/** @file CPU DXE Module to produce CPU ARCH Protocol. Copyright (c) 2008 - 2023, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "CpuDxe.h" #include "CpuMp.h" #include "CpuPageTable.h" #define CPU_INTERRUPT_NUM 256 // // Global Variables // BOOLEAN InterruptState = FALSE; EFI_HANDLE mCpuHandle = NULL; BOOLEAN mIsFlushingGCD; BOOLEAN mIsAllocatingPageTable = FALSE; UINT64 mValidMtrrAddressMask; UINT64 mValidMtrrBitsMask; UINT64 mTimerPeriod = 0; FIXED_MTRR mFixedMtrrTable[] = { { MSR_IA32_MTRR_FIX64K_00000, 0, 0x10000 }, { MSR_IA32_MTRR_FIX16K_80000, 0x80000, 0x4000 }, { MSR_IA32_MTRR_FIX16K_A0000, 0xA0000, 0x4000 }, { MSR_IA32_MTRR_FIX4K_C0000, 0xC0000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_C8000, 0xC8000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_D0000, 0xD0000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_D8000, 0xD8000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_E0000, 0xE0000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_E8000, 0xE8000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_F0000, 0xF0000, 0x1000 }, { MSR_IA32_MTRR_FIX4K_F8000, 0xF8000, 0x1000 }, }; EFI_CPU_ARCH_PROTOCOL gCpu = { CpuFlushCpuDataCache, CpuEnableInterrupt, CpuDisableInterrupt, CpuGetInterruptState, CpuInit, CpuRegisterInterruptHandler, CpuGetTimerValue, CpuSetMemoryAttributes, 1, // NumberOfTimers 4 // DmaBufferAlignment }; // // CPU Arch Protocol Functions // /** Flush CPU data cache. If the instruction cache is fully coherent with all DMA operations then function can just return EFI_SUCCESS. @param This Protocol instance structure @param Start Physical address to start flushing from. @param Length Number of bytes to flush. Round up to chipset granularity. @param FlushType Specifies the type of flush operation to perform. @retval EFI_SUCCESS If cache was flushed @retval EFI_UNSUPPORTED If flush type is not supported. @retval EFI_DEVICE_ERROR If requested range could not be flushed. **/ EFI_STATUS EFIAPI CpuFlushCpuDataCache ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS Start, IN UINT64 Length, IN EFI_CPU_FLUSH_TYPE FlushType ) { if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) { AsmWbinvd (); return EFI_SUCCESS; } else if (FlushType == EfiCpuFlushTypeInvalidate) { AsmInvd (); return EFI_SUCCESS; } else { return EFI_UNSUPPORTED; } } /** Enables CPU interrupts. @param This Protocol instance structure @retval EFI_SUCCESS If interrupts were enabled in the CPU @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU. **/ EFI_STATUS EFIAPI CpuEnableInterrupt ( IN EFI_CPU_ARCH_PROTOCOL *This ) { EnableInterrupts (); InterruptState = TRUE; return EFI_SUCCESS; } /** Disables CPU interrupts. @param This Protocol instance structure @retval EFI_SUCCESS If interrupts were disabled in the CPU. @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU. **/ EFI_STATUS EFIAPI CpuDisableInterrupt ( IN EFI_CPU_ARCH_PROTOCOL *This ) { DisableInterrupts (); InterruptState = FALSE; return EFI_SUCCESS; } /** Return the state of interrupts. @param This Protocol instance structure @param State Pointer to the CPU's current interrupt state @retval EFI_SUCCESS If interrupts were disabled in the CPU. @retval EFI_INVALID_PARAMETER State is NULL. **/ EFI_STATUS EFIAPI CpuGetInterruptState ( IN EFI_CPU_ARCH_PROTOCOL *This, OUT BOOLEAN *State ) { if (State == NULL) { return EFI_INVALID_PARAMETER; } *State = InterruptState; return EFI_SUCCESS; } /** Generates an INIT to the CPU. @param This Protocol instance structure @param InitType Type of CPU INIT to perform @retval EFI_SUCCESS If CPU INIT occurred. This value should never be seen. @retval EFI_DEVICE_ERROR If CPU INIT failed. @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported. **/ EFI_STATUS EFIAPI CpuInit ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_CPU_INIT_TYPE InitType ) { return EFI_UNSUPPORTED; } /** Registers a function to be called from the CPU interrupt handler. @param This Protocol instance structure @param InterruptType Defines which interrupt to