/** @file Construct MP Services Protocol on top of the EMU Thread protocol. This code makes APs show up in the emulator. PcdEmuApCount is the number of APs the emulator should produce. The MP Services Protocol provides a generalized way of performing following tasks: - Retrieving information of multi-processor environment and MP-related status of specific processors. - Dispatching user-provided function to APs. - Maintain MP-related processor status. The MP Services Protocol must be produced on any system with more than one logical processor. The Protocol is available only during boot time. MP Services Protocol is hardware-independent. Most of the logic of this protocol is architecturally neutral. It abstracts the multi-processor environment and status of processors, and provides interfaces to retrieve information, maintain, and dispatch. MP Services Protocol may be consumed by ACPI module. The ACPI module may use this protocol to retrieve data that are needed for an MP platform and report them to OS. MP Services Protocol may also be used to program and configure processors, such as MTRR synchronization for memory space attributes setting in DXE Services. MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot by taking advantage of the processing capabilities of the APs, for example, using APs to help test system memory in parallel with other device initialization. Diagnostics applications may also use this protocol for multi-processor. Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.
Portitions Copyright (c) 2011, Apple Inc. All rights reserved. SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "CpuDriver.h" MP_SYSTEM_DATA gMPSystem; EMU_THREAD_THUNK_PROTOCOL *gThread = NULL; EFI_EVENT gReadToBootEvent; BOOLEAN gReadToBoot = FALSE; UINTN gPollInterval; BOOLEAN IsBSP ( VOID ) { EFI_STATUS Status; UINTN ProcessorNumber; Status = CpuMpServicesWhoAmI (&mMpServicesTemplate, &ProcessorNumber); if (EFI_ERROR (Status)) { return FALSE; } return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0; } VOID SetApProcedure ( IN PROCESSOR_DATA_BLOCK *Processor, IN EFI_AP_PROCEDURE Procedure, IN VOID *ProcedureArgument ) { gThread->MutexLock (Processor->ProcedureLock); Processor->Parameter = ProcedureArgument; Processor->Procedure = Procedure; gThread->MutexUnlock (Processor->ProcedureLock); } EFI_STATUS GetNextBlockedNumber ( OUT UINTN *NextNumber ) { UINTN Number; PROCESSOR_STATE ProcessorState; PROCESSOR_DATA_BLOCK *Data; for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { Data = &gMPSystem.ProcessorData[Number]; if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { // Skip BSP continue; } gThread->MutexLock (Data->StateLock); ProcessorState = Data->State; gThread->MutexUnlock (Data->StateLock); if (ProcessorState == CPU_STATE_BLOCKED) { *NextNumber = Number; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** * Calculated and stalled the interval time by BSP to check whether * the APs have finished. * * @param[in] Timeout The time limit in microseconds for * APs to return from Procedure. * * @retval StallTime Time of execution stall. **/ UINTN CalculateAndStallInterval ( IN UINTN Timeout ) { UINTN StallTime; if ((Timeout < gPollInterval) && (Timeout != 0)) { StallTime = Timeout; } else { StallTime = gPollInterval; } gBS->Stall (StallTime); return StallTime; } /** This service retrieves the number of logical processor in the platform and the number of those logical processors that are enabled on this boot. This service may only be called from the BSP. This function is used to retrieve the following information: - The number of logical processors that are present in the system. - The number of enabled logical processors in the system at the instant this call is made. Because MP Service Protocol provides services to enable and disable processors dynamically, the number of enabled logical processors may vary during the course of a boot session. If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned in NumberOfProcessors, the number of currently enabled processor is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[out] NumberOfProcessors Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist in system, including the BSP. @retval EFI_SUCCESS The number of logical processors and enabled logical processors was retrieved. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL. **/ EFI_STATUS EFIAPI CpuMpServicesGetNumberOfProcessors ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *NumberOfProcessors, OUT UINTN *NumberOfEnabledProcessors ) { if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { return EFI_INVALID_PARAMETER; } if (!IsBSP ()) { return EFI_DEVICE_ERROR; } *NumberOfProcessors = gMPSystem.NumberOfProcessors; *NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors; return EFI_SUCCESS; } /** Gets detailed MP-related information on the requested processor at the instant this call is made. This service may only be called from the BSP. This service retrieves detailed MP-related information about any processor on the platform. Note the following: - The processor information may change during the course of a boot session. - The information presented here is entirely MP related. Information regarding the number of caches and their sizes, frequency of operation, slot numbers is all considered platform-related information and is not provided by this service. