/*++ @file Copyright (c) 2006 - 2022, Intel Corporation. All rights reserved.
Portions copyright (c) 2008 - 2011, Apple Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "Host.h" #ifdef __APPLE__ #define MAP_ANONYMOUS MAP_ANON #endif // // Globals // EMU_THUNK_PPI mSecEmuThunkPpi = { GasketSecUnixPeiAutoScan, GasketSecUnixFdAddress, GasketSecEmuThunkAddress }; char *gGdbWorkingFileName = NULL; unsigned int mScriptSymbolChangesCount = 0; // // Default information about where the FD is located. // This array gets filled in with information from EFI_FIRMWARE_VOLUMES // EFI_FIRMWARE_VOLUMES is a host environment variable set by system.cmd. // The number of array elements is allocated base on parsing // EFI_FIRMWARE_VOLUMES and the memory is never freed. // UINTN gFdInfoCount = 0; EMU_FD_INFO *gFdInfo; // // Array that supports separate memory ranges. // The memory ranges are set in system.cmd via the EFI_MEMORY_SIZE variable. // The number of array elements is allocated base on parsing // EFI_MEMORY_SIZE and the memory is never freed. // UINTN gSystemMemoryCount = 0; EMU_SYSTEM_MEMORY *gSystemMemory; UINTN mImageContextModHandleArraySize = 0; IMAGE_CONTEXT_TO_MOD_HANDLE *mImageContextModHandleArray = NULL; EFI_PEI_PPI_DESCRIPTOR *gPpiList; int gInXcode = 0; /*++ Breakpoint target for Xcode project. Set in the Xcode XML Xcode breakpoint will 'source Host.gdb' gGdbWorkingFileName is set to Host.gdb **/ VOID SecGdbConfigBreak ( VOID ) { } /*++ Routine Description: Main entry point to SEC for Unix. This is a unix program Arguments: Argc - Number of command line arguments Argv - Array of command line argument strings Envp - Array of environment variable strings Returns: 0 - Normal exit 1 - Abnormal exit **/ int main ( IN int Argc, IN char **Argv, IN char **Envp ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS InitialStackMemory; UINT64 InitialStackMemorySize; UINTN Index; UINTN Index1; UINTN Index2; UINTN PeiIndex; CHAR8 *FileName; BOOLEAN Done; EFI_PEI_FILE_HANDLE FileHandle; VOID *SecFile; CHAR16 *MemorySizeStr; CHAR16 *FirmwareVolumesStr; UINTN *StackPointer; FILE *GdbTempFile; EMU_THUNK_PPI *SecEmuThunkPpi; // // Xcode does not support sourcing gdb scripts directly, so the Xcode XML // has a break point script to source the GdbRun.sh script. // SecGdbConfigBreak (); // // If dlopen doesn't work, then we build a gdb script to allow the // symbols to be loaded. // Index = strlen (*Argv); gGdbWorkingFileName = AllocatePool (Index + strlen (".gdb") + 1); strcpy (gGdbWorkingFileName, *Argv); strcat (gGdbWorkingFileName, ".gdb"); // // Empty out the gdb symbols script file. // GdbTempFile = fopen (gGdbWorkingFileName, "w"); if (GdbTempFile != NULL) { fclose (GdbTempFile); } printf ("\nEDK II UNIX Host Emulation Environment from http://www.tianocore.org/edk2/\n"); setbuf (stdout, 0); setbuf (stderr, 0); MemorySizeStr = (CHAR16 *)PcdGetPtr (PcdEmuMemorySize); FirmwareVolumesStr = (CHAR16 *)PcdGetPtr (PcdEmuFirmwareVolume); // // PPIs pased into PEI_CORE // SecEmuThunkPpi = AllocateZeroPool (sizeof (EMU_THUNK_PPI) + FixedPcdGet32 (PcdPersistentMemorySize)); if (SecEmuThunkPpi == NULL) { printf ("ERROR : Can not allocate memory for SecEmuThunkPpi. Exiting.