/** @file MM Driver Dispatcher. Step #1 - When a FV protocol is added to the system every driver in the FV is added to the mDiscoveredList. The Before, and After Depex are pre-processed as drivers are added to the mDiscoveredList. If an Apriori file exists in the FV those drivers are added to the mScheduledQueue. The mFwVolList is used to make sure a FV is only processed once. Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and start it. After mScheduledQueue is drained check the mDiscoveredList to see if any item has a Depex that is ready to be placed on the mScheduledQueue. Step #3 - Adding to the mScheduledQueue requires that you process Before and After dependencies. This is done recursively as the call to add to the mScheduledQueue checks for Before Depexes and recursively adds all Before Depexes. It then adds the item that was passed in and then processess the After dependencies by recursively calling the routine. Dispatcher Rules: The rules for the dispatcher are similar to the DXE dispatcher. The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3 is the state diagram for the DXE dispatcher Depex - Dependency Expresion. Copyright (c) 2014, Hewlett-Packard Development Company, L.P. Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.
Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "StandaloneMmCore.h" // // MM Dispatcher Data structures // #define KNOWN_FWVOL_SIGNATURE SIGNATURE_32('k','n','o','w') typedef struct { UINTN Signature; LIST_ENTRY Link; // mFwVolList EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; } KNOWN_FWVOL; // // Function Prototypes // EFI_STATUS MmCoreFfsFindMmDriver ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader ); /** Insert InsertedDriverEntry onto the mScheduledQueue. To do this you must add any driver with a before dependency on InsertedDriverEntry first. You do this by recursively calling this routine. After all the Before Depexes are processed you can add InsertedDriverEntry to the mScheduledQueue. Then you can add any driver with an After dependency on InsertedDriverEntry by recursively calling this routine. @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue **/ VOID MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter ( IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry ); // // The Driver List contains one copy of every driver that has been discovered. // Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY // LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList); // // Queue of drivers that are ready to dispatch. This queue is a subset of the // mDiscoveredList.list of EFI_MM_DRIVER_ENTRY. // LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue); // // List of firmware volume headers whose containing firmware volumes have been // parsed and added to the mFwDriverList. // LIST_ENTRY mFwVolList = INITIALIZE_LIST_HEAD_VARIABLE (mFwVolList); // // Flag for the MM Dispacher. TRUE if dispatcher is executing. // BOOLEAN gDispatcherRunning = FALSE; // // Flag for the MM Dispacher. TRUE if there is one or more MM drivers ready to be dispatched // BOOLEAN gRequestDispatch = FALSE; // // The global variable is defined for Loading modules at fixed address feature to track the MM code // memory range usage. It is a bit mapped array in which every bit indicates the correspoding // memory page available or not. // GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mMmCodeMemoryRangeUsageBitMap = NULL; /** To check memory usage bit map array to figure out if the memory range in which the image will be loaded is available or not. If memory range is avaliable, the function will mark the corresponding bits to 1 which indicates the memory range is used. The function is only invoked when load modules at fixed address feature is enabled. @param ImageBase The base addres the image will be loaded at. @param ImageSize The size of the image @retval EFI_SUCCESS The memory range the image will be loaded in is available @retval EFI_NOT_FOUND The memory range the image will be loaded in is not available **/ EFI_STATUS CheckAndMarkFixLoadingMemoryUsageBitMap ( IN EFI_PHYSICAL_ADDRESS ImageBase, IN UINTN ImageSize ) { UINT32 MmCodePageNumber; UINT64 MmCodeSize; EFI_PHYSICAL_ADDRESS MmCodeBase; UINTN BaseOffsetPageNumber; UINTN TopOffsetPageNumber; UINTN Index; // // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressMmCodePageNumber // MmCodePageNumber = 0; MmCodeSize = EFI_PAGES_TO_SIZE (MmCodePageNumber); MmCodeBase = gLoadModuleAtFixAddressMmramBase; // // If the memory usage bit map is not initialized, do it. Every bit in the array // indicate the status of the corresponding memory page, available or not // if (mMmCodeMemoryRangeUsageBitMap == NULL) { mMmCodeMemoryRangeUsageBitMap = AllocateZeroPool (((MmCodePageNumber / 64) + 1) * sizeof (UINT64)); } // // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND // if (mMmCodeMemoryRangeUsageBitMap == NULL) { return EFI_NOT_FOUND; } // // see if the memory range for loading the image is in the MM code range. // if ((MmCodeBase + MmCodeSize < ImageBase + ImageSize) || (MmCodeBase > ImageBase)) { return EFI_NOT_FOUND; } // // Test if the memory is available or not. // BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase - MmCodeBase)); TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase + ImageSize - MmCodeBase)); for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index++) { if ((mMmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64 (1, (Index % 64))) != 0) { // // This page is already used. // return EFI_NOT_FOUND; } } // // Being here means the memory range is available. So mark the bits for the memory range // for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index++) { mMmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64 (1, (Index % 64)); } return EFI_SUCCESS; } /** Get the fixed loading address from image header assigned by build tool. This function only be called when Loading module at Fixed address feature enabled. @param ImageContext Pointer to the image context structure that describes the PE/COFF image that needs to be examined by this function. @retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools . @retval EFI_NOT_FOUND The image has no assigned fixed loadding address. **/ EFI_STATUS GetPeCoffImageFixLoadingAssignedAddress ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { UINTN SectionHeaderOffset; EFI_STATUS Status; EFI_IMAGE_SECTION_HEADER SectionHeader; EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr; EFI_PHYSICAL_ADDRESS FixLoadingAddress; UINT16 Index; UINTN Size; UINT16 NumberOfSections; UINT64 ValueInSectionHeader; FixLoadingAddress = 0; Status = EFI_NOT_FOUND; // // Get PeHeader pointer // ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8 *)ImageContext->Handle + ImageContext->PeCoffHeaderOffset); SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader; NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections; // // Get base address from the first section header that doesn't point to code section. // for (Index = 0; Index < NumberOfSections; Index++) { // // Read section header from file // Size = sizeof (EFI_IMAGE_SECTION_HEADER); Status = ImageContext->ImageRead ( ImageContext->Handle, SectionHeaderOffset, &Size, &SectionHeader ); if (EFI_ERROR (Status)) { return Status; } Status = EFI_NOT_FOUND; if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) { // // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields // in the first section header that doesn't point to code section in image header. So there // is an assumption that when the feature is enabled, if a module with a loading address // assigned by tools, the PointerToRelocations & PointerToLineNumbers fields should not be // Zero, or else, these 2 fields should be set to Zero // ValueInSectionHeader = ReadUnaligned64 ((UINT64 *)&SectionHeader.PointerToRelocations); if (ValueInSectionHeader != 0) { // // Found first section header that doesn't point to code section in which build tool saves the // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields // FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressMmramBase + (INT64)ValueInSectionHeader); // // Check if the memory range is available. // Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment)); if (!EFI_ERROR (Status)) { // // The assigned address is valid. Return the specified loading address // ImageContext->ImageAddress = FixLoadingAddress; } } break; } SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER); } DEBUG (( DEBUG_INFO|DEBUG_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n", FixLoadingAddress, Status )); return Status; } /** Loads an EFI image into SMRAM. @param DriverEntry EFI_MM_DRIVER_ENTRY instance @return EFI_STATUS **/ EFI_STATUS EFIAPI MmLoadImage ( IN OUT EFI_MM_DRIVER_ENTRY *DriverEntry ) { UINTN PageCount; EFI_STATUS Status; EFI_PHYSICAL_ADDRESS DstBuffer; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName)); Status = EFI_SUCCESS; // // Initialize ImageContext // ImageContext.Handle = DriverEntry->Pe32Data; ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory; // // Get information about the image being loaded // Status = PeCoffLoaderGetImageInfo (&ImageContext); if (EFI_ERROR (Status)) { return Status; } PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment); DstBuffer = (UINTN)(-1); Status = MmAllocatePages ( AllocateMaxAddress, EfiRuntimeServicesCode, PageCount, &DstBuffer ); if (EFI_ERROR (Status)) { return Status; } ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer; // // Align buffer on section boundary // ImageContext.ImageAddress += ImageContext.SectionAlignment - 1; ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1)); // // Load the image to our new buffer // Status = PeCoffLoaderLoadImage (&ImageContext); if (EFI_ERROR (Status)) { MmFreePages (DstBuffer, PageCount); return Status; } // // Relocate the image in our new buffer // Status = PeCoffLoaderRelocateImage (&ImageContext); if (EFI_ERROR (Status)) { MmFreePages (DstBuffer, PageCount); return Status; } // // Flush the instruction cache so the image data are written before we execute it // InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize); // // Save Image EntryPoint in DriverEntry // DriverEntry->ImageEntryPoint = ImageContext.EntryPoint; DriverEntry->ImageBuffer = DstBuffer; DriverEntry->NumberOfPage = PageCount; if (mEfiSystemTable != NULL) { Status = mEfiSystemTable->BootServices->AllocatePool ( EfiBootServicesData, sizeof (EFI_LOADED_IMAGE_PROTOCOL), (VOID **)&DriverEntry->LoadedImage ); if (EFI_ERROR (Status)) { MmFreePages (DstBuffer, PageCount); return Status; } ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL)); // // Fill in the remaining fields of the Loaded Image Protocol instance. // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed. // DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION; DriverEntry->LoadedImage->ParentHandle = NULL; DriverEntry->LoadedImage->SystemTable = mEfiSystemTable; DriverEntry->LoadedImage->DeviceHandle = NULL; DriverEntry->LoadedImage->FilePath = NULL; DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer; DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize; DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode; DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData; // // Create a new image handle in the UEFI handle database for the MM Driver // DriverEntry->ImageHandle = NULL; Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces ( &DriverEntry->ImageHandle, &gEfiLoadedImageProtocolGuid, DriverEntry->LoadedImage, NULL ); } // // Print the load address and the PDB file name if it is available // DEBUG_CODE_BEGIN (); UINTN Index; UINTN StartIndex; CHAR8 EfiFileName[256]; DEBUG (( DEBUG_INFO | DEBUG_LOAD, "Loading MM driver at 0x%11p EntryPoint=0x%11p ", (VOID *)(UINTN)ImageContext.ImageAddress, FUNCTION_ENTRY_POINT (ImageContext.EntryPoint) )); // // Print Module Name by Pdb file path. // Windows and Unix style file path are all trimmed correctly. // if (ImageContext.PdbPointer != NULL) { StartIndex = 0; for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) { if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) { StartIndex = Index + 1; } } // // Copy the PDB file name to our temporary string, and replace .pdb with .efi // The PDB file name is limited in the range of 0~255. // If the length is bigger than 255, trim the redundant characters to avoid overflow in array boundary. // for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) { EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex]; if (EfiFileName[Index] == 0) { EfiFileName[Index] = '.'; } if (EfiFileName[Index] == '.') { EfiFileName[Index + 1] = 'e'; EfiFileName[Index + 2] = 'f'; EfiFileName[Index + 3] = 'i'; EfiFileName[Index + 4] = 0; break; } } if (Index == sizeof (EfiFileName) - 4) { EfiFileName[Index] = 0; } DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName)); } DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n")); DEBUG_CODE_END (); return Status; } /** Preprocess dependency expression and update DriverEntry to reflect the state of Before and After dependencies. If DriverEntry->Before or DriverEntry->After is set it will never be cleared. @param DriverEntry DriverEntry element to update . @retval EFI_SUCCESS It always works. **/ EFI_STATUS MmPreProcessDepex ( IN EFI_MM_DRIVER_ENTRY *DriverEntry ) { UINT8 *Iterator; Iterator = DriverEntry->Depex; DriverEntry->Dependent = TRUE; if (*Iterator == EFI_DEP_BEFORE) { DriverEntry->Before = TRUE; } else if (*Iterator == EFI_DEP_AFTER) { DriverEntry->After = TRUE; } if (DriverEntry->Before || DriverEntry->After) { CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID)); } return EFI_SUCCESS; } /** Read Depex and pre-process the Depex for Before and After. If Section Extraction protocol returns an error via ReadSection defer the reading of the Depex. @param DriverEntry Driver to work on. @retval EFI_SUCCESS Depex read and preprossesed @retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error and Depex reading needs to be retried. @retval Error DEPEX not found. **/ EFI_STATUS MmGetDepexSectionAndPreProccess ( IN EFI_MM_DRIVER_ENTRY *DriverEntry ) { EFI_STATUS Status; // // Data already read // if (DriverEntry->Depex == NULL) { Status = EFI_NOT_FOUND; } else { Status = EFI_SUCCESS; } if (EFI_ERROR (Status)) { if (Status == EFI_PROTOCOL_ERROR) { // // The section extraction protocol failed so set protocol error flag // DriverEntry->DepexProtocolError = TRUE; } else { // // If no Depex assume depend on all architectural protocols // DriverEntry->Depex = NULL; DriverEntry->Dependent = TRUE; DriverEntry->DepexProtocolError = FALSE; } } else { // // Set Before and After state