hook. IA-32 valid range is 0x00 through 0xFF @param InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs. A null pointer is an error condition. @retval EFI_SUCCESS If handler installed or uninstalled. @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was previously installed. @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not previously installed. @retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported. **/ EFI_STATUS EFIAPI CpuRegisterInterruptHandler ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_EXCEPTION_TYPE InterruptType, IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler ) { return RegisterCpuInterruptHandler (InterruptType, InterruptHandler); } /** Returns a timer value from one of the CPU's internal timers. There is no inherent time interval between ticks but is a function of the CPU frequency. @param This - Protocol instance structure. @param TimerIndex - Specifies which CPU timer is requested. @param TimerValue - Pointer to the returned timer value. @param TimerPeriod - A pointer to the amount of time that passes in femtoseconds (10-15) for each increment of TimerValue. If TimerValue does not increment at a predictable rate, then 0 is returned. The amount of time that has passed between two calls to GetTimerValue() can be calculated with the formula (TimerValue2 - TimerValue1) * TimerPeriod. This parameter is optional and may be NULL. @retval EFI_SUCCESS - If the CPU timer count was returned. @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers. @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer. @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL. **/ EFI_STATUS EFIAPI CpuGetTimerValue ( IN EFI_CPU_ARCH_PROTOCOL *This, IN UINT32 TimerIndex, OUT UINT64 *TimerValue, OUT UINT64 *TimerPeriod OPTIONAL ) { UINT64 BeginValue; UINT64 EndValue; if (TimerValue == NULL) { return EFI_INVALID_PARAMETER; } if (TimerIndex != 0) { return EFI_INVALID_PARAMETER; } *TimerValue = AsmReadTsc (); if (TimerPeriod != NULL) { if (mTimerPeriod == 0) { // // Read time stamp counter before and after delay of 100 microseconds // BeginValue = AsmReadTsc (); MicroSecondDelay (100); EndValue = AsmReadTsc (); // // Calculate the actual frequency // mTimerPeriod = DivU64x64Remainder ( MultU64x32 ( 1000 * 1000 * 1000, 100 ), EndValue - BeginValue, NULL ); } *TimerPeriod = mTimerPeriod; } return EFI_SUCCESS; } /** A minimal wrapper function that allows MtrrSetAllMtrrs() to be passed to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() as Procedure. @param[in] Buffer Pointer to an MTRR_SETTINGS object, to be passed to MtrrSetAllMtrrs(). **/ VOID EFIAPI SetMtrrsFromBuffer ( IN VOID *Buffer ) { MtrrSetAllMtrrs (Buffer); } /** Implementation of SetMemoryAttributes() service of CPU Architecture Protocol. This function modifies the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param This The EFI_CPU_ARCH_PROTOCOL instance. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes The bit mask of attributes to set for the memory region. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI CpuSetMemoryAttributes ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { RETURN_STATUS Status; MTRR_MEMORY_CACHE_TYPE CacheType; EFI_STATUS MpStatus; EFI_MP_SERVICES_PROTOCOL *MpService; MTRR_SETTINGS MtrrSettings; UINT64 CacheAttributes; UINT64 MemoryAttributes; MTRR_MEMORY_CACHE_TYPE CurrentCacheType; // // If this function is called because GCD SetMemorySpaceAttributes () is called // by RefreshGcdMemoryAttributes (), then we are just synchronizing GCD memory // map with MTRR values. So there is no need to modify MTRRs, just return immediately // to avoid unnecessary computing. // if (mIsFlushingGCD) { DEBUG ((DEBUG_VERBOSE, " Flushing GCD\n")); return EFI_SUCCESS; } // // During memory attributes updating, new pages may be allocated to setup // smaller granularity of page table. Page allocation action might then cause // another calling of CpuSetMemoryAttributes() recursively, due to memory // protection policy configured (such as