\n"); exit (1); } CopyMem (SecEmuThunkPpi, &mSecEmuThunkPpi, sizeof (EMU_THUNK_PPI)); SecEmuThunkPpi->Argc = Argc; SecEmuThunkPpi->Argv = Argv; SecEmuThunkPpi->Envp = Envp; SecEmuThunkPpi->PersistentMemorySize = FixedPcdGet32 (PcdPersistentMemorySize); AddThunkPpi (EFI_PEI_PPI_DESCRIPTOR_PPI, &gEmuThunkPpiGuid, SecEmuThunkPpi); SecInitThunkProtocol (); // // Emulator Bus Driver Thunks // AddThunkProtocol (&gX11ThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuGop), TRUE); AddThunkProtocol (&gPosixFileSystemThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuFileSystem), TRUE); AddThunkProtocol (&gBlockIoThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuVirtualDisk), TRUE); AddThunkProtocol (&gSnpThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuNetworkInterface), TRUE); // // Emulator other Thunks // AddThunkProtocol (&gPthreadThunkIo, (CHAR16 *)PcdGetPtr (PcdEmuApCount), FALSE); // EmuSecLibConstructor (); gPpiList = GetThunkPpiList (); // // Allocate space for gSystemMemory Array // gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1; gSystemMemory = AllocateZeroPool (gSystemMemoryCount * sizeof (EMU_SYSTEM_MEMORY)); if (gSystemMemory == NULL) { printf ("ERROR : Can not allocate memory for system. Exiting.\n"); exit (1); } // // Allocate space for gSystemMemory Array // gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1; gFdInfo = AllocateZeroPool (gFdInfoCount * sizeof (EMU_FD_INFO)); if (gFdInfo == NULL) { printf ("ERROR : Can not allocate memory for fd info. Exiting.\n"); exit (1); } printf (" BootMode 0x%02x\n", (unsigned int)PcdGet32 (PcdEmuBootMode)); // // Open up a 128K file to emulate temp memory for SEC. // on a real platform this would be SRAM, or using the cache as RAM. // Set InitialStackMemory to zero so UnixOpenFile will allocate a new mapping // InitialStackMemorySize = STACK_SIZE; InitialStackMemory = (UINTN)MapMemory ( 0, (UINT32)InitialStackMemorySize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANONYMOUS | MAP_PRIVATE ); if (InitialStackMemory == 0) { printf ("ERROR : Can not open SecStack Exiting\n"); exit (1); } printf ( " OS Emulator passing in %u KB of temp RAM at 0x%08lx to SEC\n", (unsigned int)(InitialStackMemorySize / 1024), (unsigned long)InitialStackMemory ); for (StackPointer = (UINTN *)(UINTN)InitialStackMemory; StackPointer < (UINTN *)(UINTN)((UINTN)InitialStackMemory + (UINT64)InitialStackMemorySize); StackPointer++) { *StackPointer = 0x5AA55AA5; } // // Open All the firmware volumes and remember the info in the gFdInfo global // FileName = (CHAR8 *)AllocatePool (StrLen (FirmwareVolumesStr) + 1); if (FileName == NULL) { printf ("ERROR : Can not allocate memory for firmware volume string\n"); exit (1); } Index2 = 0; for (Done = FALSE, Index = 0, PeiIndex = 0, SecFile = NULL; FirmwareVolumesStr[Index2] != 0; Index++) { for (Index1 = 0; (FirmwareVolumesStr[Index2] != '!') && (FirmwareVolumesStr[Index2] != 0); Index2++) { FileName[Index1++] = FirmwareVolumesStr[Index2]; } if (FirmwareVolumesStr[Index2] == '!') { Index2++; } FileName[Index1] = '\0'; if (Index == 0) { // Map FV Recovery Read Only and other areas Read/Write Status = MapFd0 ( FileName, &gFdInfo[0].Address, &gFdInfo[0].Size ); } else { // // Open the FD and remember where it got mapped into our processes address space // Maps Read Only // Status = MapFile ( FileName, &gFdInfo[Index].Address, &gFdInfo[Index].Size ); } if (EFI_ERROR (Status)) { printf ("ERROR : Can not open Firmware Device File %s (%x). Exiting.\n", FileName, (unsigned int)Status); exit (1); } printf (" FD loaded from %s at 0x%08lx", FileName, (unsigned long)gFdInfo[Index].Address); if (SecFile == NULL) { // // Assume the beginning of the FD is an FV and look for the SEC Core. // Load the first one we find. // FileHandle = NULL; Status = PeiServicesFfsFindNextFile ( EFI_FV_FILETYPE_SECURITY_CORE, (EFI_PEI_FV_HANDLE)(UINTN)gFdInfo[Index].Address, &FileHandle ); if (!EFI_ERROR (Status)) { Status = PeiServicesFfsFindSectionData (EFI_SECTION_PE32, FileHandle, &SecFile); if (!EFI_ERROR (Status)) { PeiIndex = Index; printf (" contains SEC Core"); } } } printf ("\n"); } if (SecFile == NULL) { printf ("ERROR : SEC not found!