/* * A4A,A4B,A8A,A8B TDM FXS/FXO Interface Driver for DAHDI Telephony interface * * Copyright (C) 2013 Digium, Inc. * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30) /* Define this if you would like to load the modules in parallel. While this * can speed up loads when multiple cards handled by this driver are installed, * it also makes it impossible to abort module loads with ctrl-c */ #undef USE_ASYNC_INIT #include #else #undef USE_ASYNC_INIT #endif #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0) #include #endif /* 4.11.0 */ #include "proslic.h" #include #include #include #include #include "wcxb.h" #include "wcxb_spi.h" #include "wcxb_flash.h" #ifdef CONFIG_VOICEBUS_DISABLE_ASPM #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 4, 0) #include #endif #endif /*! * \brief Default ringer debounce (in ms) */ #define DEFAULT_RING_DEBOUNCE 1024 #define POLARITY_DEBOUNCE 64 /* Polarity debounce (in ms) */ #define OHT_TIMER 6000 /* How long after RING to retain OHT */ #define FLAG_EXPRESS (1 << 0) #define NUM_MODULES 8 #define CMD_WR(addr, val) (((addr<<8)&0xff00) | (val&0xff)) enum battery_state { BATTERY_UNKNOWN = 0, BATTERY_DEBOUNCING_PRESENT, BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM, BATTERY_DEBOUNCING_PRESENT_ALARM, BATTERY_PRESENT, BATTERY_DEBOUNCING_LOST, BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM, BATTERY_DEBOUNCING_LOST_ALARM, BATTERY_LOST, }; enum ring_detector_state { RINGOFF = 0, DEBOUNCING_RINGING_POSITIVE, DEBOUNCING_RINGING_NEGATIVE, RINGING, DEBOUNCING_RINGOFF, }; enum polarity_state { UNKNOWN_POLARITY = 0, POLARITY_DEBOUNCE_POSITIVE, POLARITY_POSITIVE, POLARITY_DEBOUNCE_NEGATIVE, POLARITY_NEGATIVE, }; struct wcaxx_chan { struct dahdi_chan chan; struct dahdi_echocan_state ec; int timeslot; unsigned int hwpreec_enabled:1; }; struct fxo { enum ring_detector_state ring_state:4; enum battery_state battery_state:4; enum polarity_state polarity_state:4; u8 ring_polarity_change_count:4; u8 hook_ring_shadow; s8 line_voltage_status; int offhook; int neonmwi_state; int neonmwi_last_voltage; unsigned int neonmwi_debounce; unsigned int neonmwi_offcounter; unsigned long display_fxovoltage; unsigned long ringdebounce_timer; unsigned long battdebounce_timer; unsigned long poldebounce_timer; }; struct fxs { int idletxhookstate; /* IDLE changing hook state */ /* lasttxhook reflects the last value written to the proslic's reg 64 * (LINEFEED_CONTROL) in bits 0-2. Bit 4 indicates if the last write is * pending i.e. it is in process of being written to the register NOTE: * in order for this value to actually be written to the proslic, the * appropriate matching value must be written into the sethook variable * so that it gets queued and handled by the voicebus ISR. */ u8 lasttxhook; u8 linefeed_control_shadow; u8 hook_state_shadow; u8 oht_active:1; u8 off_hook:1; int palarms; struct dahdi_vmwi_info vmwisetting; int vmwi_active_messages; int vmwi_linereverse; int reversepolarity; /* polarity reversal */ struct { u8 vals[12]; } calregs; unsigned long check_alarm; unsigned long check_proslic; unsigned long oppending_timeout; unsigned long ohttimer; }; #define fxs_lf(fxs, value) _fxs_lf((fxs), SLIC_LF_##value) static inline bool _fxs_lf(const struct fxs *fxs, const unsigned value) { return (fxs->lasttxhook & SLIC_LF_SETMASK) == value; } enum module_type { NONE = 0, FXS, FXO, }; #define MODULE_POLL_TIME_MS 10 struct wcaxx_mod_poll { struct wcxb_spi_message m; struct wcxb_spi_transfer t; struct wcaxx_module *mod; struct wcaxx *wc; u8 buffer[6]; u8 master_buffer[6]; }; struct wcaxx_module { union modtypes { struct fxo fxo; struct fxs fxs; } mod; u8 card; u8 subaddr; enum module_type type; int sethook; /* pending hook state command */ int dacssrc; struct wcxb_spi_device *spi; struct wcaxx_mod_poll *mod_poll; }; struct _device_desc { const char *name; unsigned int ports; }; static const struct _device_desc device_a8a = { "Wildcard A8A", 8}; static const struct _device_desc device_a8b = { "Wildcard A8B", 8}; static const struct _device_desc device_a4a = { "Wildcard A4A", 4}; static const struct _device_desc device_a4b = { "Wildcard A4B", 4}; struct wcaxx { const struct _device_desc *desc; const char *board_name; unsigned long framecount; unsigned long module_poll_time; int mods_per_board; spinlock_t reglock; struct wcaxx_module mods[NUM_MODULES]; struct wcxb xb; struct dahdi_span span; struct wcaxx_chan *chans[NUM_MODULES]; struct dahdi_echocan_state *ec[NUM_MODULES]; int companding; struct dahdi_device *ddev; struct wcxb_spi_master *master; #define INITIALIZED 0 unsigned long bit_flags; /* 4 SPI devices that are matched to the chip selects. The 4 port * modules will share a single SPI device since they use the same chip * select. */ struct wcxb_spi_device *spi_devices[4]; struct vpm450m *vpm; struct list_head card_node; u16 num; }; static inline bool is_pcie(const struct wcaxx *wc) { return (wc->desc == &device_a8b) || (wc->desc == &device_a4b); } static inline bool is_four_port(const struct wcaxx *wc) { return (4 == wc->desc->ports); } #include #include #include #include #include #include #include "oct6100api/oct6100_api.h" #define ECHOCAN_NUM_CHANS 8 #define FLAG_DTMF (1 << 0) #define FLAG_MUTE (1 << 1) #define FLAG_ECHO (1 << 2) #define OCT_CHIP_ID 0 #define OCT_MAX_TDM_STREAMS 4 #define OCT_TONEEVENT_BUFFER_SIZE 128 #define SOUT_STREAM 1 #define RIN_STREAM 0 #define SIN_STREAM 2 static int vpmsupport = 1; static int wcaxx_vpm_init(struct wcaxx *wc); static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec); static const struct dahdi_echocan_features vpm_ec_features = { .NLP_automatic = 1, .CED_tx_detect = 1, .CED_rx_detect = 1, }; static const struct dahdi_echocan_ops vpm_ec_ops = { .echocan_free = echocan_free, }; struct vpm450m { tPOCT6100_INSTANCE_API pApiInstance; struct oct612x_context context; UINT32 aulEchoChanHndl[32]; int chanflags[32]; int ecmode[32]; int numchans; }; static int wcaxx_oct612x_write(struct oct612x_context *context, u32 address, u16 value) { struct wcaxx *wc = dev_get_drvdata(context->dev); wcxb_set_echocan_reg(&wc->xb, address, value); return 0; } static int wcaxx_oct612x_read(struct oct612x_context *context, u32 address, u16 *value) { struct wcaxx *wc = dev_get_drvdata(context->dev); *value = wcxb_get_echocan_reg(&wc->xb, address); return 0; } static int wcaxx_oct612x_write_smear(struct oct612x_context *context, u32 address, u16 value, size_t count) { unsigned int i; struct wcaxx *wc = dev_get_drvdata(context->dev); for (i = 0; i < count; ++i) wcxb_set_echocan_reg(&wc->xb, address + (i << 1), value); return 0; } static int wcaxx_oct612x_write_burst(struct oct612x_context *context, u32 address, const u16 *buffer, size_t count) { unsigned int i; struct wcaxx *wc = dev_get_drvdata(context->dev); for (i = 0; i < count; ++i) wcxb_set_echocan_reg(&wc->xb, address + (i << 1), buffer[i]); return 0; } static int wcaxx_oct612x_read_burst(struct oct612x_context *context, u32 address, u16 *buffer, size_t count) { unsigned int i; struct wcaxx *wc = dev_get_drvdata(context->dev); for (i = 0; i < count; ++i) buffer[i] = wcxb_get_echocan_reg(&wc->xb, address + (i << 1)); return 0; } static const struct oct612x_ops wcaxx_oct612x_ops = { .write = wcaxx_oct612x_write, .read = wcaxx_oct612x_read, .write_smear = wcaxx_oct612x_write_smear, .write_burst = wcaxx_oct612x_write_burst, .read_burst = wcaxx_oct612x_read_burst, }; static void vpm450m_setecmode(struct vpm450m *vpm450m, int channel, int mode) { tOCT6100_CHANNEL_MODIFY *modify; UINT32 ulResult; if (vpm450m->ecmode[channel] == mode) return; modify = kzalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_ATOMIC); if (!modify) { pr_notice("Unable to allocate memory for setec!\n"); return; } Oct6100ChannelModifyDef(modify); modify->ulEchoOperationMode = mode; modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel]; ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify); if (ulResult != GENERIC_OK) { pr_notice("Failed to apply echo can changes on channel %d %d %08x!\n", vpm450m->aulEchoChanHndl[channel], channel, ulResult); } else { #ifdef OCTASIC_DEBUG pr_debug("Echo can on channel %d set to %d\n", channel, mode); #endif vpm450m->ecmode[channel] = mode; } kfree(modify); } static void vpm450m_setec(struct vpm450m *vpm450m, int channel, int eclen) { if (eclen) { vpm450m->chanflags[channel] |= FLAG_ECHO; vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_NORMAL); } else { vpm450m->chanflags[channel] &= ~FLAG_ECHO; if (vpm450m->chanflags[channel] & (FLAG_DTMF | FLAG_MUTE)) { vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_RESET); } else { vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_POWER_DOWN); } } } static UINT32 tdmmode_chan_to_slot_map(int mode, int channel) { /* Four phases on the tdm bus, skip three of them per channel */ /* Due to a bug in the octasic, we had to move the data onto phase 2 */ return 1+(channel*4); } static int echocan_initialize_channel(struct vpm450m *vpm, int channel, int mode) { tOCT6100_CHANNEL_OPEN ChannelOpen; UINT32 law_to_use = cOCT6100_PCM_U_LAW; UINT32 tdmslot_setting; UINT32 ulResult; if (0 > channel || ECHOCAN_NUM_CHANS <= channel) return -1; tdmslot_setting = tdmmode_chan_to_slot_map(mode, channel); /* Fill Open channel structure with defaults */ Oct6100ChannelOpenDef(&ChannelOpen); /* Assign the handle memory.*/ ChannelOpen.pulChannelHndl = &vpm->aulEchoChanHndl[channel]; ChannelOpen.ulUserChanId = channel; /* Enable Tone disabling for Fax and Modems */ ChannelOpen.fEnableToneDisabler = TRUE; /* Passthrough TDM data by default, no echocan */ ChannelOpen.ulEchoOperationMode = cOCT6100_ECHO_OP_MODE_POWER_DOWN; /* Configure the TDM settings.*/ /* Input from the framer */ ChannelOpen.TdmConfig.ulSinStream = SIN_STREAM; ChannelOpen.TdmConfig.ulSinTimeslot = tdmslot_setting; ChannelOpen.TdmConfig.ulSinPcmLaw = law_to_use; /* Input from the Host (pre-framer) */ ChannelOpen.TdmConfig.ulRinStream = RIN_STREAM; ChannelOpen.TdmConfig.ulRinTimeslot = tdmslot_setting; ChannelOpen.TdmConfig.ulRinPcmLaw = law_to_use; /* Output to the Host */ ChannelOpen.TdmConfig.ulSoutStream = SOUT_STREAM; ChannelOpen.TdmConfig.ulSoutTimeslot = tdmslot_setting; ChannelOpen.TdmConfig.ulSoutPcmLaw = law_to_use; /* From asterisk after echo-cancellation - goes nowhere */ ChannelOpen.TdmConfig.ulRoutStream = cOCT6100_UNASSIGNED; ChannelOpen.TdmConfig.ulRoutTimeslot = cOCT6100_UNASSIGNED; ChannelOpen.TdmConfig.ulRoutPcmLaw = law_to_use; /* Set the desired VQE features.