread_main, fd); if (ret) { log_err("pthread_create: %s\n", strerror(ret)); free(fd); nr_started--; break; } fd = NULL; ret = pthread_detach(td->thread); if (ret) log_err("pthread_detach: %s", strerror(ret)); } else { pid_t pid; dprint(FD_PROCESS, "will fork\n"); pid = fork(); if (!pid) { int ret; ret = (int)(uintptr_t)thread_main(fd); _exit(ret); } else if (i == fio_debug_jobno) *fio_debug_jobp = pid; } dprint(FD_MUTEX, "wait on startup_sem\n"); if (fio_sem_down_timeout(startup_sem, 10000)) { log_err("fio: job startup hung? exiting.\n"); fio_terminate_threads(TERMINATE_ALL); fio_abort = 1; nr_started--; free(fd); break; } dprint(FD_MUTEX, "done waiting on startup_sem\n"); } /* * Wait for the started threads to transition to * TD_INITIALIZED. */ fio_gettime(&this_start, NULL); left = this_jobs; while (left && !fio_abort) { if (mtime_since_now(&this_start) > JOB_START_TIMEOUT) break; do_usleep(100000); for (i = 0; i < this_jobs; i++) { td = map[i]; if (!td) continue; if (td->runstate == TD_INITIALIZED) { map[i] = NULL; left--; } else if (td->runstate >= TD_EXITED) { map[i] = NULL; left--; todo--; nr_running++; /* work-around... */ } } } if (left) { log_err("fio: %d job%s failed to start\n", left, left > 1 ? "s" : ""); for (i = 0; i < this_jobs; i++) { td = map[i]; if (!td) continue; kill(td->pid, SIGTERM); } break; } /* * start created threads (TD_INITIALIZED -> TD_RUNNING). */ for_each_td(td, i) { if (td->runstate != TD_INITIALIZED) continue; if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); nr_running++; nr_started--; m_rate += ddir_rw_sum(td->o.ratemin); t_rate += ddir_rw_sum(td->o.rate); todo--; fio_sem_up(td->sem); } reap_threads(&nr_running, &t_rate, &m_rate); if (todo) do_usleep(100000); } while (nr_running) { reap_threads(&nr_running, &t_rate, &m_rate); do_usleep(10000); } fio_idle_prof_stop(); update_io_ticks(); } static void free_disk_util(void) { disk_util_prune_entries(); helper_thread_destroy(); } int fio_backend(struct sk_out *sk_out) { struct thread_data *td; int i; if (exec_profile) { if (load_profile(exec_profile)) return 1; free(exec_profile); exec_profile = NULL; } if (!thread_number) return 0; if (write_bw_log) { struct log_params p = { .log_type = IO_LOG_TYPE_BW, }; setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log"); setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log"); setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log"); } startup_sem = fio_sem_init(FIO_SEM_LOCKED); if (!sk_out) is_local_backend = true; if (startup_sem == NULL) return 1; set_genesis_time(); stat_init(); helper_thread_create(startup_sem, sk_out); cgroup_list = smalloc(sizeof(*cgroup_list)); if (cgroup_list) INIT_FLIST_HEAD(cgroup_list); run_threads(sk_out); helper_thread_exit(); if (!fio_abort) { __show_run_stats(); if (write_bw_log) { for (i = 0; i < DDIR_RWDIR_CNT; i++) { struct io_log *log = agg_io_log[i]; flush_log(log, false); free_log(log); } } } for_each_td(td, i) { steadystate_free(td); fio_options_free(td); if (td->rusage_sem) { fio_sem_remove(td->rusage_sem); td->rusage_sem = NULL; } fio_sem_remove(td->sem); td->sem = NULL; } free_disk_util(); if (cgroup_list) { cgroup_kill(cgroup_list); sfree(cgroup_list); } fio_sem_remove(startup_sem); stat_exit(); return exit_value; }