PcdDxeNxMemoryProtectionPolicy). // Since this driver will always protect memory used as page table by itself, // there's no need to apply protection policy requested from memory service. // So it's safe to just return EFI_SUCCESS if this time of calling is caused // by page table memory allocation. // if (mIsAllocatingPageTable) { DEBUG ((DEBUG_VERBOSE, " Allocating page table memory\n")); return EFI_SUCCESS; } CacheAttributes = Attributes & EFI_CACHE_ATTRIBUTE_MASK; MemoryAttributes = Attributes & EFI_MEMORY_ATTRIBUTE_MASK; if (Attributes != (CacheAttributes | MemoryAttributes)) { return EFI_INVALID_PARAMETER; } if (CacheAttributes != 0) { if (!IsMtrrSupported ()) { return EFI_UNSUPPORTED; } switch (CacheAttributes) { case EFI_MEMORY_UC: CacheType = CacheUncacheable; break; case EFI_MEMORY_WC: CacheType = CacheWriteCombining; break; case EFI_MEMORY_WT: CacheType = CacheWriteThrough; break; case EFI_MEMORY_WP: CacheType = CacheWriteProtected; break; case EFI_MEMORY_WB: CacheType = CacheWriteBack; break; default: return EFI_INVALID_PARAMETER; } CurrentCacheType = MtrrGetMemoryAttribute (BaseAddress); if (CurrentCacheType != CacheType) { // // call MTRR library function // Status = MtrrSetMemoryAttribute ( BaseAddress, Length, CacheType ); if (!RETURN_ERROR (Status)) { MpStatus = gBS->LocateProtocol ( &gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpService ); // // Synchronize the update with all APs // if (!EFI_ERROR (MpStatus)) { MtrrGetAllMtrrs (&MtrrSettings); MpStatus = MpService->StartupAllAPs ( MpService, // This SetMtrrsFromBuffer, // Procedure FALSE, // SingleThread NULL, // WaitEvent 0, // TimeoutInMicrosecsond &MtrrSettings, // ProcedureArgument NULL // FailedCpuList ); ASSERT (MpStatus == EFI_SUCCESS || MpStatus == EFI_NOT_STARTED); } } if (EFI_ERROR (Status)) { return Status; } } } // // Set memory attribute by page table // return AssignMemoryPageAttributes (NULL, BaseAddress, Length, MemoryAttributes, NULL); } /** Initializes the valid bits mask and valid address mask for MTRRs. This function initializes the valid bits mask and valid address mask for MTRRs. **/ VOID InitializeMtrrMask ( VOID ) { UINT32 MaxExtendedFunction; CPUID_VIR_PHY_ADDRESS_SIZE_EAX VirPhyAddressSize; UINT32 MaxFunction; CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX ExtendedFeatureFlagsEcx; MSR_IA32_TME_ACTIVATE_REGISTER TmeActivate; AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunction, NULL, NULL, NULL); if (MaxExtendedFunction >= CPUID_VIR_PHY_ADDRESS_SIZE) { AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL); } else { VirPhyAddressSize.Bits.PhysicalAddressBits = 36; } // // CPUID enumeration of MAX_PA is unaffected by TME-MK activation and will continue // to report the maximum physical address bits available for software to use, // irrespective of the number of KeyID bits. // So, we need to check if TME is enabled and adjust the PA size accordingly. // AsmCpuid (CPUID_SIGNATURE, &MaxFunction, NULL, NULL, NULL); if (MaxFunction >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) { AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, 0, NULL, NULL, &ExtendedFeatureFlagsEcx.Uint32, NULL); if (ExtendedFeatureFlagsEcx.Bits.TME_EN == 1) { TmeActivate.Uint64 = AsmReadMsr64 (MSR_IA32_TME_ACTIVATE); if (TmeActivate.Bits.TmeEnable == 1) { VirPhyAddressSize.Bits.PhysicalAddressBits -= TmeActivate.Bits.MkTmeKeyidBits; } } } mValidMtrrBitsMask = LShiftU64 (1, VirPhyAddressSize.Bits.PhysicalAddressBits) - 1; mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL; } /** Gets GCD Mem Space type from MTRR Type. This function gets GCD Mem Space type from MTRR Type. @param MtrrAttributes MTRR memory type @return GCD Mem Space type **/ UINT64 GetMemorySpaceAttributeFromMtrrType ( IN UINT8 MtrrAttributes ) { switch (MtrrAttributes) { case MTRR_CACHE_UNCACHEABLE: return EFI_MEMORY_UC; case MTRR_CACHE_WRITE_COMBINING: return EFI_MEMORY_WC; case MTRR_CACHE_WRITE_THROUGH: return EFI_MEMORY_WT; case MTRR_CACHE_WRITE_PROTECTED: return EFI_MEMORY_WP; case