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of processor. @param[out] ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited. @retval EFI_SUCCESS Processor information was returned. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist in the platform. **/ EFI_STATUS EFIAPI CpuMpServicesGetProcessorInfo ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer ) { if (ProcessorInfoBuffer == NULL) { return EFI_INVALID_PARAMETER; } if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { return EFI_NOT_FOUND; } CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION)); return EFI_SUCCESS; } /** This service executes a caller provided function on all enabled APs. APs can run either simultaneously or one at a time in sequence. This service supports both blocking and non-blocking requests. The non-blocking requests use EFI events so the BSP can detect when the APs have finished. This service may only be called from the BSP. This function is used to dispatch all the enabled APs to the function specified by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is not started on any AP. If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute the function specified by Procedure simultaneously. If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking mode, and the BSP returns from this service without waiting for APs. If a non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be returned. If the timeout specified by TimeoutInMicroseconds expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its content points to the list of processor handle numbers in which Procedure was terminated. Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the nature of the code that is executed on the BSP and the dispatched APs is well controlled. The MP Services Protocol does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can be run in parallel are limited to certain independent tasks and well-controlled exclusive code. EFI services and protocols may not be called by APs unless otherwise specified. In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroseconds expires. In non-blocking execution mode, BSP is freed to return to the caller and then proceed to the next task without having to wait for APs. The following sequence needs to occur in a non-blocking execution mode: -# The caller that intends to use this MP Services Protocol in non-blocking mode creates WaitEvent by calling the EFI CreateEvent() service. The caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests the function specified by Procedure to be started on all the enabled APs, and releases the BSP to continue with other tasks. -# The caller can use the CheckEvent() and WaitForEvent() services to check the state of the WaitEvent created in step 1. -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP Service signals WaitEvent by calling the EFI SignalEvent() function. If FailedCpuList is not NULL, its content is available when WaitEvent is signaled. If all APs returned from Procedure prior to the timeout, then FailedCpuList is set to NULL. If not all APs return from Procedure before the timeout, then FailedCpuList is filled in with the list of the failed APs. The buffer is allocated by MP Service Protocol using AllocatePool(). It is the caller's responsibility to free the buffer with FreePool() service. -# This invocation of SignalEvent() function informs the caller that invoked EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed the specified task or a timeout occurred. The contents of FailedCpuList can be examined to determine which APs did not complete the specified task prior to the timeout. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] SingleThread If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. @param[in] WaitEvent The event created by the caller with CreateEvent() service. If it is NULL, then execute in blocking mode. BSP waits until all APs finish or TimeoutInMicroseconds expires. If it's not NULL, then execute in non-blocking mode. BSP requests the function specified by Procedure to be started on all the enabled APs, and go on executing immediately. If all return from Procedure, or TimeoutInMicroseconds expires, this event is signaled. The BSP can use the CheckEvent() or WaitForEvent() services to check the state of event. Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible Firmware Interface Specification. @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, WaitEvent is signaled with SignalEvent(). @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, if all APs finish successfully, then its content is set to NULL. If not all APs finish before timeout expires, then its content is set to address of the buffer holding handle numbers of the failed APs. The buffer is allocated by MP Service Protocol, and it's the caller's responsibility to free the buffer with FreePool() service. In blocking mode, it is ready for consumption when the call returns. In non-blocking mode, it is ready when WaitEvent is signaled. The list of failed CPU is terminated by END_OF_CPU_LIST. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. @retval EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was signaled. @retval EFI_DEVICE_ERROR Caller processor is AP. @retval EFI_NOT_STARTED No enabled APs exist in the system. @retval EFI_NOT_READY Any enabled APs are busy. @retval EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs have finished. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI CpuMpServicesStartupAllAps ( IN EFI_MP_SERVICES_PROTOCOL *This, IN EFI_AP_PROCEDURE Procedure, IN BOOLEAN SingleThread, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT UINTN **FailedCpuList OPTIONAL ) { EFI_STATUS Status; PROCESSOR_DATA_BLOCK *ProcessorData; UINTN Number; UINTN NextNumber; PROCESSOR_STATE APInitialState; PROCESSOR_STATE ProcessorState; UINTN Timeout; if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (gMPSystem.NumberOfProcessors == 1) { return EFI_NOT_STARTED; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } if ((WaitEvent != NULL) && gReadToBoot) { return EFI_UNSUPPORTED; } for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { ProcessorData = &gMPSystem.ProcessorData[Number]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors continue; } gThread->MutexLock (ProcessorData->StateLock); if (ProcessorData->State != CPU_STATE_IDLE) { gThread->MutexUnlock (ProcessorData->StateLock); return EFI_NOT_READY; } gThread->MutexUnlock (ProcessorData->StateLock); } if (FailedCpuList != NULL) { gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN)); if (gMPSystem.FailedList == NULL) { return EFI_OUT_OF_RESOURCES; } SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST); gMPSystem.FailedListIndex = 0; *FailedCpuList = gMPSystem.FailedList; } Timeout = TimeoutInMicroseconds; ProcessorData = NULL; gMPSystem.FinishCount = 0; gMPSystem.StartCount = 0; gMPSystem.SingleThread = SingleThread; APInitialState = CPU_STATE_READY; for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { ProcessorData = &gMPSystem.ProcessorData[Number]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number; continue; } // // Get APs prepared, and put failing APs into FailedCpuList // if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready // state 1 by 1, until the previous 1 finished its task // if not "SingleThread", all APs are put to ready state from the beginning // gThread->MutexLock (ProcessorData->StateLock); ASSERT (ProcessorData->State == CPU_STATE_IDLE); ProcessorData->State = APInitialState; gThread->MutexUnlock (ProcessorData->StateLock); gMPSystem.StartCount++; if (SingleThread) { APInitialState = CPU_STATE_BLOCKED; } } if (WaitEvent != NULL) { for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { ProcessorData = &gMPSystem.ProcessorData[Number]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors continue; } gThread->MutexLock (ProcessorData->StateLock); ProcessorState = ProcessorData->State; gThread->MutexUnlock (ProcessorData->StateLock); if (ProcessorState == CPU_STATE_READY) { SetApProcedure (ProcessorData, Procedure, ProcedureArgument); } } // // Save data into private data structure, and create timer to poll AP state before exiting // gMPSystem.Procedure = Procedure; gMPSystem.ProcedureArgument = ProcedureArgument; gMPSystem.WaitEvent = WaitEvent; gMPSystem.Timeout = TimeoutInMicroseconds; gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0); Status = gBS->SetTimer ( gMPSystem.CheckAllAPsEvent, TimerPeriodic, gPollInterval ); return Status; } while (TRUE) { for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) { ProcessorData = &gMPSystem.ProcessorData[Number]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors continue; } gThread->MutexLock (ProcessorData->StateLock); ProcessorState = ProcessorData->State; gThread->MutexUnlock (ProcessorData->StateLock); switch (ProcessorState) { case CPU_STATE_READY: SetApProcedure (ProcessorData, Procedure, ProcedureArgument); break; case CPU_STATE_FINISHED: gMPSystem.FinishCount++; if (SingleThread) { Status = GetNextBlockedNumber (&NextNumber); if (!EFI_ERROR (Status)) { gThread->MutexLock (gMPSystem.ProcessorData[NextNumber].StateLock); gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY; gThread->MutexUnlock (gMPSystem.ProcessorData[NextNumber].StateLock); } } gThread->MutexLock (ProcessorData->StateLock); ProcessorData->State = CPU_STATE_IDLE; gThread->MutexUnlock (ProcessorData->StateLock); break; default: break; } } if (gMPSystem.FinishCount == gMPSystem.StartCount) { Status = EFI_SUCCESS; goto Done; } if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { Status = EFI_TIMEOUT; goto Done; } Timeout -= CalculateAndStallInterval (Timeout); } Done: if (FailedCpuList != NULL) { if (gMPSystem.FailedListIndex == 0) { FreePool (*FailedCpuList); *FailedCpuList = NULL; } } return EFI_SUCCESS; } /** This service lets the caller get one enabled AP to execute a caller-provided function. The caller can request the BSP to either wait for the completion of the AP or just proceed with the next task by using the EFI event mechanism. See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking execution support. This service may only be called from the BSP. This function is used to dispatch one enabled AP to the function specified by Procedure passing in the argument specified by ProcedureArgument. If WaitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be returned. If the timeout specified by TimeoutInMicroseconds expires before the AP returns from Procedure, then execution of Procedure by the AP is terminated. The AP is available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] WaitEvent The event created by the caller with CreateEvent() service. If it is NULL, then execute in blocking mode. BSP waits until all APs finish or TimeoutInMicroseconds expires. If it's not NULL, then execute in non-blocking mode. BSP requests the function specified by Procedure to be started on all the enabled APs, and go on executing immediately. If all return from Procedure or TimeoutInMicroseconds expires, this event is signaled. The BSP can use the CheckEvent() or WaitForEvent() services to check the state of event. Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible Firmware Interface Specification. @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, WaitEvent is signaled with SignalEvent(). @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] Finished If NULL, this parameter is ignored. In blocking mode, this parameter is ignored. In non-blocking mode, if AP returns from Procedure before the timeout expires, its content is set to TRUE. Otherwise, the value is set to FALSE. The caller can determine if the AP returned from Procedure by evaluating this value. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval EFI_SUCCESS In non-blocking mode, the function has been dispatched to specified AP. @retval EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was signaled. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP has finished. @retval EFI_NOT_READY The specified AP is busy. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI CpuMpServicesStartupThisAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT BOOLEAN *Finished OPTIONAL ) { UINTN Timeout; if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { return EFI_NOT_FOUND; } if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { return EFI_INVALID_PARAMETER; } if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { return EFI_INVALID_PARAMETER; } gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); return EFI_NOT_READY; } gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if ((WaitEvent != NULL) && gReadToBoot) { return EFI_UNSUPPORTED; } Timeout = TimeoutInMicroseconds; gMPSystem.StartCount = 1; gMPSystem.FinishCount = 0; SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument); if (WaitEvent != NULL) { // Non Blocking gMPSystem.WaitEvent = WaitEvent; gBS->SetTimer ( gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent, TimerPeriodic, gPollInterval ); return EFI_SUCCESS; } // Blocking while (TRUE) { gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) { gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE; gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); break; } gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { return EFI_TIMEOUT; } Timeout -= CalculateAndStallInterval (Timeout); } return EFI_SUCCESS; } /** This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. This call can only be performed by the current BSP. This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue seamlessly from where the old one left off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Switching the BSP is not supported. @retval EFI_SUCCESS The calling processor is an AP. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled AP. @retval EFI_NOT_READY The specified AP is busy. **/ EFI_STATUS EFIAPI CpuMpServicesSwitchBSP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableOldBSP ) { UINTN Index; if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { return EFI_NOT_FOUND; } if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { return EFI_INVALID_PARAMETER; } if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { return EFI_INVALID_PARAMETER; } for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { break; } } ASSERT (Index != gMPSystem.NumberOfProcessors); gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); return EFI_NOT_READY; } gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); // Skip for now as we need switch a bunch of stack stuff around and it's complex // May not be worth it? return EFI_NOT_READY; } /** This service lets the caller enable or disable an AP from this point onward. This service may only be called from the BSP. This service allows the caller enable or disable an AP from this point onward. The caller can optionally specify the health status of the AP by Health. If an AP is being disabled, then the state of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that is compatible with an MP operating system. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. If the enable or disable AP operation cannot be completed prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. This flag corresponds to StatusFlag defined in EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is NULL, this parameter is ignored. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. **/ EFI_STATUS EFIAPI CpuMpServicesEnableDisableAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ) { if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= gMPSystem.NumberOfProcessors) { return EFI_NOT_FOUND; } if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) { return EFI_INVALID_PARAMETER; } gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) { gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); return EFI_UNSUPPORTED; } gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock); if (EnableAP) { if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) { gMPSystem.NumberOfEnabledProcessors++; } gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT; } else { if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) { gMPSystem.NumberOfEnabledProcessors--; } gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT; } if (HealthFlag != NULL) { gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT; gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT); } return EFI_SUCCESS; } /** This return the handle number for the calling processor. This service may be called from the BSP and APs. This service returns the processor handle number for the calling processor. The returned value is in the range from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the current processors handle number is returned in ProcessorNumber, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @retval EFI_SUCCESS The current processor handle number was returned in ProcessorNumber. @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. **/ EFI_STATUS EFIAPI CpuMpServicesWhoAmI ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *ProcessorNumber ) { UINTN Index; UINT64 ProcessorId; if (ProcessorNumber == NULL) { return EFI_INVALID_PARAMETER; } ProcessorId = gThread->Self (); for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) { break; } } *ProcessorNumber = Index; return EFI_SUCCESS; } EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = { CpuMpServicesGetNumberOfProcessors, CpuMpServicesGetProcessorInfo, CpuMpServicesStartupAllAps, CpuMpServicesStartupThisAP, CpuMpServicesSwitchBSP, CpuMpServicesEnableDisableAP, CpuMpServicesWhoAmI }; /*++ If timeout occurs in StartupAllAps(), a timer is set, which invokes this procedure periodically to check whether all APs have finished. --*/ VOID EFIAPI CpuCheckAllAPsStatus ( IN EFI_EVENT Event, IN VOID *Context ) { UINTN ProcessorNumber; UINTN NextNumber; PROCESSOR_DATA_BLOCK *ProcessorData; PROCESSOR_DATA_BLOCK *NextData; EFI_STATUS Status; PROCESSOR_STATE ProcessorState; UINTN Cpu; BOOLEAN Found; if (gMPSystem.TimeoutActive) { gMPSystem.Timeout -= CalculateAndStallInterval (gMPSystem.Timeout); } for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors continue; } // This is an Interrupt Service routine. // This can grab a lock that is held in a non-interrupt // context. Meaning deadlock. Which is a bad thing. // So, try lock it. If we can get it, cool, do our thing. // otherwise, just dump out & try again on the next iteration. Status = gThread->MutexTryLock (ProcessorData->StateLock); if (EFI_ERROR (Status)) { return; } ProcessorState = ProcessorData->State; gThread->MutexUnlock (ProcessorData->StateLock); switch (ProcessorState) { case CPU_STATE_FINISHED: if (gMPSystem.SingleThread) { Status = GetNextBlockedNumber (&NextNumber); if (!EFI_ERROR (Status)) { NextData = &gMPSystem.ProcessorData[NextNumber]; gThread->MutexLock (NextData->StateLock); NextData->State = CPU_STATE_READY; gThread->MutexUnlock (NextData->StateLock); SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument); } } gThread->MutexLock (ProcessorData->StateLock); ProcessorData->State = CPU_STATE_IDLE; gThread->MutexUnlock (ProcessorData->StateLock); gMPSystem.FinishCount++; break; default: break; } } if (gMPSystem.TimeoutActive && (gMPSystem.Timeout == 0)) { // // Timeout // if (gMPSystem.FailedList != NULL) { for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) { ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) { // Skip Disabled processors continue; } // Mark the Status = gThread->MutexTryLock (ProcessorData->StateLock); if (EFI_ERROR (Status)) { return; } ProcessorState = ProcessorData->State; gThread->MutexUnlock (ProcessorData->StateLock); if (ProcessorState != CPU_STATE_IDLE) { // If we are retrying make sure we don't double count for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) { if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) { break; } if (gMPSystem.FailedList[ProcessorNumber] == Cpu) { Found = TRUE; break; } } if (!Found) { gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu; } } } } // Force terminal exit gMPSystem.FinishCount = gMPSystem.StartCount; } if (gMPSystem.FinishCount != gMPSystem.StartCount) { return; } gBS->SetTimer ( gMPSystem.CheckAllAPsEvent, TimerCancel, 0 ); if (gMPSystem.FailedListIndex == 0) { if (gMPSystem.FailedList != NULL) { FreePool (gMPSystem.FailedList); gMPSystem.FailedList = NULL; } } Status = gBS->SignalEvent (gMPSystem.WaitEvent); return; } VOID EFIAPI CpuCheckThisAPStatus ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; PROCESSOR_DATA_BLOCK *ProcessorData; PROCESSOR_STATE ProcessorState; ProcessorData = (PROCESSOR_DATA_BLOCK *)Context; // // This is an Interrupt Service routine. // that can grab a lock that is held in a non-interrupt // context. Meaning deadlock. Which is a badddd thing. // So, try lock it. If we can get it, cool, do our thing. // otherwise, just dump