\n"); exit (1); } // // Calculate memory regions and store the information in the gSystemMemory // global for later use. The autosizing code will use this data to // map this memory into the SEC process memory space. // Index1 = 0; Index = 0; while (1) { UINTN val = 0; // // Save the size of the memory. // while (MemorySizeStr[Index1] >= '0' && MemorySizeStr[Index1] <= '9') { val = val * 10 + MemorySizeStr[Index1] - '0'; Index1++; } gSystemMemory[Index++].Size = val * 0x100000; if (MemorySizeStr[Index1] == 0) { break; } Index1++; } printf ("\n"); // // Hand off to SEC // SecLoadFromCore ((UINTN)InitialStackMemory, (UINTN)InitialStackMemorySize, (UINTN)gFdInfo[0].Address, SecFile); // // If we get here, then the SEC Core returned. This is an error as SEC should // always hand off to PEI Core and then on to DXE Core. // printf ("ERROR : SEC returned\n"); exit (1); } EFI_PHYSICAL_ADDRESS * MapMemory ( IN INTN fd, IN UINT64 length, IN INTN prot, IN INTN flags ) { STATIC UINTN base = 0x40000000; CONST UINTN align = (1 << 24); VOID *res = NULL; BOOLEAN isAligned = 0; // // Try to get an aligned block somewhere in the address space of this // process. // while ((!isAligned) && (base != 0)) { res = mmap ((void *)base, length, prot, flags, fd, 0); if (res == MAP_FAILED) { return NULL; } if ((((UINTN)res) & ~(align-1)) == (UINTN)res) { isAligned = 1; } else { munmap (res, length); base += align; } } return res; } /*++ Routine Description: Opens and memory maps a file using Unix services. If BaseAddress is non zero the process will try and allocate the memory starting at BaseAddress. Arguments: FileName - The name of the file to open and map MapSize - The amount of the file to map in bytes CreationDisposition - The flags to pass to CreateFile(). Use to create new files for memory emulation, and exiting files for firmware volume emulation BaseAddress - The base address of the mapped file in the user address space. If passed in as NULL the a new memory region is used. If passed in as non NULL the request memory region is used for the mapping of the file into the process space. Length - The size of the mapped region in bytes Returns: EFI_SUCCESS - The file was opened and mapped. EFI_NOT_FOUND - FileName was not found in the current directory EFI_DEVICE_ERROR - An error occurred attempting to map the opened file **/ EFI_STATUS MapFile ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ) { int fd; VOID *res; UINTN FileSize; fd = open (FileName, O_RDWR); if (fd < 0) { return EFI_NOT_FOUND; } FileSize = lseek (fd, 0, SEEK_END); res = MapMemory (fd, FileSize, PROT_READ | PROT_EXEC, MAP_PRIVATE); close (fd); if (res == NULL) { perror ("MapFile() Failed"); return EFI_DEVICE_ERROR; } *Length = (UINT64)FileSize; *BaseAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)res; return EFI_SUCCESS; } EFI_STATUS MapFd0 ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ) { int fd; void *res, *res2, *res3; UINTN FileSize; UINTN FvSize; void *EmuMagicPage; fd = open (FileName, O_RDWR); if (fd < 0) { return EFI_NOT_FOUND; } FileSize = lseek (fd, 0, SEEK_END); FvSize = FixedPcdGet64 (PcdEmuFlashFvRecoverySize); // Assume start of FD is Recovery FV, and make it write protected res = mmap ( (void *)(UINTN)FixedPcdGet64 (PcdEmuFlashFvRecoveryBase), FvSize, PROT_READ | PROT_EXEC, MAP_PRIVATE, fd, 