*/ ChannelOpen.VqeConfig.fEnableNlp = TRUE; ChannelOpen.VqeConfig.fRinDcOffsetRemoval = TRUE; ChannelOpen.VqeConfig.fSinDcOffsetRemoval = TRUE; ChannelOpen.VqeConfig.ulComfortNoiseMode = cOCT6100_COMFORT_NOISE_NORMAL; /* Open the channel.*/ ulResult = Oct6100ChannelOpen(vpm->pApiInstance, &ChannelOpen); return ulResult; } static struct vpm450m *init_vpm450m(struct wcaxx *wc, int isalaw, const struct firmware *firmware) { tOCT6100_CHIP_OPEN *ChipOpen; tOCT6100_GET_INSTANCE_SIZE InstanceSize; tOCT6100_CHANNEL_OPEN *ChannelOpen; UINT32 ulResult; struct vpm450m *vpm450m; int x, i; vpm450m = kzalloc(sizeof(struct vpm450m), GFP_KERNEL); if (!vpm450m) { dev_info(&wc->xb.pdev->dev, "Unable to allocate vpm450m struct\n"); return NULL; } vpm450m->context.dev = &wc->xb.pdev->dev; vpm450m->context.ops = &wcaxx_oct612x_ops; ChipOpen = kzalloc(sizeof(tOCT6100_CHIP_OPEN), GFP_KERNEL); if (!ChipOpen) { dev_info(&wc->xb.pdev->dev, "Unable to allocate ChipOpen\n"); kfree(vpm450m); return NULL; } ChannelOpen = kzalloc(sizeof(tOCT6100_CHANNEL_OPEN), GFP_KERNEL); if (!ChannelOpen) { dev_info(&wc->xb.pdev->dev, "Unable to allocate ChannelOpen\n"); kfree(vpm450m); kfree(ChipOpen); return NULL; } for (x = 0; x < ARRAY_SIZE(vpm450m->ecmode); x++) vpm450m->ecmode[x] = -1; vpm450m->numchans = ECHOCAN_NUM_CHANS; dev_info(&wc->xb.pdev->dev, "Echo cancellation for %d channels\n", wc->desc->ports); Oct6100ChipOpenDef(ChipOpen); ChipOpen->pProcessContext = &vpm450m->context; /* Change default parameters as needed */ /* upclk oscillator is at 33.33 Mhz */ ChipOpen->ulUpclkFreq = cOCT6100_UPCLK_FREQ_33_33_MHZ; /* mclk will be generated by internal PLL at 133 Mhz */ ChipOpen->fEnableMemClkOut = TRUE; ChipOpen->ulMemClkFreq = cOCT6100_MCLK_FREQ_133_MHZ; /* User defined Chip ID.*/ ChipOpen->ulUserChipId = OCT_CHIP_ID; /* Set the maximums that the chip needs to support */ ChipOpen->ulMaxChannels = vpm450m->numchans; ChipOpen->ulMaxTdmStreams = OCT_MAX_TDM_STREAMS; /* External Memory Settings */ /* Use DDR memory.*/ ChipOpen->ulMemoryType = cOCT6100_MEM_TYPE_DDR; ChipOpen->ulNumMemoryChips = 1; ChipOpen->ulMemoryChipSize = cOCT6100_MEMORY_CHIP_SIZE_32MB; ChipOpen->pbyImageFile = (PUINT8) firmware->data; ChipOpen->ulImageSize = firmware->size; /* Set TDM data stream frequency */ for (i = 0; i < ChipOpen->ulMaxTdmStreams; i++) ChipOpen->aulTdmStreamFreqs[i] = cOCT6100_TDM_STREAM_FREQ_8MHZ; /* Configure TDM sampling */ ChipOpen->ulTdmSampling = cOCT6100_TDM_SAMPLE_AT_FALLING_EDGE; /* Disable to save RAM footprint space */ ChipOpen->fEnableChannelRecording = FALSE; /* In this example we will maintain the API using polling so interrupts * must be disabled */ ChipOpen->InterruptConfig.ulErrorH100Config = cOCT6100_INTERRUPT_DISABLE; ChipOpen->InterruptConfig.ulErrorMemoryConfig = cOCT6100_INTERRUPT_DISABLE; ChipOpen->InterruptConfig.ulFatalGeneralConfig = cOCT6100_INTERRUPT_DISABLE; ChipOpen->InterruptConfig.ulFatalMemoryConfig = cOCT6100_INTERRUPT_DISABLE; ChipOpen->ulSoftToneEventsBufSize = OCT_TONEEVENT_BUFFER_SIZE; /* Inserting default values into tOCT6100_GET_INSTANCE_SIZE structure * parameters. */ Oct6100GetInstanceSizeDef(&InstanceSize); /* Get the size of the OCT6100 instance structure. */ ulResult = Oct6100GetInstanceSize(ChipOpen, &InstanceSize); if (ulResult != cOCT6100_ERR_OK) { dev_info(&wc->xb.pdev->dev, "Unable to get instance size: %x\n", ulResult); return NULL; } vpm450m->pApiInstance = vmalloc(InstanceSize.ulApiInstanceSize); if (!vpm450m->pApiInstance) { dev_info(&wc->xb.pdev->dev, "Out of memory (can't allocate %d bytes)!\n", InstanceSize.ulApiInstanceSize); return NULL; } /* Perform the actual configuration of the chip. */ wcxb_enable_echocan_dram(&wc->xb); ulResult = Oct6100ChipOpen(vpm450m->pApiInstance, ChipOpen); if (ulResult != cOCT6100_ERR_OK) { dev_info(&wc->xb.pdev->dev, "Unable to Oct6100ChipOpen: %x\n", ulResult); return NULL; } /* OCT6100 is now booted and channels can be opened */ /* Open all channels */ for (i = 0; i < ECHOCAN_NUM_CHANS; i++) { ulResult = echocan_initialize_channel(vpm450m, i, isalaw); if (0 != ulResult) { dev_info(&wc->xb.pdev->dev, "Unable to echocan_initialize_channel: %x\n", ulResult); return NULL; } } if (vpmsupport) wcxb_enable_echocan(&wc->xb); else wcxb_disable_echocan(&wc->xb); kfree(ChipOpen); kfree(ChannelOpen); return vpm450m; } static void release_vpm450m(struct vpm450m *vpm450m) { UINT32 ulResult; tOCT6100_CHIP_CLOSE ChipClose; Oct6100ChipCloseDef(&ChipClose); ulResult = Oct6100ChipClose(vpm450m->pApiInstance, &ChipClose); if (ulResult != cOCT6100_ERR_OK) pr_notice("Failed to close chip, code %08x!\n", ulResult); vfree(vpm450m->pApiInstance); kfree(vpm450m); } static const char *wcaxx_echocan_name(const struct dahdi_chan *chan) { struct wcaxx *wc = chan->pvt; if (wc->vpm) return "VPMOCT032"; else return NULL; } static int wcaxx_echocan_create(struct dahdi_chan *chan, struct dahdi_echocanparams *ecp, struct dahdi_echocanparam *p, struct dahdi_echocan_state **ec) { struct wcaxx *wc = chan->pvt; int channel; const struct dahdi_echocan_ops *ops; const struct dahdi_echocan_features *features; if (!vpmsupport || !wc->vpm) return -ENODEV; ops = &vpm_ec_ops; features = &vpm_ec_features; if (ecp->param_count > 0) { dev_warn(&wc->xb.pdev->dev, "%s echo canceller does not support parameters; failing request\n", chan->ec_factory->get_name(chan)); return -EINVAL; } *ec = wc->ec[chan->chanpos - 1]; (*ec)->ops = ops; (*ec)->features = *features; channel = chan->chanpos-1; if (wc->vpm) vpm450m_setec(wc->vpm, channel, ecp->tap_length); return 0; } static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec) { struct wcaxx *wc = chan->pvt; int channel; memset(ec, 0, sizeof(*ec)); channel = chan->chanpos - 1; if (wc->vpm) vpm450m_setec(wc->vpm, channel, 0); } static int wcaxx_vpm_init(struct wcaxx *wc) { int companding = 0; struct firmware embedded_firmware; const struct firmware *firmware = &embedded_firmware; #if !defined(HOTPLUG_FIRMWARE) extern void _binary_dahdi_fw_oct6114_032_bin_size; extern u8 _binary_dahdi_fw_oct6114_032_bin_start[]; #else static const char oct032_firmware[] = "dahdi-fw-oct6114-032.bin"; #endif int res; if (!vpmsupport) { dev_info(&wc->xb.pdev->dev, "VPM: Support Disabled\n"); return -1; } wcxb_reset_echocan(&wc->xb); if (!wcxb_is_echocan_present(&wc->xb)) { dev_info(&wc->xb.pdev->dev, "VPM not present.\n"); return -1; } #if defined(HOTPLUG_FIRMWARE) res = request_firmware(&firmware, oct032_firmware, &wc->xb.pdev->dev); if ((0 != res) || !firmware) { dev_notice(&wc->xb.pdev->dev, "VPM450: firmware %s not available from userspace\n", oct032_firmware); return -1; } #else embedded_firmware.data = _binary_dahdi_fw_oct6114_032_bin_start; /* Yes... this is weird. objcopy gives us a symbol containing the size of the firmware, not a pointer a variable containing the size. The only way we can get the value of the symbol is to take its address, so we define it as a pointer and then cast that value to the proper type. */ embedded_firmware.size = (size_t)&_binary_dahdi_fw_oct6114_032_bin_size; #endif wc->vpm = init_vpm450m(wc, companding, firmware); if (!wc->vpm) { dev_notice(&wc->xb.pdev->dev, "VPM450: Failed to initialize\n"); if (firmware != &embedded_firmware) release_firmware(firmware); return -EIO; } if (firmware != &embedded_firmware) release_firmware(firmware); dev_info(&wc->xb.pdev->dev, "VPM450: Present and operational servicing %d span\n", 1); return 0; } static inline bool is_initialized(struct wcaxx *wc) { return (test_bit(INITIALIZED, &wc->bit_flags) > 0); } static inline struct wcxb_spi_device * _get_spi_device_for_8_port(struct wcaxx *wc, unsigned int port, bool altcs) { switch (port) { case 0: return wc->spi_devices[0]; case 1: return (altcs) ? wc->spi_devices[0] : wc->spi_devices[1]; case 2: WARN_ON(!altcs); return wc->spi_devices[0]; case 3: WARN_ON(!altcs); return wc->spi_devices[0]; case 4: return wc->spi_devices[2]; case 5: return (altcs) ? wc->spi_devices[2] : wc->spi_devices[3]; case 6: WARN_ON(!altcs); return wc->spi_devices[2]; case 7: WARN_ON(!altcs); return wc->spi_devices[2]; default: WARN_ON(1); return wc->spi_devices[0]; } } static inline struct wcxb_spi_device * _get_spi_device_for_4_port(struct wcaxx *wc, unsigned int port) { if (port > 3) { WARN_ON(1); return wc->spi_devices[0]; } else { return wc->spi_devices[port]; } } static inline struct wcxb_spi_device * get_spi_device_for_port(struct wcaxx *wc, unsigned int port, bool altcs) { if (is_four_port(wc)) return _get_spi_device_for_4_port(wc, port); else return _get_spi_device_for_8_port(wc, port, altcs); } static u8 wcaxx_getreg(struct wcaxx *wc, struct wcaxx_module *const mod, int addr); static void wcaxx_setreg(struct wcaxx *wc, struct wcaxx_module *const mod, int addr, int val); static DEFINE_MUTEX(card_list_lock); static LIST_HEAD(card_list); #include "adt_lec.h" /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; /* Following define is a logical exclusive OR to determine if the polarity of * an fxs line is to be reversed. The items taken into account are: * overall polarity reversal for the module, * polarity reversal for the port, * and the state of the line reversal MWI indicator */ #define POLARITY_XOR(fxs) \ ((reversepolarity != 0) ^ ((fxs)->reversepolarity != 0) ^ \ ((fxs)->vmwi_linereverse != 0)) static int reversepolarity; static alpha indirect_regs[] = { {0, 255, "DTMF_ROW_0_PEAK", 0x55C2}, {1, 255, "DTMF_ROW_1_PEAK", 0x51E6}, {2, 255, "DTMF_ROW2_PEAK", 0x4B85}, {3, 255, "DTMF_ROW3_PEAK", 0x4937}, {4, 255, "DTMF_COL1_PEAK", 0x3333}, {5, 255, "DTMF_FWD_TWIST", 0x0202}, {6, 255, "DTMF_RVS_TWIST", 0x0202}, {7, 255, "DTMF_ROW_RATIO_TRES", 0x0198}, {8, 255, "DTMF_COL_RATIO_TRES", 0x0198}, {9, 255, "DTMF_ROW_2ND_ARM", 0x0611}, {10, 255, "DTMF_COL_2ND_ARM", 0x0202}, {11, 255, "DTMF_PWR_MIN_TRES", 0x00E5}, {12, 255, "DTMF_OT_LIM_TRES", 0x0A1C}, {13, 0, "OSC1_COEF", 0x7B30}, {14, 1, "OSC1X", 0x0063}, {15, 2, "OSC1Y", 0x0000}, {16, 3, "OSC2_COEF", 0x7870}, {17, 4, "OSC2X", 0x007D}, {18, 5, "OSC2Y", 0x0000}, {19, 6, "RING_V_OFF", 0x0000}, {20, 7, "RING_OSC", 0x7EF0}, {21, 8, "RING_X", 0x0160}, {22, 9, "RING_Y", 0x0000}, {23, 255, "PULSE_ENVEL", 0x2000}, {24, 255, "PULSE_X", 0x2000}, {25, 255, "PULSE_Y", 0x0000}, {26, 13, "RECV_DIGITAL_GAIN", 