information based on Depex // Driver will be put in Dependent state // MmPreProcessDepex (DriverEntry); DriverEntry->DepexProtocolError = FALSE; } return Status; } /** This is the main Dispatcher for MM and it exits when there are no more drivers to run. Drain the mScheduledQueue and load and start a PE image for each driver. Search the mDiscoveredList to see if any driver can be placed on the mScheduledQueue. If no drivers are placed on the mScheduledQueue exit the function. @retval EFI_SUCCESS All of the MM Drivers that could be dispatched have been run and the MM Entry Point has been registered. @retval EFI_NOT_READY The MM Driver that registered the MM Entry Point was just dispatched. @retval EFI_NOT_FOUND There are no MM Drivers available to be dispatched. @retval EFI_ALREADY_STARTED The MM Dispatcher is already running **/ EFI_STATUS MmDispatcher ( VOID ) { EFI_STATUS Status; LIST_ENTRY *Link; EFI_MM_DRIVER_ENTRY *DriverEntry; BOOLEAN ReadyToRun; DEBUG ((DEBUG_INFO, "MmDispatcher\n")); if (!gRequestDispatch) { DEBUG ((DEBUG_INFO, " !gRequestDispatch\n")); return EFI_NOT_FOUND; } if (gDispatcherRunning) { DEBUG ((DEBUG_INFO, " gDispatcherRunning\n")); // // If the dispatcher is running don't let it be restarted. // return EFI_ALREADY_STARTED; } gDispatcherRunning = TRUE; do { // // Drain the Scheduled Queue // DEBUG ((DEBUG_INFO, " Drain the Scheduled Queue\n")); while (!IsListEmpty (&mScheduledQueue)) { DriverEntry = CR ( mScheduledQueue.ForwardLink, EFI_MM_DRIVER_ENTRY, ScheduledLink, EFI_MM_DRIVER_ENTRY_SIGNATURE ); DEBUG ((DEBUG_INFO, " DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName)); // // Load the MM Driver image into memory. If the Driver was transitioned from // Untrusted to Scheduled it would have already been loaded so we may need to // skip the LoadImage // if (DriverEntry->ImageHandle == NULL) { Status = MmLoadImage (DriverEntry); // // Update the driver state to reflect that it's been loaded // if (EFI_ERROR (Status)) { // // The MM Driver could not be loaded, and do not attempt to load or start it again. // Take driver from Scheduled to Initialized. // DriverEntry->Initialized = TRUE; DriverEntry->Scheduled = FALSE; RemoveEntryList (&DriverEntry->ScheduledLink); // // If it's an error don't try the StartImage // continue; } } DriverEntry->Scheduled = FALSE; DriverEntry->Initialized = TRUE; RemoveEntryList (&DriverEntry->ScheduledLink); // // For each MM driver, pass NULL as ImageHandle // if (mEfiSystemTable == NULL) { DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint)); Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)(DriverEntry->ImageHandle, &gMmCoreMmst); } else { DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint)); Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint)( DriverEntry->ImageHandle, mEfiSystemTable ); } if (EFI_ERROR (Status)) { DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status)); MmFreePages (DriverEntry->ImageBuffer, DriverEntry->NumberOfPage); } } // // Search DriverList for items to place on Scheduled Queue // DEBUG ((DEBUG_INFO, " Search DriverList for items to place on Scheduled Queue\n")); ReadyToRun = FALSE; for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) { DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE); DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName)); if (DriverEntry->DepexProtocolError) { // // If Section Extraction Protocol did not let the Depex be read before retry the read // Status = MmGetDepexSectionAndPreProccess (DriverEntry); } if (DriverEntry->Dependent) { if (MmIsSchedulable (DriverEntry)) { MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry); ReadyToRun = TRUE; } } } } while (ReadyToRun); // // If there is no more MM driver to dispatch, stop the dispatch request // DEBUG ((DEBUG_INFO, " no more MM driver to dispatch, stop the dispatch request\n")); gRequestDispatch = FALSE; for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) { DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE); DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName)); if (!DriverEntry->Initialized) { // // We have MM driver pending to dispatch // gRequestDispatch = TRUE; break; } } gDispatcherRunning = FALSE; return EFI_SUCCESS; } /** Insert InsertedDriverEntry onto the mScheduledQueue. To do this you must add any driver with a before dependency on InsertedDriverEntry first. You do this by recursively calling this routine. After all the Before Depexes are processed you can add InsertedDriverEntry to the mScheduledQueue. Then you can add any driver with an After dependency on InsertedDriverEntry by recursively calling this routine. @param InsertedDriverEntry The driver to insert on the ScheduledLink Queue **/ VOID MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter ( IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry ) { LIST_ENTRY *Link; EFI_MM_DRIVER_ENTRY *DriverEntry; // // Process