0 ); if (res == MAP_FAILED) { perror ("MapFd0() Failed res ="); close (fd); return EFI_DEVICE_ERROR; } else if (res != (void *)(UINTN)FixedPcdGet64 (PcdEmuFlashFvRecoveryBase)) { // We could not load at the build address, so we need to allow writes munmap (res, FvSize); res = mmap ( (void *)(UINTN)FixedPcdGet64 (PcdEmuFlashFvRecoveryBase), FvSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE, fd, 0 ); if (res == MAP_FAILED) { perror ("MapFd0() Failed res ="); close (fd); return EFI_DEVICE_ERROR; } } // Map the rest of the FD as read/write res2 = mmap ( (void *)(UINTN)(FixedPcdGet64 (PcdEmuFlashFvRecoveryBase) + FvSize), FileSize - FvSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_SHARED, fd, FvSize ); close (fd); if (res2 == MAP_FAILED) { perror ("MapFd0() Failed res2 ="); return EFI_DEVICE_ERROR; } // // If enabled use the magic page to communicate between modules // This replaces the PI PeiServicesTable pointer mechanism that // deos not work in the emulator. It also allows the removal of // writable globals from SEC, PEI_CORE (libraries), PEIMs // EmuMagicPage = (void *)(UINTN)FixedPcdGet64 (PcdPeiServicesTablePage); if (EmuMagicPage != NULL) { res3 = mmap ( (void *)EmuMagicPage, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0 ); if (res3 != EmuMagicPage) { printf ("MapFd0(): Could not allocate PeiServicesTablePage @ %lx\n", (long unsigned int)EmuMagicPage); return EFI_DEVICE_ERROR; } } *Length = (UINT64)FileSize; *BaseAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)res; return EFI_SUCCESS; } /*++ Routine Description: This is the service to load the SEC Core from the Firmware Volume Arguments: LargestRegion - Memory to use for SEC. LargestRegionSize - Size of Memory to use for PEI BootFirmwareVolumeBase - Start of the Boot FV PeiCorePe32File - SEC PE32 Returns: Success means control is transferred and thus we should never return **/ VOID SecLoadFromCore ( IN UINTN LargestRegion, IN UINTN LargestRegionSize, IN UINTN BootFirmwareVolumeBase, IN VOID *PeiCorePe32File ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS TopOfMemory; VOID *TopOfStack; EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint; EFI_SEC_PEI_HAND_OFF *SecCoreData; UINTN PeiStackSize; // // Compute Top Of Memory for Stack and PEI Core Allocations // TopOfMemory = LargestRegion + LargestRegionSize; PeiStackSize = (UINTN)RShiftU64 ((UINT64)STACK_SIZE, 1); // // |-----------| <---- TemporaryRamBase + TemporaryRamSize // | Heap | // | | // |-----------| <---- StackBase / PeiTemporaryMemoryBase // | | // | Stack | // |-----------| <---- TemporaryRamBase // TopOfStack = (VOID *)(LargestRegion + PeiStackSize); TopOfMemory = LargestRegion + PeiStackSize; // // Reservet space for storing PeiCore's parament in stack. // TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT); TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT); // // Bind this information into the SEC hand-off state // SecCoreData = (EFI_SEC_PEI_HAND_OFF *)(UINTN)TopOfStack; SecCoreData->DataSize = sizeof (EFI_SEC_PEI_HAND_OFF); SecCoreData->BootFirmwareVolumeBase = (VOID *)BootFirmwareVolumeBase; SecCoreData->BootFirmwareVolumeSize = PcdGet32 (PcdEmuFirmwareFdSize); SecCoreData->TemporaryRamBase = (VOID *)(UINTN)LargestRegion; SecCoreData->TemporaryRamSize = STACK_SIZE; SecCoreData->StackBase = SecCoreData->TemporaryRamBase; SecCoreData->StackSize = PeiStackSize; SecCoreData->PeiTemporaryRamBase = (VOID *)((UINTN)SecCoreData->TemporaryRamBase + PeiStackSize); SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize; // // Find the SEC Core