0x2000}, /* playback volume set lower */ {27, 14, "XMIT_DIGITAL_GAIN", 0x4000}, {28, 15, "LOOP_CLOSE_TRES", 0x1000}, {29, 16, "RING_TRIP_TRES", 0x3600}, {30, 17, "COMMON_MIN_TRES", 0x1000}, {31, 18, "COMMON_MAX_TRES", 0x0200}, {32, 19, "PWR_ALARM_Q1Q2", 0x07C0}, {33, 20, "PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */}, {34, 21, "PWR_ALARM_Q5Q6", 0x1B80}, {35, 22, "LOOP_CLOSURE_FILTER", 0x8000}, {36, 23, "RING_TRIP_FILTER", 0x0320}, {37, 24, "TERM_LP_POLE_Q1Q2", 0x008C}, {38, 25, "TERM_LP_POLE_Q3Q4", 0x0100}, {39, 26, "TERM_LP_POLE_Q5Q6", 0x0010}, {40, 27, "CM_BIAS_RINGING", 0x0C00}, {41, 64, "DCDC_MIN_V", 0x0C00}, {42, 255, "DCDC_XTRA", 0x1000}, {43, 66, "LOOP_CLOSE_TRES_LOW", 0x1000}, }; /* Undefine to enable Power alarm / Transistor debug -- note: do not enable for normal operation! */ /* #define PAQ_DEBUG */ #define DEBUG_CARD (1 << 0) #define DEBUG_ECHOCAN (1 << 1) #include "fxo_modes.h" static inline struct dahdi_chan * get_dahdi_chan(const struct wcaxx *wc, struct wcaxx_module *const mod) { return wc->span.chans[mod->card]; } static inline void mod_hooksig(struct wcaxx *wc, struct wcaxx_module *mod, enum dahdi_rxsig rxsig) { dahdi_hooksig(get_dahdi_chan(wc, mod), rxsig); } static void wcaxx_release(struct wcaxx *wc); static int fxovoltage; static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int debug; static int int_mode; #ifdef DEBUG static int robust; static int digitalloopback; #endif static int lowpower; static int boostringer; static int fastringer; static int _opermode; static char *opermode = "FCC"; static int fxshonormode; static int alawoverride; static char *companding = "auto"; static int fastpickup = -1; /* -1 auto, 0 no, 1 yes */ static int fxotxgain; static int fxorxgain; static int fxstxgain; static int fxsrxgain; static int nativebridge; static int ringdebounce = DEFAULT_RING_DEBOUNCE; static int latency = WCXB_DEFAULT_LATENCY; static unsigned int max_latency = WCXB_DEFAULT_MAXLATENCY; static int forceload; #define MS_PER_HOOKCHECK (1) #define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK) static int neonmwi_monitor; static int neonmwi_level = 75; /* neon mwi trip voltage */ static int neonmwi_envelope = 10; /* Time in milliseconds the monitor is checked before saying no message is * waiting */ static int neonmwi_offlimit = 16000; static int neonmwi_offlimit_cycles; static int wcaxx_init_proslic(struct wcaxx *wc, struct wcaxx_module *const mod, int fast, int manual, int sane); struct wcaxx_setreg_memory { struct wcxb_spi_message m; struct wcxb_spi_transfer t; u8 buffer[3]; }; /** * wcxb_spi_complete_setreg - Cleanup after a SPI write. * * We don't care about the results of setreg. Just go ahead and free up the * messages. * */ static void wcaxx_complete_setreg(void *arg) { struct wcaxx_setreg_memory *setreg = arg; kfree(setreg); } static void wcaxx_setreg(struct wcaxx *wc, struct wcaxx_module *mod, int addr, int val) { struct wcaxx_setreg_memory *setreg = kzalloc(sizeof(*setreg), GFP_ATOMIC); struct wcxb_spi_message *const m = &setreg->m; struct wcxb_spi_transfer *const t = &setreg->t; if (!setreg) { WARN_ON_ONCE(!setreg); return; } wcxb_spi_message_init(m); t->tx_buf = setreg->buffer; wcxb_spi_message_add_tail(t, m); if (FXO == mod->type) { static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c}; setreg->buffer[0] = 0x20 | ADDRS[mod->subaddr]; } else { setreg->buffer[0] = 1 << mod->subaddr; } setreg->buffer[1] = (addr) & 0x7f; setreg->buffer[2] = val; t->len = 3; m->complete = &wcaxx_complete_setreg; m->arg = setreg; wcxb_spi_async(mod->spi, m); } /** * wcaxx_fsxinit - Initilize all SPI devices to 3 byte mode. * * All the modules on the card need to be initialized to 3 byte mode in order to * talk to the daisy-chained SLIC / DAA on the quad modules. * */ static void wcaxx_fxsinit(struct wcxb_spi_device *const spi) { int res; u8 data_byte[2] = {0, 0x80}; struct wcxb_spi_transfer t; struct wcxb_spi_message m; memset(&t, 0, sizeof(t)); wcxb_spi_message_init(&m); t.tx_buf = data_byte; t.len = sizeof(data_byte); wcxb_spi_message_add_tail(&t, &m); res = wcxb_spi_sync(spi, &m); WARN_ON_ONCE(0 != res); return; } static u8 wcaxx_getreg(struct wcaxx *wc, struct wcaxx_module *const mod, int addr) { int res; u8 buffer[3]; struct wcxb_spi_message m; struct wcxb_spi_transfer t; memset(&t, 0, sizeof(t)); wcxb_spi_message_init(&m); t.tx_buf = t.rx_buf = buffer; t.len = sizeof(buffer); wcxb_spi_message_add_tail(&t, &m); if (FXO == mod->type) { static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c}; buffer[0] = 0x60 | ADDRS[mod->subaddr]; buffer[1] = addr & 0x7f; buffer[2] = 0; } else { buffer[0] = 1 << mod->subaddr; buffer[1] = (addr | 0x80) & 0xff; buffer[2] = 0; } res = wcxb_spi_sync(mod->spi, &m); WARN_ON_ONCE(0 != res); return buffer[2]; } static int wcaxx_getregs(struct wcaxx *wc, struct wcaxx_module *const mod, int *const addresses, const size_t count) { int x; for (x = 0; x < count; ++x) addresses[x] = wcaxx_getreg(wc, mod, addresses[x]); return 0; } static int wait_access(struct wcaxx *wc, struct wcaxx_module *const mod) { unsigned char data = 0; int count = 0; #define MAX 10 /* attempts */ /* Wait for indirect access */ while (count++ < MAX) { data = wcaxx_getreg(wc, mod, I_STATUS); if (!data) return 0; } if (count > (MAX-1)) { dev_notice(&wc->xb.pdev->dev, " ##### Loop error (%02x) #####\n", data); } return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) { if (indirect_regs[x].address == address) { address = indirect_regs[x].altaddr; break; } } return address; } static int wcaxx_proslic_setreg_indirect(struct wcaxx *wc, struct wcaxx_module *const mod, unsigned char address, unsigned short data) { int res = -1; address = translate_3215(address); if (address == 255) return 0; if (!wait_access(wc, mod)) { wcaxx_setreg(wc, mod, IDA_LO, (u8)(data & 0xFF)); wcaxx_setreg(wc, mod, IDA_HI, (u8)((data & 0xFF00)>>8)); wcaxx_setreg(wc, mod, IAA, address); res = 0; }; return res; } static int wcaxx_proslic_getreg_indirect(struct wcaxx *wc, struct wcaxx_module *const mod, unsigned char address) { int res = -1; char *p = NULL; address = translate_3215(address); if (address == 255) return 0; if (!wait_access(wc, mod)) { wcaxx_setreg(wc, mod, IAA, address); if (!wait_access(wc, mod)) { int addresses[2] = {IDA_LO, IDA_HI}; wcaxx_getregs(wc, mod, addresses, ARRAY_SIZE(addresses)); res = addresses[0] | (addresses[1] << 8); } else p = "Failed to wait inside\n"; } else p = "failed to wait\n"; if (p) dev_notice(&wc->xb.pdev->dev, "%s", p); return res; } static int wcaxx_proslic_init_indirect_regs(struct wcaxx *wc, struct wcaxx_module *mod) { unsigned char i; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { if (wcaxx_proslic_setreg_indirect(wc, mod, indirect_regs[i].address, indirect_regs[i].initial)) return -1; } return 0; } static int wcaxx_proslic_verify_indirect_regs(struct wcaxx *wc, struct wcaxx_module *mod) { int passed = 1; unsigned short i, initial; int j; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { j = wcaxx_proslic_getreg_indirect(wc, mod, (u8)indirect_regs[i].address); if (j < 0) { dev_notice(&wc->xb.pdev->dev, "Failed to read indirect register %d\n", i); return -1; } initial = indirect_regs[i].initial; if ((j != initial) && (indirect_regs[i].altaddr != 255)) { dev_notice(&wc->xb.pdev->dev, "!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name, indirect_regs[i].address, j, initial); passed = 0; } } if (passed) { if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Init Indirect Registers completed successfully.\n"); } } else { dev_notice(&wc->xb.pdev->dev, " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } /** * wcaxx_proslic_check_oppending - * * Ensures that a write to the line feed register on the SLIC has been * processed. If it hasn't after the timeout value, then it will resend the * command and wait for another timeout period. * */ static void wcaxx_proslic_check_oppending(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; unsigned long flags; if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) return; /* Monitor the Pending LF state change, for the next 100ms */ spin_lock_irqsave(&wc->reglock, flags); if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) { spin_unlock_irqrestore(&wc->reglock, flags); return; } if ((fxs->linefeed_control_shadow & SLIC_LF_SETMASK) == (fxs->lasttxhook & SLIC_LF_SETMASK)) { fxs->lasttxhook &= SLIC_LF_SETMASK; if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "SLIC_LF OK: card=%d shadow=%02x " "lasttxhook=%02x framecount=%ld\n", mod->card, fxs->linefeed_control_shadow, fxs->lasttxhook, wc->framecount); } } else if (time_after(wc->framecount, fxs->oppending_timeout)) { /* Check again in 100 ms */ fxs->oppending_timeout = wc->framecount + 100; wcaxx_setreg(wc, mod, LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "SLIC_LF RETRY: card=%d shadow=%02x " "lasttxhook=%02x framecount=%ld\n", mod->card, fxs->linefeed_control_shadow, fxs->lasttxhook, wc->framecount); } } spin_unlock_irqrestore(&wc->reglock, flags); } /* 256ms interrupt */ static void wcaxx_proslic_recheck_sanity(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; int res; unsigned long flags; const unsigned int MAX_ALARMS = 10; #ifdef PAQ_DEBUG res = mod->isrshadow[1]; res &= ~0x3; if (res) { mod->isrshadow[1] = 0; fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->xb.pdev->dev, "Power alarm (%02x) on module %d, resetting!\n", res, card + 1); mod->sethook = CMD_WR(19, res); /* Update shadow register to avoid extra power alarms * until next read */ mod->isrshadow[1] = 0; } else { if (fxs->palarms == MAX_ALARMS) { dev_notice(&wc->xb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1); } } } #else spin_lock_irqsave(&wc->reglock, flags); /* reg 64 has to be zero at last isr read */ res = !fxs->linefeed_control_shadow && !(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */ fxs->lasttxhook; /* not an intended zero */ if (res) { fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->xb.pdev->dev, "Power alarm on module %d, resetting!\n", mod->card + 1); if (fxs->lasttxhook == SLIC_LF_RINGING) { fxs->lasttxhook = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; } fxs->lasttxhook |= SLIC_LF_OPPENDING; mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); fxs->oppending_timeout = wc->framecount + 100; /* Update shadow register to avoid extra power alarms * until next read */ fxs->linefeed_control_shadow = fxs->lasttxhook; } else { if (fxs->palarms == MAX_ALARMS) { dev_notice(&wc->xb.pdev->dev, "Too many power alarms on card %d, " "NOT resetting!