MTRR_CACHE_WRITE_BACK: return EFI_MEMORY_WB; default: return 0; } } /** Searches memory descriptors covered by given memory range. This function searches into the Gcd Memory Space for descriptors (from StartIndex to EndIndex) that contains the memory range specified by BaseAddress and Length. @param MemorySpaceMap Gcd Memory Space Map as array. @param NumberOfDescriptors Number of descriptors in map. @param BaseAddress BaseAddress for the requested range. @param Length Length for the requested range. @param StartIndex Start index into the Gcd Memory Space Map. @param EndIndex End index into the Gcd Memory Space Map. @retval EFI_SUCCESS Search successfully. @retval EFI_NOT_FOUND The requested descriptors does not exist. **/ EFI_STATUS SearchGcdMemorySpaces ( IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap, IN UINTN NumberOfDescriptors, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, OUT UINTN *StartIndex, OUT UINTN *EndIndex ) { UINTN Index; *StartIndex = 0; *EndIndex = 0; for (Index = 0; Index < NumberOfDescriptors; Index++) { if ((BaseAddress >= MemorySpaceMap[Index].BaseAddress) && (BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length)) { *StartIndex = Index; } if ((BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress) && (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length)) { *EndIndex = Index; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** Sets the attributes for a specified range in Gcd Memory Space Map. This function sets the attributes for a specified range in Gcd Memory Space Map. @param MemorySpaceMap Gcd Memory Space Map as array @param NumberOfDescriptors Number of descriptors in map @param BaseAddress BaseAddress for the range @param Length Length for the range @param Attributes Attributes to set @retval EFI_SUCCESS Memory attributes set successfully @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space **/ EFI_STATUS SetGcdMemorySpaceAttributes ( IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap, IN UINTN NumberOfDescriptors, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { EFI_STATUS Status; UINTN Index; UINTN StartIndex; UINTN EndIndex; EFI_PHYSICAL_ADDRESS RegionStart; UINT64 RegionLength; // // Get all memory descriptors covered by the memory range // Status = SearchGcdMemorySpaces ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, &StartIndex, &EndIndex ); if (EFI_ERROR (Status)) { return Status; } // // Go through all related descriptors and set attributes accordingly // for (Index = StartIndex; Index <= EndIndex; Index++) { if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) { continue; } // // Calculate the start and end address of the overlapping range // if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) { RegionStart = BaseAddress; } else { RegionStart = MemorySpaceMap[Index].BaseAddress; } if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) { RegionLength = BaseAddress + Length - RegionStart; } else { RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart; } // // Set memory attributes according to MTRR attribute and the original attribute of descriptor // gDS->SetMemorySpaceAttributes ( RegionStart, RegionLength, (MemorySpaceMap[Index].Attributes & ~EFI_CACHE_ATTRIBUTE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes) ); } return EFI_SUCCESS; } /** Refreshes the GCD Memory Space attributes according to MTRRs. This function refreshes the GCD Memory Space attributes according to MTRRs. **/ VOID RefreshMemoryAttributesFromMtrr ( VOID ) { EFI_STATUS Status; UINTN Index; UINTN SubIndex; UINT64 RegValue; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; UINT64 Attributes; UINT64 CurrentAttributes; UINT8 MtrrType; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; UINT64 DefaultAttributes; VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR]; MTRR_FIXED_SETTINGS MtrrFixedSettings; UINT32 FirmwareVariableMtrrCount; UINT8 DefaultMemoryType; FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount (); ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR); MemorySpaceMap = NULL; // // Initialize the valid bits mask and valid address mask for MTRRs // InitializeMtrrMask (); // // Get the memory attribute of variable MTRRs // MtrrGetMemoryAttributeInVariableMtrr ( mValidMtrrBitsMask, mValidMtrrAddressMask, VariableMtrr ); // // Get the memory space map from GCD // Status = gDS->GetMemorySpaceMap ( &NumberOfDescriptors, &MemorySpaceMap ); ASSERT_EFI_ERROR (Status); DefaultMemoryType = (UINT8)MtrrGetDefaultMemoryType (); DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType); // // Set default attributes to all spaces. // for (Index = 0; Index < NumberOfDescriptors; Index++) { if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) { continue; } gDS->SetMemorySpaceAttributes ( MemorySpaceMap[Index].BaseAddress, MemorySpaceMap[Index].Length, (MemorySpaceMap[Index].Attributes & ~EFI_CACHE_ATTRIBUTE_MASK) | (MemorySpaceMap[Index].Capabilities & DefaultAttributes) ); } // // Go for variable MTRRs with WB attribute // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && (VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK)) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, EFI_MEMORY_WB ); } } // // Go for variable MTRRs with the attribute except for WB and UC attributes // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && (VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK) && (VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE)) { Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8)VariableMtrr[Index].Type); SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, Attributes ); } } // // Go for variable MTRRs with UC attribute // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && (VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE)) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, EFI_MEMORY_UC ); } } // // Go for fixed MTRRs // Attributes = 0; BaseAddress = 0; Length = 0; MtrrGetFixedMtrr (&MtrrFixedSettings); for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { RegValue = MtrrFixedSettings.Mtrr[Index]; // // Check for continuous fixed MTRR sections // for (SubIndex = 0; SubIndex < 8; SubIndex++) { MtrrType = (UINT8)RShiftU64 (RegValue, SubIndex * 8); CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType); if (Length == 0) { // // A new MTRR attribute begins // Attributes = CurrentAttributes; } else { // // If fixed MTRR attribute changed, then set memory attribute for previous attribute // if (CurrentAttributes != Attributes) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, Attributes ); BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex; Length = 0; Attributes = CurrentAttributes; } } Length += mFixedMtrrTable[Index].Length; } } // // Handle the last fixed MTRR region // SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, Attributes ); // // Free memory space map allocated by GCD service GetMemorySpaceMap () // if (MemorySpaceMap != NULL) { FreePool (MemorySpaceMap); } } /** Check if paging is enabled or not. **/ BOOLEAN IsPagingAndPageAddressExtensionsEnabled ( VOID ) { IA32_CR0 Cr0; IA32_CR4 Cr4; Cr0.UintN = AsmReadCr0 (); Cr4.UintN = AsmReadCr4 (); return ((Cr0.Bits.PG != 0) && (Cr4.Bits.PAE != 0)); } /** Refreshes the GCD Memory Space attributes according to MTRRs and Paging. This function refreshes the GCD Memory Space attributes according to MTRRs and page tables. **/ VOID RefreshGcdMemoryAttributes ( VOID ) { mIsFlushingGCD = TRUE; if (IsMtrrSupported ()) { RefreshMemoryAttributesFromMtrr (); } if (IsPagingAndPageAddressExtensionsEnabled ()) { RefreshGcdMemoryAttributesFromPaging (); } mIsFlushingGCD = FALSE; } /** Initialize Interrupt Descriptor Table for interrupt handling. **/ VOID InitInterruptDescriptorTable ( VOID ) { EFI_STATUS Status; EFI_VECTOR_HANDOFF_INFO *VectorInfoList; EFI_VECTOR_HANDOFF_INFO *VectorInfo; IA32_IDT_GATE_DESCRIPTOR *IdtTable; IA32_DESCRIPTOR IdtDescriptor; UINTN IdtEntryCount; VectorInfo = NULL; Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **)&VectorInfoList); if ((Status == EFI_SUCCESS) && (VectorInfoList != NULL)) { VectorInfo = VectorInfoList; } AsmReadIdtr (&IdtDescriptor); IdtEntryCount = (IdtDescriptor.