Entry Point // Status = SecPeCoffGetEntryPoint (PeiCorePe32File, (VOID **)&PeiCoreEntryPoint); if (EFI_ERROR (Status)) { return; } // // Transfer control to the SEC Core // PeiSwitchStacks ( (SWITCH_STACK_ENTRY_POINT)(UINTN)PeiCoreEntryPoint, SecCoreData, (VOID *)gPpiList, TopOfStack ); // // If we get here, then the SEC Core returned. This is an error // return; } /*++ Routine Description: This service is called from Index == 0 until it returns EFI_UNSUPPORTED. It allows discontinuous memory regions to be supported by the emulator. It uses gSystemMemory[] and gSystemMemoryCount that were created by parsing the host environment variable EFI_MEMORY_SIZE. The size comes from the variable and the address comes from the call to UnixOpenFile. Arguments: Index - Which memory region to use MemoryBase - Return Base address of memory region MemorySize - Return size in bytes of the memory region Returns: EFI_SUCCESS - If memory region was mapped EFI_UNSUPPORTED - If Index is not supported **/ EFI_STATUS SecUnixPeiAutoScan ( IN UINTN Index, OUT EFI_PHYSICAL_ADDRESS *MemoryBase, OUT UINT64 *MemorySize ) { void *res; if (Index >= gSystemMemoryCount) { return EFI_UNSUPPORTED; } *MemoryBase = 0; res = MapMemory ( 0, gSystemMemory[Index].Size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS ); if (res == MAP_FAILED) { return EFI_DEVICE_ERROR; } *MemorySize = gSystemMemory[Index].Size; *MemoryBase = (UINTN)res; gSystemMemory[Index].Memory = *MemoryBase; return EFI_SUCCESS; } /*++ Routine Description: Check to see if an address range is in the EFI GCD memory map. This is all of GCD for system memory passed to DXE Core. FV mapping and other device mapped into system memory are not included in the check. Arguments: Index - Which memory region to use MemoryBase - Return Base address of memory region MemorySize - Return size in bytes of the memory region Returns: TRUE - Address is in the EFI GCD memory map FALSE - Address is NOT in memory map **/ BOOLEAN EfiSystemMemoryRange ( IN VOID *MemoryAddress ) { UINTN Index; EFI_PHYSICAL_ADDRESS MemoryBase; MemoryBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MemoryAddress; for (Index = 0; Index < gSystemMemoryCount; Index++) { if ((MemoryBase >= gSystemMemory[Index].Memory) && (MemoryBase < (gSystemMemory[Index].Memory + gSystemMemory[Index].Size))) { return TRUE; } } return FALSE; } /*++ Routine Description: Since the SEC is the only Unix program in stack it must export an interface to do POSIX calls. gUnix is initialized in UnixThunk.c. Arguments: InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL); InterfaceBase - Address of the gUnix global Returns: EFI_SUCCESS - Data returned **/ VOID * SecEmuThunkAddress ( VOID ) { return &gEmuThunkProtocol; } RETURN_STATUS EFIAPI SecPeCoffGetEntryPoint ( IN VOID *Pe32Data, IN OUT VOID **EntryPoint ) { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE)SecImageRead; Status = PeCoffLoaderGetImageInfo (&ImageContext); if (EFI_ERROR (Status)) { return Status; } if (ImageContext.ImageAddress != (UINTN)Pe32Data) { // // Relocate image to match the address where it resides // ImageContext.ImageAddress = (UINTN)Pe32Data; Status = PeCoffLoaderLoadImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } Status = PeCoffLoaderRelocateImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } } else { // // Or just return image entry point // ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer (Pe32Data); Status = PeCoffLoaderGetEntryPoint (Pe32Data, EntryPoint); if (EFI_ERROR (Status)) { return Status; } ImageContext.EntryPoint = (UINTN)*EntryPoint; } // On Unix a dlopen is done that will change the entry point SecPeCoffRelocateImageExtraAction (&ImageContext); *EntryPoint = (VOID *)(UINTN)ImageContext.EntryPoint; return Status; } /*++ Routine Description: Return the FD Size and base address. Since the FD is loaded from a file into host memory only the SEC will know its address. Arguments: Index - Which FD, starts at zero. FdSize - Size of the FD in bytes FdBase - Start address of the FD. Assume it points to an FV Header FixUp - Difference between actual FD address and build address Returns: EFI_SUCCESS - Return the Base address and size of the FV EFI_UNSUPPORTED - Index does nto map to an FD in the system **/ EFI_STATUS SecUnixFdAddress ( IN UINTN Index, IN OUT EFI_PHYSICAL_ADDRESS *FdBase, IN OUT UINT64 *FdSize, IN OUT EFI_PHYSICAL_ADDRESS *FixUp ) { if (Index >= gFdInfoCount) { return EFI_UNSUPPORTED; } *FdBase = gFdInfo[Index].Address; *FdSize = gFdInfo[Index].Size; *FixUp = 0; if ((*FdBase == 0) && (*FdSize == 0)) { return EFI_UNSUPPORTED; } if (Index == 0) { // // FD 0 has XIP code and well known PCD values // If the memory buffer could not be allocated at the FD build address // the Fixup is the difference. // *FixUp = *FdBase - PcdGet64 (PcdEmuFdBaseAddress); } return EFI_SUCCESS; } /*++ Routine Description: Count the number of separators in String Arguments: String - String to process Separator - Item to count Returns: Number of Separator in String **/ UINTN CountSeparatorsInString ( IN const CHAR16 *String, IN CHAR16 Separator ) { UINTN Count; for (Count = 0; *String != '\0'; String++) { if (*String == Separator) { Count++; } } return Count; } EFI_STATUS EFIAPI SecImageRead ( IN VOID *FileHandle, IN UINTN FileOffset, IN OUT UINTN *ReadSize, OUT VOID *Buffer ) /*++ Routine Description: Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file Arguments: FileHandle - The handle to the PE/COFF file FileOffset - The offset, in bytes, into the file to read ReadSize - The number of bytes to read from the file starting at FileOffset Buffer - A pointer to the buffer to read the data into. Returns: EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset **/ { CHAR8 *Destination8; CHAR8 *Source8; UINTN Length; Destination8 = Buffer; Source8 = (CHAR8 *)((UINTN)FileHandle + FileOffset); Length = *ReadSize; while (Length--) { *(Destination8++) = *(Source8++); } return EFI_SUCCESS; } /*++ Routine Description: Store the ModHandle in an array indexed by the Pdb File name. The ModHandle is needed to unload the image. Arguments: ImageContext - Input data returned from PE Loader Library. Used to find the .PDB file name of the PE Image. ModHandle - Returned from LoadLibraryEx() and stored for call to FreeLibrary(). Returns: EFI_SUCCESS - ModHandle was stored. **/ EFI_STATUS AddHandle ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, IN VOID *ModHandle ) { UINTN Index; IMAGE_CONTEXT_TO_MOD_HANDLE *Array; UINTN PreviousSize; Array = mImageContextModHandleArray; for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) { if (Array->ImageContext == NULL) { // // Make a copy of the string and store the ModHandle // Array->ImageContext = ImageContext; Array->ModHandle = ModHandle; return EFI_SUCCESS; } } // // No free space in mImageContextModHandleArray so grow it by // IMAGE_CONTEXT_TO_MOD_HANDLE entires. realloc will // copy the old values to the new location. But it does // not zero the new memory area. // PreviousSize = mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE); mImageContextModHandleArraySize += MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE; mImageContextModHandleArray = ReallocatePool ( (mImageContextModHandleArraySize - 1) * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE), mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE), mImageContextModHandleArray ); if (mImageContextModHandleArray == NULL) { ASSERT (FALSE); return EFI_OUT_OF_RESOURCES; } memset (mImageContextModHandleArray + PreviousSize, 0, MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE)); return AddHandle (ImageContext, ModHandle); } /*++ Routine Description: Return the ModHandle and delete the entry in the array. Arguments: ImageContext - Input data returned from PE Loader Library. Used to find the .PDB file name of the PE Image. Returns: ModHandle - ModHandle associated with ImageContext is returned NULL - No ModHandle associated with ImageContext **/ VOID * RemoveHandle ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { UINTN Index; IMAGE_CONTEXT_TO_MOD_HANDLE *Array; if (ImageContext->PdbPointer == NULL) { // // If no PDB pointer there is no ModHandle so return NULL // return NULL; } Array = mImageContextModHandleArray; for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) { if (Array->ImageContext == ImageContext) { // // If you find a match return it and delete the entry // Array->ImageContext = NULL; return Array->ModHandle; } } return NULL; } BOOLEAN IsPdbFile ( IN CHAR8 *PdbFileName ) { UINTN Len; if (PdbFileName == NULL) { return FALSE; } Len = strlen (PdbFileName); if ((Len < 5) || (PdbFileName[Len - 4] != '.')) { return FALSE; } if (((PdbFileName[Len - 3] == 'P') || (PdbFileName[Len - 3] == 'p')) && ((PdbFileName[Len - 2] == 'D') || (PdbFileName[Len - 2] == 'd')) && ((PdbFileName[Len - 1] == 'B') || (PdbFileName[Len - 1] == 'b'))) { return TRUE; } return FALSE; } #define MAX_SPRINT_BUFFER_SIZE 0x200 void PrintLoadAddress ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { if (ImageContext->PdbPointer == NULL) { fprintf ( stderr, "0x%08lx Loading NO DEBUG with entry point 0x%08lx\n", (unsigned long)(ImageContext->ImageAddress), (unsigned long)ImageContext->EntryPoint ); } else { fprintf ( stderr, "0x%08lx Loading %s with entry point 0x%08lx\n", (unsigned long)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders), ImageContext->PdbPointer, (unsigned long)ImageContext->EntryPoint ); } // Keep output synced up fflush (stderr); } /** Loads the image using dlopen so symbols will be automatically loaded by gdb. @param ImageContext The PE/COFF image context @retval TRUE - The image was successfully loaded @retval FALSE - The image was successfully loaded **/ BOOLEAN DlLoadImage ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { #ifdef __APPLE__ return FALSE; #else void *Handle = NULL; void *Entry = NULL; if (ImageContext->PdbPointer == NULL) { return FALSE; } if (!IsPdbFile (ImageContext->PdbPointer)) { return FALSE; } fprintf ( stderr, "Loading %s 0x%08lx - entry point 0x%08lx\n", ImageContext->PdbPointer, (unsigned long)ImageContext->ImageAddress, (unsigned long)ImageContext->EntryPoint ); Handle = dlopen (ImageContext->PdbPointer, RTLD_NOW); if (Handle != NULL) { Entry = dlsym (Handle, "_ModuleEntryPoint"); AddHandle (ImageContext, Handle); } else { printf ("%s\n", dlerror ()); } if (Entry != NULL) { ImageContext->EntryPoint = (UINTN)Entry; printf ("Change %s Entrypoint to :0x%08lx\n", ImageContext->PdbPointer, (unsigned long)Entry); return TRUE; } else { return FALSE; } #endif } #ifdef __APPLE__ __attribute__ ((noinline)) #endif VOID SecGdbScriptBreak ( char *FileName, int FileNameLength, long unsigned int