\n", mod->card + 1); } } } spin_unlock_irqrestore(&wc->reglock, flags); #endif } static inline bool is_fxo_ringing(const struct fxo *const fxo) { return ((fxo->hook_ring_shadow & 0x60) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline bool is_fxo_ringing_positive(const struct fxo *const fxo) { return (((fxo->hook_ring_shadow & 0x60) == 0x20) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline bool is_fxo_ringing_negative(const struct fxo *const fxo) { return (((fxo->hook_ring_shadow & 0x60) == 0x40) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline void set_ring(struct fxo *fxo, enum ring_detector_state new) { fxo->ring_state = new; } static void wcaxx_fxo_ring_detect(struct wcaxx *wc, struct wcaxx_module *mod) { struct fxo *const fxo = &mod->mod.fxo; static const unsigned int POLARITY_CHANGES_NEEDED = 2; /* Look for ring status bits (Ring Detect Signal Negative and Ring * Detect Signal Positive) to transition back and forth * POLARITY_CHANGES_NEEDED times to indicate that a ring is occurring. * Provide some number of samples to allow for the transitions to occur * before giving up. NOTE: neon mwi voltages will trigger one of these * bits to go active but not to have transitions between the two bits * (i.e. no negative to positive or positive to negative traversals) */ switch (fxo->ring_state) { case DEBOUNCING_RINGING_POSITIVE: if (is_fxo_ringing_negative(fxo)) { if (++fxo->ring_polarity_change_count > POLARITY_CHANGES_NEEDED) { mod_hooksig(wc, mod, DAHDI_RXSIG_RING); set_ring(fxo, RINGING); if (debug) { dev_info(&wc->xb.pdev->dev, "RING on %s!\n", get_dahdi_chan(wc, mod)->name); } } else { set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE); } } else if (time_after(wc->framecount, fxo->ringdebounce_timer)) { set_ring(fxo, RINGOFF); } break; case DEBOUNCING_RINGING_NEGATIVE: if (is_fxo_ringing_positive(fxo)) { if (++fxo->ring_polarity_change_count > POLARITY_CHANGES_NEEDED) { mod_hooksig(wc, mod, DAHDI_RXSIG_RING); set_ring(fxo, RINGING); if (debug) { dev_info(&wc->xb.pdev->dev, "RING on %s!\n", get_dahdi_chan(wc, mod)->name); } } else { set_ring(fxo, DEBOUNCING_RINGING_POSITIVE); } } else if (time_after(wc->framecount, fxo->ringdebounce_timer)) { set_ring(fxo, RINGOFF); } break; case RINGING: if (!is_fxo_ringing(fxo)) { set_ring(fxo, DEBOUNCING_RINGOFF); fxo->ringdebounce_timer = wc->framecount + ringdebounce / 8; } break; case DEBOUNCING_RINGOFF: if (!is_fxo_ringing(fxo)) { if (time_after(wc->framecount, fxo->ringdebounce_timer)) { if (debug) { dev_info(&wc->xb.pdev->dev, "NO RING on %s!\n", get_dahdi_chan(wc, mod)->name); } mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); set_ring(fxo, RINGOFF); } } else { set_ring(fxo, RINGING); } break; case RINGOFF: if (is_fxo_ringing(fxo)) { /* Look for positive/negative crossings in ring status * reg */ if (is_fxo_ringing_positive(fxo)) set_ring(fxo, DEBOUNCING_RINGING_POSITIVE); else set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE); fxo->ringdebounce_timer = wc->framecount + ringdebounce / 8; fxo->ring_polarity_change_count = 0; } break; } } #define MS_PER_CHECK_HOOK 1 static void wcaxx_check_battery_lost(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ switch (fxo->battery_state) { case BATTERY_DEBOUNCING_PRESENT_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_PRESENT: fxo->battery_state = BATTERY_LOST; break; case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; break; case BATTERY_UNKNOWN: mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK); /* fallthrough */ case BATTERY_PRESENT: fxo->battery_state = BATTERY_DEBOUNCING_LOST; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM: /* fallthrough */ case BATTERY_DEBOUNCING_LOST: /* Intentional drop through */ if (time_after(wc->framecount, fxo->battdebounce_timer)) { if (debug) { dev_info(&wc->xb.pdev->dev, "NO BATTERY on %d/%d!\n", wc->span.spanno, mod->card + 1); } #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_ONHOOK); if (debug) { dev_info(&wc->vb.pdev->dev, "Signalled On Hook\n"); } #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK); #endif /* set the alarm timer, taking into account that part * of its time period has already passed while * debouncing occurred */ fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; } break; case BATTERY_DEBOUNCING_LOST_ALARM: if (time_after(wc->framecount, fxo->battdebounce_timer)) { fxo->battery_state = BATTERY_LOST; dahdi_alarm_channel(get_dahdi_chan(wc, mod), DAHDI_ALARM_RED); } break; case BATTERY_LOST: break; } } static void wcaxx_check_battery_present(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->battery_state) { case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM: /* fallthrough */ case BATTERY_DEBOUNCING_PRESENT: if (time_after(wc->framecount, fxo->battdebounce_timer)) { if (debug) { dev_info(&wc->xb.pdev->dev, "BATTERY on %d/%d (%s)!\n", wc->span.spanno, mod->card + 1, (fxo->line_voltage_status < 0) ? "-" : "+"); } #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) { dev_info(&wc->vb.pdev->dev, "Signalled Off Hook\n"); } } #else mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part * of its time period has already passed while * debouncing occurred */ fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; } break; case BATTERY_DEBOUNCING_PRESENT_ALARM: if (time_after(wc->framecount, fxo->battdebounce_timer)) { fxo->battery_state = BATTERY_PRESENT; dahdi_alarm_channel(get_dahdi_chan(wc, mod), DAHDI_ALARM_NONE); } break; case BATTERY_PRESENT: break; case BATTERY_DEBOUNCING_LOST_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; break; case BATTERY_DEBOUNCING_LOST: fxo->battery_state = BATTERY_PRESENT; break; case BATTERY_UNKNOWN: mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); /* fallthrough */ case BATTERY_LOST: fxo->battery_state = BATTERY_DEBOUNCING_PRESENT; fxo->battdebounce_timer = wc->framecount + battdebounce; break; } } static void wcaxx_fxo_stop_debouncing_polarity(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->polarity_state) { case UNKNOWN_POLARITY: break; case POLARITY_DEBOUNCE_POSITIVE: fxo->polarity_state = POLARITY_NEGATIVE; break; case POLARITY_POSITIVE: break; case POLARITY_DEBOUNCE_NEGATIVE: fxo->polarity_state = POLARITY_POSITIVE; break; case POLARITY_NEGATIVE: break; }; } static void wcaxx_fxo_check_polarity(struct wcaxx *wc, struct wcaxx_module *const mod, const bool positive_polarity) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->polarity_state) { case UNKNOWN_POLARITY: fxo->polarity_state = (positive_polarity) ? POLARITY_POSITIVE : POLARITY_NEGATIVE; break; case POLARITY_DEBOUNCE_POSITIVE: if (!positive_polarity) { fxo->polarity_state = POLARITY_NEGATIVE; } else if (time_after(wc->framecount, fxo->poldebounce_timer)) { fxo->polarity_state = POLARITY_POSITIVE; dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_POLARITY); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "%s: Polarity NEGATIVE -> POSITIVE\n", get_dahdi_chan(wc, mod)->name); } } break; case POLARITY_POSITIVE: if (!positive_polarity) { fxo->polarity_state = POLARITY_DEBOUNCE_NEGATIVE; fxo->poldebounce_timer = wc->framecount + POLARITY_DEBOUNCE; } break; case POLARITY_DEBOUNCE_NEGATIVE: if (positive_polarity) { fxo->polarity_state = POLARITY_POSITIVE; } else if (time_after(wc->framecount, fxo->poldebounce_timer)) { dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_POLARITY); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "%s: Polarity POSITIVE -> NEGATIVE\n", get_dahdi_chan(wc, mod)->name); } fxo->polarity_state = POLARITY_NEGATIVE; } break; case POLARITY_NEGATIVE: if (positive_polarity) { fxo->polarity_state = POLARITY_DEBOUNCE_POSITIVE; fxo->poldebounce_timer = wc->framecount + POLARITY_DEBOUNCE; } break; }; } static bool is_neon_voltage_present(const struct fxo *fxo, u8 abs_voltage) { return (fxo->battery_state == BATTERY_PRESENT && abs_voltage > neonmwi_level && (0 == fxo->neonmwi_last_voltage || ((fxo->line_voltage_status >= fxo->neonmwi_last_voltage - neonmwi_envelope) && (fxo->line_voltage_status <= fxo->neonmwi_last_voltage + neonmwi_envelope) ) ) ); } static void do_neon_monitor(struct wcaxx *wc, struct wcaxx_module *mod, u8 abs_voltage) { struct fxo *const fxo = &mod->mod.fxo; struct dahdi_chan *const chan = get_dahdi_chan(wc, mod); /* Look for 4 consecutive voltage readings where the voltage is over the * neon limit but does not vary greatly from the last reading */ if (is_neon_voltage_present(fxo, abs_voltage)) { fxo->neonmwi_last_voltage = fxo->line_voltage_status; if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) { fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; if (0 == fxo->neonmwi_state) { dahdi_qevent_lock(chan, DAHDI_EVENT_NEONMWI_ACTIVE); fxo->neonmwi_state = 1; if (debug) { dev_info(&wc->xb.pdev->dev, "NEON MWI active for card %d\n", mod->card+1); } } fxo->neonmwi_debounce++; } else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) { fxo->neonmwi_debounce++; } else { fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; } } else { fxo->neonmwi_debounce = 0; fxo->neonmwi_last_voltage = 0; } /* If no neon mwi pulse for given period of time, indicte no neon mwi * state */ if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter) { fxo->neonmwi_offcounter--; if (0 == fxo->neonmwi_offcounter) { dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_INACTIVE); fxo->neonmwi_state = 0; if (debug) { dev_info(&wc->xb.pdev->dev, "NEON MWI cleared for card %d\n", mod->card+1); } } } } static void wcaxx_voicedaa_check_hook(struct wcaxx *wc, struct wcaxx_module *const mod) { signed char b; u8 abs_voltage; struct fxo *const fxo = &mod->mod.fxo; /* Try to track issues that plague slot one FXO's */ b = fxo->hook_ring_shadow & 0x9b; if (fxo->offhook) { if (b != 0x9) wcaxx_setreg(wc, mod, 5, 0x9); } else { if (b != 0x8) wcaxx_setreg(wc, mod, 5, 0x8); wcaxx_fxo_ring_detect(wc, mod); } abs_voltage = abs(fxo->line_voltage_status); if (fxovoltage && time_after(wc->framecount, fxo->display_fxovoltage)) { /* Every 100 ms */ fxo->display_fxovoltage = wc->framecount + 100; dev_info(&wc->xb.pdev->dev, "Port %d: Voltage: %d\n", mod->card + 1, fxo->line_voltage_status); } if (unlikely(DAHDI_RXSIG_INITIAL == get_dahdi_chan(wc, mod)->rxhooksig)) { /* * dahdi-base will set DAHDI_RXSIG_INITIAL after a * DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events * will be queued on the channel with the current received * hook state. Channels that use robbed-bit signalling always * report the current received state via the dahdi_rbsbits * call. Since we only call dahdi_hooksig when we've detected * a change to report, let's forget our current state in order * to force us to report it again via dahdi_hooksig. * */ fxo->battery_state = BATTERY_UNKNOWN; } if (abs_voltage < battthresh) { wcaxx_fxo_stop_debouncing_polarity(wc, mod); wcaxx_check_battery_lost(wc, mod); } else { wcaxx_check_battery_present(wc, mod); wcaxx_fxo_check_polarity(wc, mod, (fxo->line_voltage_status > 0)); } /* Look for neon mwi pulse */ if (neonmwi_monitor && !fxo->offhook) do_neon_monitor(wc, mod, abs_voltage); #undef MS_PER_CHECK_HOOK } static void wcaxx_fxs_hooksig(struct wcaxx *wc, struct wcaxx_module *const mod, enum dahdi_txsig txsig) { int x = 0; unsigned long flags; struct fxs *const fxs = &mod->mod.fxs; spin_lock_irqsave(&wc->reglock, flags); switch (txsig) { case DAHDI_TXSIG_ONHOOK: switch (get_dahdi_chan(wc, mod)->sig) { case DAHDI_SIG_FXOGS: x = (POLARITY_XOR(fxs)) ? SLIC_LF_RING_OPEN : SLIC_LF_TIP_OPEN; break; case DAHDI_SIG_EM: case DAHDI_SIG_FXOKS: case DAHDI_SIG_FXOLS: default: x = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_OFFHOOK: switch (get_dahdi_chan(wc, mod)->sig) { case DAHDI_SIG_EM: x = (POLARITY_XOR(fxs)) ? SLIC_LF_ACTIVE_FWD : SLIC_LF_ACTIVE_REV; break; default: x = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_START: x = SLIC_LF_RINGING; break; case DAHDI_TXSIG_KEWL: x = SLIC_LF_OPEN; break; default: spin_unlock_irqrestore(&wc->reglock, flags); dev_notice(&wc->xb.pdev->dev, "Can't set tx state to %d\n", txsig); return; } if (x != fxs->lasttxhook) { fxs->lasttxhook = x | SLIC_LF_OPPENDING; mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); fxs->oppending_timeout = wc->framecount + 100; spin_unlock_irqrestore(&wc->reglock, flags); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Setting FXS hook state to %d (%02x) framecount=%ld\n", txsig, x, wc->framecount); } } else { spin_unlock_irqrestore(&wc->reglock, flags); } } static void wcaxx_fxs_off_hook(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "fxs_off_hook: Card %d Going off hook\n", mod->card); } switch (fxs->lasttxhook) { case SLIC_LF_RINGING: /* Ringing */ case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */ case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */ /* just detected OffHook, during Ringing or OnHookTransfer */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; break; } if ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN) wcaxx_fxs_hooksig(wc, mod, DAHDI_TXSIG_OFFHOOK); dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_OFFHOOK); #ifdef DEBUG if (robust) wcaxx_init_proslic(wc, mod, 1, 0, 1); #endif } /** * wcaxx_fxs_on_hook - Report on hook to DAHDI. * @wc: Board hosting the module. * @card: Index of the module / port to place on hook. * * If we are intentionally dropping battery to signal a forward * disconnect we do not want to place the line "On-Hook". In this * case, the core of DAHDI will place us on hook when one of the RBS * timers expires. * */ static void wcaxx_fxs_on_hook(struct wcaxx *wc, struct wcaxx_module *const mod) { if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "fxs_on_hook: Card %d Going on hook\n", mod->card); } if ((mod->mod.fxs.lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN) wcaxx_fxs_hooksig(wc, mod, DAHDI_TXSIG_ONHOOK); dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_ONHOOK); } static void wcaxx_isr_misc_fxs(struct wcaxx *wc, struct wcaxx_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; unsigned long flags; if (time_after(wc->framecount, fxs->check_alarm)) { /* Accept an alarm once per 10 seconds */ fxs->check_alarm = wc->framecount + (1000*10); if (fxs->palarms) fxs->palarms--; } if (fxs->off_hook && !(fxs->hook_state_shadow & 1)) { wcaxx_fxs_on_hook(wc, mod); fxs->off_hook = 0; } else if (!fxs->off_hook && (fxs->hook_state_shadow & 1)) { wcaxx_fxs_off_hook(wc, mod); fxs->off_hook = 1; } wcaxx_proslic_check_oppending(wc, mod); if (time_after(wc->framecount, fxs->check_proslic)) { fxs->check_proslic = wc->framecount + 250; /* every 250ms */ wcaxx_proslic_recheck_sanity(wc, mod); } if (SLIC_LF_RINGING == fxs->lasttxhook) { /* RINGing, prepare for OHT */ fxs->ohttimer = wc->framecount + OHT_TIMER; /* OHT mode when idle */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD; } else if (fxs->oht_active) { /* check if still OnHook */ if (!fxs->off_hook) { if (time_before(wc->framecount, fxs->ohttimer)) return; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; spin_lock_irqsave(&wc->reglock, flags); if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_FWD; /* Data enqueued here */ mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d OnHookTransfer stop\n", mod->card); } } else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_REV; /* Data enqueued here */ mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d OnHookTransfer stop\n", mod->card); } } spin_unlock_irqrestore(&wc->reglock, flags); } else { fxs->oht_active = 0; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d OnHookTransfer abort\n", mod->card); } } } } static void wcaxx_handle_receive(struct wcxb *xb, void *_frame) { int i, j; struct wcaxx *wc = container_of(xb, struct wcaxx, xb); u8 *const frame = _frame; wc->framecount++; if (time_after(wc->framecount, wc->module_poll_time)) { for (i = 0; i < wc->mods_per_board; i++) { struct wcaxx_module *const mod = &wc->mods[i]; if (mod->mod_poll) { wcxb_spi_async(mod->spi, &mod->mod_poll->m); mod->mod_poll = NULL; } } wc->module_poll_time = wc->framecount + MODULE_POLL_TIME_MS; } /* TODO: This protection needs to be thought about. */ if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &wc->span.flags)) return; for (j = 0; j < DAHDI_CHUNKSIZE; j++) { for (i = 0; i < wc->span.channels; i++) { wc->chans[i]->chan.readchunk[j] = frame[j*WCXB_DMA_CHAN_SIZE+(1+i*4)]; } } for (i = 0; i < wc->span.channels; i++) { struct dahdi_chan *const c = wc->span.chans[i]; __dahdi_ec_chunk(c, c->readchunk, c->readchunk, c->writechunk); } _dahdi_receive(&wc->span); return; } static void wcaxx_handle_transmit(struct wcxb *xb, void *_frame) { int i, j; struct wcaxx *wc = container_of(xb, struct wcaxx, xb); u8 *const frame = _frame; wcxb_spi_handle_interrupt(wc->master); /* TODO: This protection needs to be thought about. */ if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &wc->span.flags)) return; _dahdi_transmit(&wc->span); for (j = 0; j < DAHDI_CHUNKSIZE; j++) { for (i = 0; i < wc->span.channels; i++) { struct dahdi_chan *c = &wc->chans[i]->chan; frame[j*WCXB_DMA_CHAN_SIZE+(1+i*4)] = c->writechunk[j]; } } return; } static int wcaxx_voicedaa_insane(struct wcaxx *wc, struct wcaxx_module *mod) { int blah; blah = wcaxx_getreg(wc, mod, 2); if (blah != 0x3) return -2; blah = wcaxx_getreg(wc, mod, 11); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "VoiceDAA System: %02x\n", blah & 0xf); } return 0; } static int wcaxx_proslic_insane(struct wcaxx *wc, struct wcaxx_module *const mod) { int blah, reg1, insane_report; insane_report = 0; blah = wcaxx_getreg(wc, mod, 0); if (blah != 0xff && (debug & DEBUG_CARD)) { dev_info(&wc->xb.pdev->dev, "ProSLIC on module %d, product %d, " "version %d\n", mod->card, (blah & 0x30) >> 4, (blah & 0xf)); } #if 0 if ((blah & 0x30) >> 4) { dev_info(&wc->xb.pdev->dev, "ProSLIC on module %d is not a 3210.\n", mod->card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } /* let's be really sure this is an FXS before we continue */ reg1 = wcaxx_getreg(wc, mod, 1); if ((0x80 != (blah & 0xf0)) || (0x88 != reg1)) { if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "DEBUG: not FXS b/c reg0=%x or " "reg1 != 0x88 (%x).\n", blah, reg1); } return -1; } blah = wcaxx_getreg(wc, mod, 8); if (blah != 0x2) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d insane (1) %d should be 2\n", mod->card, blah); return -1; } else if (insane_report) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d Reg 8 Reads %d Expected " "is 0x2\n", mod->card, blah); } blah = wcaxx_getreg(wc, mod, 64); if (blah != 0x0) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d insane (2)\n", mod->card); return -1; } else if (insane_report) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d Reg 64 Reads %d Expected " "is 0x0\n", mod->card, blah); } blah = wcaxx_getreg(wc, mod, 11); if (blah != 0x33) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d insane (3)\n", mod->card); return -1; } else if (insane_report) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d Reg 11 Reads %d " "Expected is 0x33\n", mod->card, blah); } /* Just be sure it's setup right. */ wcaxx_setreg(wc, mod, 30, 0); if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "ProSLIC on module %d seems sane.\n", mod->card); } return 0; } static int wcaxx_proslic_powerleak_test(struct wcaxx *wc, struct wcaxx_module *const mod) { unsigned long start; unsigned char vbat; /* Turn off linefeed */ wcaxx_setreg(wc, mod, LINE_STATE, 0); /* Power down */ wcaxx_setreg(wc, mod, 14, 0x10); start = jiffies; /* TODO: Why is this sleep necessary. Without it, the first read * comes back with a 0 value. */ msleep(20); while ((vbat = wcaxx_getreg(wc, mod, 82)) > 0x6) { if (time_after(jiffies, start + HZ/4)) break; } if (vbat < 0x06) { dev_notice(&wc->xb.pdev->dev, "Excessive leakage detected on module %d: %d " "volts (%02x) after %d ms\n", mod->card, 376 * vbat / 1000, vbat, (int)((jiffies - start) * 1000 / HZ)); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wcaxx_powerup_proslic(struct wcaxx *wc, struct wcaxx_module *mod, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wcaxx_setreg(wc, mod, 92, 0xc0 /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wcaxx_setreg(wc, mod, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while ((vbat = wcaxx_getreg(wc, mod, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) break; } if (vbat < 0xc0) { dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n", mod->card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "ProSLIC on module %d powered up to -%d volts (%02x) " "in %d ms\n", mod->card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if (loopcurrent > 41) { lim = 0; if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Loop current out of range! Setting to default 20mA!