Before Dependency // for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) { DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE); if (DriverEntry->Before && DriverEntry->Dependent && (DriverEntry != InsertedDriverEntry)) { DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName)); DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid)); if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) { // // Recursively process BEFORE // DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n")); MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry); } else { DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n")); } } } // // Convert driver from Dependent to Scheduled state // InsertedDriverEntry->Dependent = FALSE; InsertedDriverEntry->Scheduled = TRUE; InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink); // // Process After Dependency // for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) { DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE); if (DriverEntry->After && DriverEntry->Dependent && (DriverEntry != InsertedDriverEntry)) { DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName)); DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid)); if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) { // // Recursively process AFTER // DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n")); MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry); } else { DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n")); } } } } /** Return TRUE if the firmware volume has been processed, FALSE if not. @param FwVolHeader The header of the firmware volume that's being tested. @retval TRUE The firmware volume denoted by FwVolHeader has been processed @retval FALSE The firmware volume denoted by FwVolHeader has not yet been processed **/ BOOLEAN FvHasBeenProcessed ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader ) { LIST_ENTRY *Link; KNOWN_FWVOL *KnownFwVol; for (Link = mFwVolList.ForwardLink; Link != &mFwVolList; Link = Link->ForwardLink) { KnownFwVol = CR (Link, KNOWN_FWVOL, Link, KNOWN_FWVOL_SIGNATURE); if (KnownFwVol->FwVolHeader == FwVolHeader) { return TRUE; } } return FALSE; } /** Remember that the firmware volume denoted by FwVolHeader has had its drivers placed on mDiscoveredList. This function adds entries to mFwVolList. Items are never removed/freed from mFwVolList. @param FwVolHeader The header of the firmware volume that's being processed. **/ VOID FvIsBeingProcessed ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader ) { KNOWN_FWVOL *KnownFwVol; DEBUG ((DEBUG_INFO, "FvIsBeingProcessed - 0x%08x\n", FwVolHeader)); KnownFwVol = AllocatePool (sizeof (KNOWN_FWVOL)); ASSERT (KnownFwVol != NULL); KnownFwVol->Signature = KNOWN_FWVOL_SIGNATURE; KnownFwVol->FwVolHeader = FwVolHeader; InsertTailList (&mFwVolList, &KnownFwVol->Link); } /** Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry, and initialise any state variables. Read the Depex from the FV and store it in DriverEntry. Pre-process the Depex to set the Before and After state. The Discovered list is never freed and contains booleans that represent the other possible MM driver states. @param [in] FwVolHeader Pointer to the formware volume header. @param [in] Pe32Data Pointer to the PE data. @param [in] Pe32DataSize Size of the PE data. @param [in] Depex Pointer to the Depex info. @param [in] DepexSize Size of the Depex info. @param [in] DriverName Name of driver to add to mDiscoveredList. @retval EFI_SUCCESS If driver was added to the mDiscoveredList. **/ EFI_STATUS MmAddToDriverList ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader, IN VOID *Pe32Data, IN UINTN Pe32DataSize, IN VOID *Depex, IN UINTN DepexSize, IN EFI_GUID *DriverName ) { EFI_MM_DRIVER_ENTRY *DriverEntry; DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data)); // // Create the Driver Entry for the list. ZeroPool initializes lots of variables to // NULL or FALSE. // DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY)); ASSERT (DriverEntry != NULL); DriverEntry->Signature = EFI_MM_DRIVER_ENTRY_SIGNATURE; CopyGuid (&DriverEntry->FileName, DriverName); DriverEntry->FwVolHeader = FwVolHeader; DriverEntry->Pe32Data = Pe32Data; DriverEntry->Pe32DataSize = Pe32DataSize; DriverEntry->Depex = Depex; DriverEntry->DepexSize = DepexSize; MmGetDepexSectionAndPreProccess (DriverEntry); InsertTailList (&mDiscoveredList, &DriverEntry->Link); gRequestDispatch = TRUE; return EFI_SUCCESS; } /** Traverse the discovered list for any drivers that were discovered but not loaded because the dependency expressions evaluated to false. **/ VOID MmDisplayDiscoveredNotDispatched ( VOID ) { LIST_ENTRY *Link; EFI_MM_DRIVER_ENTRY *DriverEntry; for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) { DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE); if (DriverEntry->Dependent) { DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName)); } } }