LoadAddress, int AddSymbolFlag ) { return; } /** Adds the image to a gdb script so its symbols can be loaded. The AddFirmwareSymbolFile helper macro is used. @param ImageContext The PE/COFF image context **/ VOID GdbScriptAddImage ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { PrintLoadAddress (ImageContext); if ((ImageContext->PdbPointer != NULL) && !IsPdbFile (ImageContext->PdbPointer)) { FILE *GdbTempFile; if (FeaturePcdGet (PcdEmulatorLazyLoadSymbols)) { GdbTempFile = fopen (gGdbWorkingFileName, "a"); if (GdbTempFile != NULL) { long unsigned int SymbolsAddr = (long unsigned int)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders); mScriptSymbolChangesCount++; fprintf ( GdbTempFile, "AddFirmwareSymbolFile 0x%x %s 0x%08lx\n", mScriptSymbolChangesCount, ImageContext->PdbPointer, SymbolsAddr ); fclose (GdbTempFile); // This is for the lldb breakpoint only SecGdbScriptBreak (ImageContext->PdbPointer, strlen (ImageContext->PdbPointer) + 1, (long unsigned int)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders), 1); } else { ASSERT (FALSE); } } else { GdbTempFile = fopen (gGdbWorkingFileName, "w"); if (GdbTempFile != NULL) { fprintf ( GdbTempFile, "add-symbol-file %s 0x%08lx\n", ImageContext->PdbPointer, (long unsigned int)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders) ); fclose (GdbTempFile); // // Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint. // Hey what can you say scripting in gdb is not that great.... // Also used for the lldb breakpoint script. The lldb breakpoint script does // not use the file, it uses the arguments. // SecGdbScriptBreak (ImageContext->PdbPointer, strlen (ImageContext->PdbPointer) + 1, (long unsigned int)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders), 1); } else { ASSERT (FALSE); } } } } VOID EFIAPI SecPeCoffRelocateImageExtraAction ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { if (!DlLoadImage (ImageContext)) { GdbScriptAddImage (ImageContext); } } /** Adds the image to a gdb script so its symbols can be unloaded. The RemoveFirmwareSymbolFile helper macro is used. @param ImageContext The PE/COFF image context **/ VOID GdbScriptRemoveImage ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { FILE *GdbTempFile; // // Need to skip .PDB files created from VC++ // if (IsPdbFile (ImageContext->PdbPointer)) { return; } if (FeaturePcdGet (PcdEmulatorLazyLoadSymbols)) { // // Write the file we need for the gdb script // GdbTempFile = fopen (gGdbWorkingFileName, "a"); if (GdbTempFile != NULL) { mScriptSymbolChangesCount++; fprintf ( GdbTempFile, "RemoveFirmwareSymbolFile 0x%x %s\n", mScriptSymbolChangesCount, ImageContext->PdbPointer ); fclose (GdbTempFile); SecGdbScriptBreak (ImageContext->PdbPointer, strlen (ImageContext->PdbPointer) + 1, 0, 0); } else { ASSERT (FALSE); } } else { GdbTempFile = fopen (gGdbWorkingFileName, "w"); if (GdbTempFile != NULL) { fprintf (GdbTempFile, "remove-symbol-file %s\n", ImageContext->PdbPointer); fclose (GdbTempFile); // // Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint. // Hey what can you say scripting in gdb is not that great.... // SecGdbScriptBreak (ImageContext->PdbPointer, strlen (ImageContext->PdbPointer) + 1, 0, 0); } else { ASSERT (FALSE); } } } VOID EFIAPI SecPeCoffUnloadImageExtraAction ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { VOID *Handle; // // Check to see if the image symbols were loaded with gdb script, or dlopen // Handle = RemoveHandle (ImageContext); if (Handle != NULL) { #ifndef __APPLE__ dlclose (Handle); #endif return; } GdbScriptRemoveImage (ImageContext); }