\n"); } } else if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Loop current set to %dmA!\n", (lim*3)+20); } wcaxx_setreg(wc, mod, LOOP_I_LIMIT, lim); /* Engage DC-DC converter */ wcaxx_setreg(wc, mod, 93, 0x19 /* was 0x19 */); return 0; } static int wcaxx_proslic_manual_calibrate(struct wcaxx *wc, struct wcaxx_module *const mod) { unsigned long origjiffies; unsigned char i; /* Disable all interupts in DR21-23 */ wcaxx_setreg(wc, mod, 21, 0); wcaxx_setreg(wc, mod, 22, 0); wcaxx_setreg(wc, mod, 23, 0); wcaxx_setreg(wc, mod, 64, 0); /* (0x18) Calibrations without the ADC and DAC offset and without * common mode calibration. */ wcaxx_setreg(wc, mod, 97, 0x18); /* (0x47) Calibrate common mode and differential DAC mode DAC + ILIM */ wcaxx_setreg(wc, mod, 96, 0x47); origjiffies = jiffies; while (wcaxx_getreg(wc, mod, 96) != 0) { if ((jiffies-origjiffies) > 80) return -1; } /* Initialized DR 98 and 99 to get consistant results. 98 and 99 are * the results registers and the search should have same intial * conditions. */ /******* The following is the manual gain mismatch calibration ********/ /******* This is also available as a function *************************/ msleep(20); wcaxx_proslic_setreg_indirect(wc, mod, 88, 0); wcaxx_proslic_setreg_indirect(wc, mod, 89, 0); wcaxx_proslic_setreg_indirect(wc, mod, 90, 0); wcaxx_proslic_setreg_indirect(wc, mod, 91, 0); wcaxx_proslic_setreg_indirect(wc, mod, 92, 0); wcaxx_proslic_setreg_indirect(wc, mod, 93, 0); /* This is necessary if the calibration occurs other than at reset */ wcaxx_setreg(wc, mod, 98, 0x10); wcaxx_setreg(wc, mod, 99, 0x10); for (i = 0x1f; i > 0; i--) { wcaxx_setreg(wc, mod, 98, i); msleep(40); if ((wcaxx_getreg(wc, mod, 88)) == 0) break; } for (i = 0x1f; i > 0; i--) { wcaxx_setreg(wc, mod, 99, i); msleep(40); if ((wcaxx_getreg(wc, mod, 89)) == 0) break; } /******** The preceding is the manual gain mismatch calibration *******/ /******** The following is the longitudinal Balance Cal ***************/ wcaxx_setreg(wc, mod, 64, 1); msleep(100); wcaxx_setreg(wc, mod, 64, 0); /* enable interrupt for the balance Cal */ wcaxx_setreg(wc, mod, 23, 0x4); /* this is a singular calibration bit for longitudinal calibration */ wcaxx_setreg(wc, mod, 97, 0x1); wcaxx_setreg(wc, mod, 96, 0x40); wcaxx_getreg(wc, mod, 96); /* Read Reg 96 just cause */ wcaxx_setreg(wc, mod, 21, 0xFF); wcaxx_setreg(wc, mod, 22, 0xFF); wcaxx_setreg(wc, mod, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return 0; } static int wcaxx_proslic_calibrate(struct wcaxx *wc, struct wcaxx_module *mod) { unsigned long origjiffies; int x; /* Perform all calibrations */ wcaxx_setreg(wc, mod, 97, 0x1f); /* Begin, no speedup */ wcaxx_setreg(wc, mod, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while (wcaxx_getreg(wc, mod, 96)) { if (time_after(jiffies, (origjiffies + (2*HZ)))) { dev_notice(&wc->xb.pdev->dev, "Timeout waiting for calibration of " "module %d\n", mod->card); return -1; } } if (debug & DEBUG_CARD) { /* Print calibration parameters */ dev_info(&wc->xb.pdev->dev, "Calibration Vector Regs 98 - 107:\n"); for (x = 98; x < 108; x++) { dev_info(&wc->xb.pdev->dev, "%d: %02x\n", x, wcaxx_getreg(wc, mod, x)); } } return 0; } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wcaxx_set_hwgain(struct wcaxx *wc, struct wcaxx_module *mod, __s32 gain, __u32 tx) { if (mod->type != FXO) { dev_notice(&wc->xb.pdev->dev, "Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) { dev_info(&wc->xb.pdev->dev, "setting FXO tx gain for card=%d to %d\n", mod->card, gain); } if (gain >= -150 && gain <= 0) { wcaxx_setreg(wc, mod, 38, 16 + (gain / -10)); wcaxx_setreg(wc, mod, 40, 16 + (-gain % 10)); } else if (gain <= 120 && gain > 0) { wcaxx_setreg(wc, mod, 38, gain/10); wcaxx_setreg(wc, mod, 40, (gain%10)); } else { dev_notice(&wc->xb.pdev->dev, "FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) { dev_info(&wc->xb.pdev->dev, "setting FXO rx gain for card=%d to %d\n", mod->card, gain); } if (gain >= -150 && gain <= 0) { wcaxx_setreg(wc, mod, 39, 16 + (gain / -10)); wcaxx_setreg(wc, mod, 41, 16 + (-gain % 10)); } else if (gain <= 120 && gain > 0) { wcaxx_setreg(wc, mod, 39, gain/10); wcaxx_setreg(wc, mod, 41, (gain%10)); } else { dev_notice(&wc->xb.pdev->dev, "FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int set_lasttxhook_interruptible(struct wcaxx *wc, struct fxs *fxs, unsigned newval, int *psethook) { int res = 0; unsigned long flags; int timeout = 0; do { spin_lock_irqsave(&wc->reglock, flags); if (SLIC_LF_OPPENDING & fxs->lasttxhook) { spin_unlock_irqrestore(&wc->reglock, flags); if (timeout++ > 100) return -1; msleep(100); } else { fxs->lasttxhook = (newval & SLIC_LF_SETMASK) | SLIC_LF_OPPENDING; *psethook = CMD_WR(LINE_STATE, fxs->lasttxhook); spin_unlock_irqrestore(&wc->reglock, flags); break; } } while (1); return res; } /* Must be called from within an interruptible context */ static int set_vmwi(struct wcaxx *wc, struct wcaxx_module *const mod) { int x; struct fxs *const fxs = &mod->mod.fxs; /* Presently only supports line reversal MWI */ if ((fxs->vmwi_active_messages) && (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV)) fxs->vmwi_linereverse = 1; else fxs->vmwi_linereverse = 0; /* Set line polarity for new VMWI state */ if (POLARITY_XOR(fxs)) { fxs->idletxhookstate |= SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x |= SLIC_LF_REVMASK; set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x &= ~SLIC_LF_REVMASK; set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); } } if (debug) { dev_info(&wc->xb.pdev->dev, "Setting VMWI on channel %d, messages=%d, lrev=%d\n", mod->card, fxs->vmwi_active_messages, fxs->vmwi_linereverse); } return 0; } static void wcaxx_voicedaa_set_ts(struct wcaxx *wc, struct wcaxx_module *mod, int ts) { /* 34 bits from framesysc to the first channel, 8 bits in each ts * (th * e timeslot we're assigning + 1 to skip for VPMOCT issue on first * timeslot + 3 in that there are 4 bytes assigned for each timeslot on * framer which was copied to this card */ /* 34 + 8 * (ts + 1 + 3) */ wcaxx_setreg(wc, mod, 34, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff); wcaxx_setreg(wc, mod, 35, (ts * 8 + 42 + (ts * 3 * 8)) >> 8); wcaxx_setreg(wc, mod, 36, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff); wcaxx_setreg(wc, mod, 37, (ts * 8 + 42 + (ts * 3 * 8)) >> 8); if (debug) { dev_info(&wc->xb.pdev->dev, "voicedaa: card %d new timeslot: %d\n", mod->card + 1, ts); } } static int wcaxx_init_voicedaa(struct wcaxx *wc, struct wcaxx_module *mod, int fast, int manual, int sane) { unsigned char reg16 = 0, reg26 = 0, reg30 = 0, reg31 = 0; unsigned long flags; unsigned long newjiffies; /* Send a short write to the device in order to reset the SPI state * machine. It may be out of sync since the driver was probing for an * FXS device on that chip select. */ /* wcxb_spi_short_write(mod->spi); */ spin_lock_irqsave(&wc->reglock, flags); mod->type = FXO; spin_unlock_irqrestore(&wc->reglock, flags); if (!sane && wcaxx_voicedaa_insane(wc, mod)) return -2; /* Software reset */ wcaxx_setreg(wc, mod, 1, 0x80); msleep(100); /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wcaxx_setreg(wc, mod, 16, reg16); /* Enable ring detector full-wave rectifier mode */ wcaxx_setreg(wc, mod, 18, 2); wcaxx_setreg(wc, mod, 24, 0); /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wcaxx_setreg(wc, mod, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wcaxx_setreg(wc, mod, 30, reg30); /* Misc. DAA parameters */ /* If fast pickup is set, then the off hook counter will be set to 8 * ms, otherwise 128 ms. */ reg31 = (fastpickup) ? 0xe3 : 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wcaxx_setreg(wc, mod, 31, reg31); wcaxx_voicedaa_set_ts(wc, mod, mod->card); /* Enable ISO-Cap */ wcaxx_setreg(wc, mod, 6, 0x00); /* Turn off the calibration delay when fastpickup is enabled. */ if (fastpickup) wcaxx_setreg(wc, mod, 17, wcaxx_getreg(wc, mod, 17) | 0x20); /* Wait 2000ms for ISO-cap to come up */ newjiffies = jiffies + msecs_to_jiffies(2000); while (time_before(jiffies, newjiffies) && !(wcaxx_getreg(wc, mod, 11) & 0xf0)) msleep(100); if (!(wcaxx_getreg(wc, mod, 11) & 0xf0)) { dev_notice(&wc->xb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n", wcaxx_getreg(wc, mod, 11) >> 4, (wcaxx_getreg(wc, mod, 13) >> 2) & 0xf); } /* Enable on-hook line monitor */ wcaxx_setreg(wc, mod, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wcaxx_set_hwgain(wc, mod, fxotxgain, 1); wcaxx_set_hwgain(wc, mod, fxorxgain, 0); #ifdef DEBUG if (digitalloopback) { dev_info(&wc->xb.pdev->dev, "Turning on digital loopback for port %d.\n", mod->card + 1); wcaxx_setreg(wc, mod, 10, 0x01); } #endif if (debug) { dev_info(&wc->xb.pdev->dev, "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wcaxx_getreg(wc, mod, 38)/16) ? -(wcaxx_getreg(wc, mod, 38) - 16) : wcaxx_getreg(wc, mod, 38), (wcaxx_getreg(wc, mod, 40)/16) ? -(wcaxx_getreg(wc, mod, 40) - 16) : wcaxx_getreg(wc, mod, 40), (wcaxx_getreg(wc, mod, 39)/16) ? -(wcaxx_getreg(wc, mod, 39) - 16) : wcaxx_getreg(wc, mod, 39), (wcaxx_getreg(wc, mod, 41)/16) ? -(wcaxx_getreg(wc, mod, 41) - 16) : wcaxx_getreg(wc, mod, 41)); } return 0; } static void wcaxx_proslic_set_ts(struct wcaxx *wc, struct wcaxx_module *mod, int ts) { /* Tx Start low byte 0 */ wcaxx_setreg(wc, mod, 2, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff); /* Tx Start high byte 0 */ wcaxx_setreg(wc, mod, 3, (ts * 8 + 42 + (ts * 3 * 8)) >> 8); /* Rx Start low byte 0 */ wcaxx_setreg(wc, mod, 4, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff); /* Rx Start high byte 0 */ wcaxx_setreg(wc, mod, 5, (ts * 8 + 42 + (ts * 3 * 8)) >> 8); if (debug) { dev_info(&wc->xb.pdev->dev, "proslic: card %d new timeslot: %d\n", mod->card + 1, ts); } } static int wcaxx_init_proslic(struct wcaxx *wc, struct wcaxx_module *const mod, int fast, int manual, int sane) { struct fxs *const fxs = &mod->mod.fxs; unsigned short tmp[5]; unsigned long flags; unsigned char r19, r9; int x; int fxsmode = 0; int addresses[ARRAY_SIZE(fxs->calregs.vals)]; #if 0 /* TODO */ if (wc->mods[mod->card & 0xfc].type == QRV) return -2; #endif spin_lock_irqsave(&wc->reglock, flags); mod->type = FXS; spin_unlock_irqrestore(&wc->reglock, flags); /* msleep(100); */ /* Sanity check the ProSLIC */ if (!sane && wcaxx_proslic_insane(wc, mod)) return -2; /* Initialize VMWI settings */ memset(&(fxs->vmwisetting), 0, sizeof(fxs->vmwisetting)); fxs->vmwi_linereverse = 0; /* By default, don't send on hook */ if (!reversepolarity != !fxs->reversepolarity) fxs->idletxhookstate = SLIC_LF_ACTIVE_REV; else fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD; if (sane) { /* Make sure we turn off the DC->DC converter to prevent * anything from blowing up */ wcaxx_setreg(wc, mod, 14, 0x10); } if (wcaxx_proslic_init_indirect_regs(wc, mod)) { dev_info(&wc->xb.pdev->dev, "Indirect Registers failed to initialize on " "module %d.