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR); if (IdtEntryCount < CPU_INTERRUPT_NUM) { // // Increase Interrupt Descriptor Table and Copy the old IDT table in // IdtTable = AllocateZeroPool (sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM); ASSERT (IdtTable != NULL); CopyMem (IdtTable, (VOID *)IdtDescriptor.Base, sizeof (IA32_IDT_GATE_DESCRIPTOR) * IdtEntryCount); // // Load Interrupt Descriptor Table // IdtDescriptor.Base = (UINTN)IdtTable; IdtDescriptor.Limit = (UINT16)(sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM - 1); AsmWriteIdtr (&IdtDescriptor); } Status = InitializeCpuExceptionHandlers (VectorInfo); ASSERT_EFI_ERROR (Status); } /** Callback function for idle events. @param Event Event whose notification function is being invoked. @param Context The pointer to the notification function's context, which is implementation-dependent. **/ VOID EFIAPI IdleLoopEventCallback ( IN EFI_EVENT Event, IN VOID *Context ) { CpuSleep (); } /** Ensure the compatibility of a memory space descriptor with the MMIO aperture. The memory space descriptor can come from the GCD memory space map, or it can represent a gap between two neighboring memory space descriptors. In the latter case, the GcdMemoryType field is expected to be EfiGcdMemoryTypeNonExistent. If the memory space descriptor already has type EfiGcdMemoryTypeMemoryMappedIo, and its capabilities are a superset of the required capabilities, then no action is taken -- it is by definition compatible with the aperture. Otherwise, the intersection of the memory space descriptor is calculated with the aperture. If the intersection is the empty set (no overlap), no action is taken; the memory space descriptor is compatible with the aperture. Otherwise, the type of the descriptor is investigated again. If the type is EfiGcdMemoryTypeNonExistent (representing a gap, or a genuine descriptor with such a type), then an attempt is made to add the intersection as MMIO space to the GCD memory space map, with the specified capabilities. This ensures continuity for the aperture, and the descriptor is deemed compatible with the aperture. Otherwise, the memory space descriptor is incompatible with the MMIO aperture. @param[in] Base Base address of the aperture. @param[in] Length Length of the aperture. @param[in] Capabilities Capabilities required by the aperture. @param[in] Descriptor The descriptor to ensure compatibility with the aperture for. @retval EFI_SUCCESS The descriptor is compatible. The GCD memory space map may have been updated, for continuity within the aperture. @retval EFI_INVALID_PARAMETER The descriptor is incompatible. @return Error codes from gDS->AddMemorySpace(). **/ EFI_STATUS IntersectMemoryDescriptor ( IN UINT64 Base, IN UINT64 Length, IN UINT64 Capabilities, IN CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor ) { UINT64 IntersectionBase; UINT64 IntersectionEnd; EFI_STATUS Status; if ((Descriptor->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) && ((Descriptor->Capabilities & Capabilities) == Capabilities)) { return EFI_SUCCESS; } IntersectionBase = MAX (Base, Descriptor->BaseAddress); IntersectionEnd = MIN ( Base + Length, Descriptor->BaseAddress + Descriptor->Length ); if (IntersectionBase >= IntersectionEnd) { // // The descriptor and the aperture don't overlap. // return EFI_SUCCESS; } if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeNonExistent) { Status = gDS->AddMemorySpace ( EfiGcdMemoryTypeMemoryMappedIo, IntersectionBase, IntersectionEnd - IntersectionBase, Capabilities ); DEBUG (( EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE, "%a: %a: add [%Lx, %Lx): %r\n", gEfiCallerBaseName, __func__, IntersectionBase, IntersectionEnd, Status )); return Status; } DEBUG (( DEBUG_ERROR, "%a: %a: desc [%Lx, %Lx) type %u cap %Lx conflicts " "with aperture [%Lx, %Lx) cap %Lx\n", gEfiCallerBaseName, __func__, Descriptor->BaseAddress, Descriptor->BaseAddress + Descriptor->Length, (UINT32)Descriptor->GcdMemoryType, Descriptor->Capabilities, Base, Base + Length, Capabilities )); return EFI_INVALID_PARAMETER; } /** Add MMIO space to GCD. The routine checks the GCD database and only adds those which are not added in the specified range to GCD. @param Base Base address of the MMIO space. @param Length Length of the MMIO space. @param Capabilities Capabilities of the MMIO space. @retval EFI_SUCCESS The MMIO space was added successfully. **/ EFI_STATUS AddMemoryMappedIoSpace ( IN UINT64 Base, IN UINT64 Length, IN UINT64 Capabilities ) { EFI_STATUS Status; UINTN Index; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap); if (EFI_ERROR (Status)) { DEBUG (( DEBUG_ERROR, "%a: %a: GetMemorySpaceMap(): %r\n", gEfiCallerBaseName, __func__, Status )); return Status; } for (Index = 0; Index < NumberOfDescriptors; Index++) { Status = IntersectMemoryDescriptor ( Base, Length, Capabilities, &MemorySpaceMap[Index] ); if (EFI_ERROR (Status)) { goto FreeMemorySpaceMap; } } DEBUG_CODE_BEGIN (); // // Make sure there are adjacent descriptors covering [Base, Base + Length). // It is possible that they have not been merged; merging can be prevented // by allocation and different capabilities. // UINT64 CheckBase; EFI_STATUS CheckStatus; EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor; for (CheckBase = Base; CheckBase < Base + Length; CheckBase = Descriptor.BaseAddress + Descriptor.Length) { CheckStatus = gDS->GetMemorySpaceDescriptor (CheckBase, &Descriptor); ASSERT_EFI_ERROR (CheckStatus); ASSERT (Descriptor.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo); ASSERT ((Descriptor.Capabilities & Capabilities) == Capabilities); } DEBUG_CODE_END (); FreeMemorySpaceMap: FreePool (MemorySpaceMap); return Status; } /** Add and allocate CPU local APIC memory mapped space. @param[in]ImageHandle Image handle this driver. **/ VOID AddLocalApicMemorySpace ( IN EFI_HANDLE ImageHandle ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS BaseAddress; BaseAddress = (EFI_PHYSICAL_ADDRESS)GetLocalApicBaseAddress (); Status = AddMemoryMappedIoSpace (BaseAddress, SIZE_4KB, EFI_MEMORY_UC); ASSERT_EFI_ERROR (Status); // // Try to allocate APIC memory mapped space, does not check return // status because it may be allocated by other driver, or DXE Core if // this range is built into Memory Allocation HOB. // Status = gDS->AllocateMemorySpace ( EfiGcdAllocateAddress, EfiGcdMemoryTypeMemoryMappedIo, 0, SIZE_4KB, &BaseAddress, ImageHandle, NULL ); if (EFI_ERROR (Status)) { DEBUG (( DEBUG_INFO, "%a: %a: AllocateMemorySpace() Status - %r\n", gEfiCallerBaseName, __func__, Status )); } } /** Initialize the state information for the CPU Architectural Protocol. @param ImageHandle Image handle this driver. @param SystemTable Pointer to the System Table. @retval EFI_SUCCESS Thread can be successfully created @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure @retval EFI_DEVICE_ERROR Cannot create the thread **/ EFI_STATUS EFIAPI InitializeCpu ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; EFI_EVENT IdleLoopEvent; InitializePageTableLib (); InitializeFloatingPointUnits (); // // Make sure interrupts are disabled // DisableInterrupts (); // // Init GDT for DXE // InitGlobalDescriptorTable (); // // Setup IDT pointer, IDT and interrupt entry points // InitInterruptDescriptorTable (); // // Install CPU Architectural Protocol // Status = gBS->InstallMultipleProtocolInterfaces ( &mCpuHandle, &gEfiCpuArchProtocolGuid, &gCpu, NULL ); ASSERT_EFI_ERROR (Status); // // Refresh GCD memory space map according to MTRR value. // RefreshGcdMemoryAttributes (); // // Add and allocate local APIC memory mapped space // AddLocalApicMemorySpace (ImageHandle); // // Setup a callback for idle events // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, IdleLoopEventCallback, NULL, &gIdleLoopEventGuid, &IdleLoopEvent ); ASSERT_EFI_ERROR (Status); InitializeMpSupport (); return Status; }