out & try again on the next iteration. // Status = gThread->MutexTryLock (ProcessorData->StateLock); if (EFI_ERROR (Status)) { return; } ProcessorState = ProcessorData->State; gThread->MutexUnlock (ProcessorData->StateLock); if (ProcessorState == CPU_STATE_FINISHED) { Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0); ASSERT_EFI_ERROR (Status); Status = gBS->SignalEvent (gMPSystem.WaitEvent); ASSERT_EFI_ERROR (Status); gThread->MutexLock (ProcessorData->StateLock); ProcessorData->State = CPU_STATE_IDLE; gThread->MutexUnlock (ProcessorData->StateLock); } return; } /*++ This function is called by all processors (both BSP and AP) once and collects MP related data MPSystemData - Pointer to the data structure containing MP related data BSP - TRUE if the CPU is BSP EFI_SUCCESS - Data for the processor collected and filled in --*/ EFI_STATUS FillInProcessorInformation ( IN BOOLEAN BSP, IN UINTN ProcessorNumber ) { gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self (); gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT; if (BSP) { gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT; } gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = (UINT32)ProcessorNumber; gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0; gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0; gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE; gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL; gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL; gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit (); gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit (); return EFI_SUCCESS; } VOID * EFIAPI CpuDriverApIdolLoop ( VOID *Context ) { EFI_AP_PROCEDURE Procedure; VOID *Parameter; UINTN ProcessorNumber; PROCESSOR_DATA_BLOCK *ProcessorData; ProcessorNumber = (UINTN)Context; ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber]; ProcessorData->Info.ProcessorId = gThread->Self (); while (TRUE) { // // Make a local copy on the stack to be extra safe // gThread->MutexLock (ProcessorData->ProcedureLock); Procedure = ProcessorData->Procedure; Parameter = ProcessorData->Parameter; gThread->MutexUnlock (ProcessorData->ProcedureLock); if (Procedure != NULL) { gThread->MutexLock (ProcessorData->StateLock); ProcessorData->State = CPU_STATE_BUSY; gThread->MutexUnlock (ProcessorData->StateLock); Procedure (Parameter); gThread->MutexLock (ProcessorData->ProcedureLock); ProcessorData->Procedure = NULL; gThread->MutexUnlock (ProcessorData->ProcedureLock); gThread->MutexLock (ProcessorData->StateLock); ProcessorData->State = CPU_STATE_FINISHED; gThread->MutexUnlock (ProcessorData->StateLock); } // Poll 5 times a seconds, 200ms // Don't want to burn too many system resources doing nothing. gEmuThunk->Sleep (200 * 1000); } return 0; } EFI_STATUS InitializeMpSystemData ( IN UINTN NumberOfProcessors ) { EFI_STATUS Status; UINTN Index; // // Clear the data structure area first. // ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA)); // // First BSP fills and inits all known values, including it's own records. // gMPSystem.NumberOfProcessors = NumberOfProcessors; gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors; gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK)); ASSERT (gMPSystem.ProcessorData != NULL); FillInProcessorInformation (TRUE, 0); Status = gBS->CreateEvent ( EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, CpuCheckAllAPsStatus, NULL, &gMPSystem.CheckAllAPsEvent ); ASSERT_EFI_ERROR (Status); for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) { if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) { // Skip BSP continue; } FillInProcessorInformation (FALSE, Index); Status = gThread->CreateThread ( (VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId, NULL, CpuDriverApIdolLoop, (VOID *)Index ); Status = gBS->CreateEvent ( EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, CpuCheckThisAPStatus, (VOID *)&gMPSystem.ProcessorData[Index], &gMPSystem.ProcessorData[Index].CheckThisAPEvent ); } return EFI_SUCCESS; } /** Invoke a notification event @param Event Event whose notification function is being invoked. @param Context The pointer to the notification function's context, which is implementation-dependent. **/ VOID EFIAPI CpuReadToBootFunction ( IN EFI_EVENT Event, IN VOID *Context ) { gReadToBoot = TRUE; } EFI_STATUS CpuMpServicesInit ( OUT UINTN *MaxCpus ) { EFI_STATUS Status; EFI_HANDLE Handle; EMU_IO_THUNK_PROTOCOL *IoThunk; *MaxCpus = 1; // BSP IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0); if (IoThunk != NULL) { Status = IoThunk->Open (IoThunk); if (!EFI_ERROR (Status)) { if (IoThunk->ConfigString != NULL) { *MaxCpus += StrDecimalToUintn (IoThunk->ConfigString); gThread = IoThunk->Interface; } } } if (*MaxCpus == 1) { // We are not MP so nothing to do return EFI_SUCCESS; } gPollInterval = (UINTN)PcdGet64 (PcdEmuMpServicesPollingInterval); Status = InitializeMpSystemData (*MaxCpus); if (EFI_ERROR (Status)) { return Status; } Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent); ASSERT_EFI_ERROR (Status); // // Now install the MP services protocol. // Handle = NULL; Status = gBS->InstallMultipleProtocolInterfaces ( &Handle, &gEfiMpServiceProtocolGuid, &mMpServicesTemplate, NULL ); return Status; }