\n", mod->card); return -1; } /* Clear scratch pad area */ wcaxx_proslic_setreg_indirect(wc, mod, 97, 0); /* Clear digital loopback */ wcaxx_setreg(wc, mod, 8, 0); /* Revision C optimization */ wcaxx_setreg(wc, mod, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent * Q7 from accidently turning on and burning out. * If pulse dialing has trouble at high REN loads change this to 0x17 */ wcaxx_setreg(wc, mod, 67, 0x07); /* Turn off Q7 */ wcaxx_setreg(wc, mod, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x = 0; x < 5; x++) { tmp[x] = wcaxx_proslic_getreg_indirect(wc, mod, x + 35); wcaxx_proslic_setreg_indirect(wc, mod, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wcaxx_powerup_proslic(wc, mod, fast)) { dev_notice(&wc->xb.pdev->dev, "Unable to do INITIAL ProSLIC powerup on " "module %d\n", mod->card); return -1; } if (!fast) { /* Check for power leaks */ if (wcaxx_proslic_powerleak_test(wc, mod)) { dev_notice(&wc->xb.pdev->dev, "ProSLIC module %d failed leakage test. " "Check for short circuit\n", mod->card); } /* Power up again */ if (wcaxx_powerup_proslic(wc, mod, fast)) { dev_notice(&wc->xb.pdev->dev, "Unable to do FINAL ProSLIC powerup on " "module %d\n", mod->card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if (manual) { if (wcaxx_proslic_manual_calibrate(wc, mod)) { dev_dbg(&wc->xb.pdev->dev, "Proslic failed on Manual Calibration\n"); if (wcaxx_proslic_manual_calibrate(wc, mod)) { dev_notice(&wc->xb.pdev->dev, "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } dev_info(&wc->xb.pdev->dev, "Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if (wcaxx_proslic_calibrate(wc, mod)) { dev_dbg(&wc->xb.pdev->dev, "ProSlic died on Auto Calibration.\n"); if (wcaxx_proslic_calibrate(wc, mod)) { dev_notice(&wc->xb.pdev->dev, "Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } dev_info(&wc->xb.pdev->dev, "Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wcaxx_setreg(wc, mod, 93, 0x99); r19 = wcaxx_getreg(wc, mod, 107); if ((r19 < 0x2) || (r19 > 0xd)) { dev_notice(&wc->xb.pdev->dev, "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wcaxx_setreg(wc, mod, 107, 0x8); } /* Save calibration vectors */ for (x = 0; x < ARRAY_SIZE(addresses); x++) addresses[x] = 96 + x; wcaxx_getregs(wc, mod, addresses, ARRAY_SIZE(addresses)); for (x = 0; x < ARRAY_SIZE(fxs->calregs.vals); x++) fxs->calregs.vals[x] = addresses[x]; #endif } else { /* Restore calibration registers */ for (x = 0; x < ARRAY_SIZE(fxs->calregs.vals); x++) wcaxx_setreg(wc, mod, 96 + x, fxs->calregs.vals[x]); } /* Calibration complete, restore original values */ for (x = 0; x < 5; x++) wcaxx_proslic_setreg_indirect(wc, mod, x + 35, tmp[x]); if (wcaxx_proslic_verify_indirect_regs(wc, mod)) { dev_info(&wc->xb.pdev->dev, "Indirect Registers failed verification.\n"); return -1; } /* U-Law 8-bit interface */ wcaxx_proslic_set_ts(wc, mod, mod->card); wcaxx_setreg(wc, mod, 18, 0xff); /* clear all interrupt */ wcaxx_setreg(wc, mod, 19, 0xff); wcaxx_setreg(wc, mod, 20, 0xff); wcaxx_setreg(wc, mod, 22, 0xff); wcaxx_setreg(wc, mod, 73, 0x04); wcaxx_setreg(wc, mod, 69, 0x4); if (fxshonormode) { static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; fxsmode = ACIM2TISS[fxo_modes[_opermode].acim]; wcaxx_setreg(wc, mod, 10, 0x08 | fxsmode); if (fxo_modes[_opermode].ring_osc) { wcaxx_proslic_setreg_indirect(wc, mod, 20, fxo_modes[_opermode].ring_osc); } if (fxo_modes[_opermode].ring_x) { wcaxx_proslic_setreg_indirect(wc, mod, 21, fxo_modes[_opermode].ring_x); } } if (lowpower) wcaxx_setreg(wc, mod, 72, 0x10); if (fastringer) { /* Speed up Ringer */ wcaxx_proslic_setreg_indirect(wc, mod, 20, 0x7e6d); wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x01b9); /* Beef up Ringing voltage to 89V */ if (boostringer) { wcaxx_setreg(wc, mod, 74, 0x3f); if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x247)) return -1; dev_info(&wc->xb.pdev->dev, "Boosting fast ringer on slot %d (89V peak)\n", mod->card + 1); } else if (lowpower) { if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x14b)) return -1; dev_info(&wc->xb.pdev->dev, "Reducing fast ring power on slot %d " "(50V peak)\n", mod->card + 1); } else dev_info(&wc->xb.pdev->dev, "Speeding up ringer on slot %d (25Hz)\n", mod->card + 1); } else { /* Beef up Ringing voltage to 89V */ if (boostringer) { wcaxx_setreg(wc, mod, 74, 0x3f); if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x1d1)) return -1; dev_info(&wc->xb.pdev->dev, "Boosting ringer on slot %d (89V peak)\n", mod->card + 1); } else if (lowpower) { if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x108)) return -1; dev_info(&wc->xb.pdev->dev, "Reducing ring power on slot %d " "(50V peak)\n", mod->card + 1); } } if (fxstxgain || fxsrxgain) { r9 = wcaxx_getreg(wc, mod, 9); switch (fxstxgain) { case 35: r9 += 8; break; case -35: r9 += 4; break; case 0: break; } switch (fxsrxgain) { case 35: r9 += 2; break; case -35: r9 += 1; break; case 0: break; } wcaxx_setreg(wc, mod, 9, r9); } if (debug) { dev_info(&wc->xb.pdev->dev, "DEBUG: fxstxgain:%s fxsrxgain:%s\n", ((wcaxx_getreg(wc, mod, 9) / 8) == 1) ? "3.5" : ((wcaxx_getreg(wc, mod, 9) / 4) == 1) ? "-3.5" : "0.0", ((wcaxx_getreg(wc, mod, 9) / 2) == 1) ? "3.5" : ((wcaxx_getreg(wc, mod, 9) % 2) ? "-3.5" : "0.0")); } fxs->lasttxhook = fxs->idletxhookstate; wcaxx_setreg(wc, mod, LINE_STATE, fxs->lasttxhook); /* Preset the shadow register so that we won't get a power alarm when * we finish initialization, otherwise the line state register may not * have been read yet. */ fxs->linefeed_control_shadow = fxs->lasttxhook; return 0; } static void wcaxx_get_fxs_regs(struct wcaxx *wc, struct wcaxx_module *mod, struct wctdm_regs *regs) { int x; for (x = 0; x < NUM_INDIRECT_REGS; x++) regs->indirect[x] = wcaxx_proslic_getreg_indirect(wc, mod, x); for (x = 0; x < NUM_REGS; x++) regs->direct[x] = wcaxx_getreg(wc, mod, x); } static void wcaxx_get_fxo_regs(struct wcaxx *wc, struct wcaxx_module *mod, struct wctdm_regs *regs) { const unsigned int NUM_FXO_REGS = 60; int x; for (x = 0; x < NUM_FXO_REGS; x++) regs->direct[x] = wcaxx_getreg(wc, mod, x); } static int wcaxx_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct dahdi_hwgain hwgain; struct wcaxx *wc = chan->pvt; int x; struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1]; struct fxs *const fxs = &mod->mod.fxs; switch (cmd) { case DAHDI_ONHOOKTRANSFER: if (mod->type != FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; /* Active mode when idle */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (fxs_lf(fxs, ACTIVE_FWD) || fxs_lf(fxs, ACTIVE_REV)) { int res; res = set_lasttxhook_interruptible(wc, fxs, (POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD), &mod->sethook); if (debug & DEBUG_CARD) { if (res) { dev_info(&wc->xb.pdev->dev, "Channel %d TIMEOUT: " "OnHookTransfer start\n", chan->chanpos - 1); } else { dev_info(&wc->xb.pdev->dev, "Channel %d OnHookTransfer " "start\n", chan->chanpos - 1); } } } fxs->ohttimer = wc->framecount + x; fxs->oht_active = 1; break; case DAHDI_VMWI_CONFIG: if (mod->type != FXS) return -EINVAL; if (copy_from_user(&(fxs->vmwisetting), (__user void *)data, sizeof(fxs->vmwisetting))) return -EFAULT; set_vmwi(wc, mod); break; case DAHDI_VMWI: if (mod->type != FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; if (0 > x) return -EFAULT; fxs->vmwi_active_messages = x; set_vmwi(wc, mod); break; case WCTDM_GET_STATS: if (mod->type == FXS) { stats.tipvolt = wcaxx_getreg(wc, mod, 80) * -376; stats.ringvolt = wcaxx_getreg(wc, mod, 81) * -376; stats.batvolt = wcaxx_getreg(wc, mod, 82) * -376; } else if (mod->type == FXO) { stats.tipvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000; stats.ringvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000; stats.batvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000; } else return -EINVAL; if (copy_to_user((__user void *) data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: { struct wctdm_regs *regs = kzalloc(sizeof(*regs), GFP_KERNEL); if (!regs) return -ENOMEM; if (mod->type == FXS) wcaxx_get_fxs_regs(wc, mod, regs); else wcaxx_get_fxo_regs(wc, mod, regs); if (copy_to_user((__user void *)data, regs, sizeof(*regs))) { kfree(regs); return -EFAULT; } kfree(regs); break; } case WCTDM_SET_REG: if (copy_from_user(®op, (__user void *) data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (mod->type != FXS) return -EINVAL; dev_info(&wc->xb.pdev->dev, "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wcaxx_proslic_setreg_indirect(wc, mod, regop.reg, regop.val); } else { regop.val &= 0xff; if (regop.reg == LINE_STATE) { /* Set feedback register to indicate the new * state that is being set */ fxs->lasttxhook = (regop.val & 0x0f) | SLIC_LF_OPPENDING; } dev_info(&wc->xb.pdev->dev, "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wcaxx_setreg(wc, mod, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: dev_info(&wc->xb.pdev->dev, "-- Setting echo registers:\n"); if (copy_from_user(&echoregs, (__user void *) data, sizeof(echoregs))) return -EFAULT; if (mod->type == FXO) { /* Set the ACIM register */ wcaxx_setreg(wc, mod, 30, echoregs.acim); /* Set the digital echo canceller registers */ wcaxx_setreg(wc, mod, 45, echoregs.coef1); wcaxx_setreg(wc, mod, 46, echoregs.coef2); wcaxx_setreg(wc, mod, 47, echoregs.coef3); wcaxx_setreg(wc, mod, 48, echoregs.coef4); wcaxx_setreg(wc, mod, 49, echoregs.coef5); wcaxx_setreg(wc, mod, 50, echoregs.coef6); wcaxx_setreg(wc, mod, 51, echoregs.coef7); wcaxx_setreg(wc, mod, 52, echoregs.coef8); dev_info(&wc->xb.pdev->dev, "-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case DAHDI_SET_HWGAIN: if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain))) return -EFAULT; wcaxx_set_hwgain(wc, mod, hwgain.newgain, hwgain.tx); if (debug) { dev_info(&wc->xb.pdev->dev, "Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, ((hwgain.tx) ? "tx" : "rx")); } break; case DAHDI_TONEDETECT: /* Hardware DTMF detection is not supported. */ return -ENOSYS; case DAHDI_SETPOLARITY: if (get_user(x, (__user int *) data)) return -EFAULT; if (mod->type != FXS) return -EINVAL; /* Can't change polarity while ringing or when open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) || ((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) { if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d Unable to Set Polarity\n", chan->chanpos - 1); } return -EINVAL; } fxs->reversepolarity = (x) ? 1 : 0; if (POLARITY_XOR(fxs)) { fxs->idletxhookstate |= SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x |= SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); if ((debug & DEBUG_CARD) && x) { dev_info(&wc->xb.pdev->dev, "Channel %d TIMEOUT: Set Reverse Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d Set Reverse Polarity\n", chan->chanpos - 1); } } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x &= ~SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); if ((debug & DEBUG_CARD) & x) { dev_info(&wc->xb.pdev->dev, "Channel %d TIMEOUT: Set Normal Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->xb.pdev->dev, "Channel %d Set Normal Polarity\n", chan->chanpos - 1); } } } break; default: return -ENOTTY; } return 0; } static int wcaxx_open(struct dahdi_chan *chan) { struct wcaxx *const wc = chan->pvt; unsigned long flags; struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1]; #if 0 if (wc->dead) return -ENODEV; #endif if (mod->type == FXO) { /* Reset the mwi indicators */ spin_lock_irqsave(&wc->reglock, flags); mod->mod.fxo.neonmwi_debounce = 0; mod->mod.fxo.neonmwi_offcounter = 0; mod->mod.fxo.neonmwi_state = 0; spin_unlock_irqrestore(&wc->reglock, flags); } return 0; } static inline struct wcaxx *span_to_wcaxx(struct dahdi_span *span) { struct wcaxx *wc = container_of(span, struct wcaxx, span); return wc; } static int wcaxx_watchdog(struct dahdi_span *span, int event) { struct wcaxx *wc = span_to_wcaxx(span); dev_info(&wc->xb.pdev->dev, "TDM: Called watchdog\n"); return 0; } static int wcaxx_close(struct dahdi_chan *chan) { struct wcaxx *wc; int x; wc = chan->pvt; for (x = 0; x < wc->mods_per_board; x++) { struct wcaxx_module *const mod = &wc->mods[x]; if (FXS == mod->type) { mod->mod.fxs.idletxhookstate = POLARITY_XOR(&mod->mod.fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; } } return 0; } static int wcaxx_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig) { struct wcaxx *wc = chan->pvt; struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1]; if (mod->type == FXO) { switch (txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: mod->mod.fxo.offhook = 1; mod->sethook = CMD_WR(5, 0x9); /* wcaxx_setreg(wc, chan->chanpos - 1, 5, 0x9); */ break; case DAHDI_TXSIG_ONHOOK: mod->mod.fxo.offhook = 0; mod->sethook = CMD_WR(5, 0x8); /* wcaxx_setreg(wc, chan->chanpos - 1, 5, 0x8); */ break; default: dev_notice(&wc->xb.pdev->dev, "Can't set tx state to %d\n", txsig); break; } } else if (mod->type == FXS) { wcaxx_fxs_hooksig(wc, mod, txsig); } return 0; } static void wcaxx_dacs_connect(struct wcaxx *wc, int srccard, int dstcard) { struct wcaxx_module *const srcmod = &wc->mods[srccard]; struct wcaxx_module *const dstmod = &wc->mods[dstcard]; unsigned int type; if (wc->mods[dstcard].dacssrc > -1) { dev_notice(&wc->xb.pdev->dev, "wcaxx_dacs_connect: Can't have double sourcing yet!\n"); return; } type = wc->mods[srccard].type; if ((type == FXS) || (type == FXO)) { dev_notice(&wc->xb.pdev->dev, "wcaxx_dacs_connect: Unsupported modtype for " "card %d\n", srccard); return; } type = wc->mods[dstcard].type; if ((type != FXS) && (type != FXO)) { dev_notice(&wc->xb.pdev->dev, "wcaxx_dacs_connect: Unsupported modtype " "for card %d\n", dstcard); return; } if (debug) { dev_info(&wc->xb.pdev->dev, "connect %d => %d\n", srccard, dstcard); } dstmod->dacssrc = srccard; /* make srccard transmit to srccard+24 on the TDM bus */ if (srcmod->type == FXS) { /* proslic */ wcaxx_setreg(wc, srcmod, PCM_XMIT_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wcaxx_setreg(wc, srcmod, PCM_XMIT_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (srcmod->type == FXO) { /* daa TX */ wcaxx_setreg(wc, srcmod, 34, ((srccard+24) * 8) & 0xff); wcaxx_setreg(wc, srcmod, 35, ((srccard+24) * 8) >> 8); } /* have dstcard receive from srccard+24 on the TDM bus */ if (dstmod->type == FXS) { /* proslic */ wcaxx_setreg(wc, dstmod, PCM_RCV_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wcaxx_setreg(wc, dstmod, PCM_RCV_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (dstmod->type == FXO) { /* daa RX */ wcaxx_setreg(wc, dstmod, 36, ((srccard+24) * 8) & 0xff); wcaxx_setreg(wc, dstmod, 37, ((srccard+24) * 8) >> 8); } } static void wcaxx_dacs_disconnect(struct wcaxx *wc, int card) { struct wcaxx_module *const mod = &wc->mods[card]; struct wcaxx_module *dacssrc; if (mod->dacssrc <= -1) return; dacssrc = &wc->mods[mod->dacssrc]; if (debug) { dev_info(&wc->xb.pdev->dev, "wcaxx_dacs_disconnect: restoring TX for %d and RX for %d\n", mod->dacssrc, card); } /* restore TX (source card) */ if (dacssrc->type == FXS) { wcaxx_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_LSB, (mod->dacssrc * 8) & 0xff); wcaxx_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_MSB, (mod->dacssrc * 8) >> 8); } else if (dacssrc->type == FXO) { wcaxx_setreg(wc, mod, 34, (card * 8) & 0xff); wcaxx_setreg(wc, mod, 35, (card * 8) >> 8); } else { dev_warn(&wc->xb.pdev->dev, "WARNING: wcaxx_dacs_disconnect() called " "on unsupported modtype\n"); } /* restore RX (this card) */ if (FXS == mod->type) { wcaxx_setreg(wc, mod, PCM_RCV_START_COUNT_LSB, (card * 8) & 0xff); wcaxx_setreg(wc, mod, PCM_RCV_START_COUNT_MSB, (card * 8) >> 8); } else if (FXO == mod->type) { wcaxx_setreg(wc, mod, 36, (card * 8) & 0xff); wcaxx_setreg(wc, mod, 37, (card * 8) >> 8); } else { dev_warn(&wc->xb.pdev->dev, "WARNING: wcaxx_dacs_disconnect() called " "on unsupported modtype\n"); } mod->dacssrc = -1; } static int wcaxx_dacs(struct dahdi_chan *dst, struct dahdi_chan *src) { struct wcaxx *wc; if (!nativebridge) return 0; /* should this return -1 since unsuccessful? */ wc = dst->pvt; if (src) { wcaxx_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1); if (debug) { dev_info(&wc->xb.pdev->dev, "dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos); } } else { wcaxx_dacs_disconnect(wc, dst->chanpos - 1); if (debug) { dev_info(&wc->xb.pdev->dev, "dacs disconnect: %d!\n", dst->chanpos); } } return 0; } /** * wcaxx_chanconfig - Called when the channels are being configured. * * Ensure that the card is completely ready to go before we allow the channels * to be completely configured. This is to allow lengthy initialization * actions to take place in background on driver load and ensure we're synced * up by the time dahdi_cfg is run. * */ static int wcaxx_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype) { struct wcaxx *wc = chan->pvt; if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc)) return -EAGAIN; return 0; } /* * wcaxx_assigned - Called when span is assigned. * @span: The span that is now assigned. * * This function is called by the core of DAHDI after the span number and * channel numbers have been assigned. * */ static void wcaxx_assigned(struct dahdi_span *span) { struct dahdi_span *s; struct dahdi_device *ddev = span->parent; struct wcaxx *wc = NULL; list_for_each_entry(s, &ddev->spans, device_node) { wc = container_of(s, struct wcaxx, span); if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &s->flags)) return; } } static const struct dahdi_span_ops wcaxx_span_ops = { .owner = THIS_MODULE, .hooksig = wcaxx_hooksig, .open = wcaxx_open, .close = wcaxx_close, .ioctl = wcaxx_ioctl, .watchdog = wcaxx_watchdog, .chanconfig = wcaxx_chanconfig, .dacs = wcaxx_dacs, .assigned = wcaxx_assigned, .echocan_create = wcaxx_echocan_create, .echocan_name = wcaxx_echocan_name, }; static struct wcaxx_chan * wcaxx_init_chan(struct wcaxx *wc, struct dahdi_span *s, int channo) { struct wcaxx_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return NULL; snprintf(c->chan.name, sizeof(c->chan.name), "WCTDM/%d/%d", wc->num, channo); c->chan.chanpos = channo+1; c->chan.span = s; c->chan.pvt = wc; c->timeslot = channo; return c; } static void wcaxx_init_span(struct wcaxx *wc) { int x; struct wcaxx_chan *c; struct dahdi_echocan_state *ec[NUM_MODULES] = {NULL, }; /* DAHDI stuff */ wc->span.offset = 0; sprintf(wc->span.name, "WCTDM/%d", wc->num); snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s", wc->desc->name); if (wc->companding == DAHDI_LAW_DEFAULT) { wc->span.deflaw = DAHDI_LAW_MULAW; } else if (wc->companding == DAHDI_LAW_ALAW) { /* Force everything to alaw */ wc->span.deflaw = DAHDI_LAW_ALAW; } else { /* Auto set to ulaw */ wc->span.deflaw = DAHDI_LAW_MULAW; } wc->span.ops = &wcaxx_span_ops; wc->span.flags = DAHDI_FLAG_RBS; wc->span.spantype = SPANTYPE_ANALOG_MIXED; wc->span.chans = kmalloc(sizeof(wc->span.chans[0]) * wc->desc->ports, GFP_KERNEL); if (!wc->span.chans) return; /* allocate channels for the span */ for (x = 0; x < wc->desc->ports; x++) { c = wcaxx_init_chan(wc, &wc->span, x); if (!c) return; wc->chans[x] = c; wc->span.chans[x] = &c->chan; /* TODO: Should echocan state hide under VPM_ENABLED or does * software ec use it? */ ec[x] = kzalloc(sizeof(*ec[x]), GFP_KERNEL); } wc->span.channels = wc->desc->ports; memcpy(wc->ec, ec, sizeof(wc->ec)); memset(ec, 0, sizeof(ec)); } /** * should_set_alaw() - Should be called after all the spans are initialized. * * Returns true if the module companding should be set to alaw, otherwise * false. */ static bool should_set_alaw(const struct wcaxx *wc) { if (DAHDI_LAW_ALAW == wc->companding) return true; else return false; } static void wcaxx_fixup_span(struct wcaxx *wc) { struct dahdi_span *s; int x, y; y = 0; s = &wc->span; for (x = 0; x < wc->desc->ports; x++) { struct wcaxx_module *const mod = &wc->mods[x]; if (debug) { dev_info(&wc->xb.pdev->dev, "fixup_analog: x=%d, y=%d modtype=%d, " "s->chans[%d]=%p\n", x, y, mod->type, y, s->chans[y]); } if (mod->type == FXO) { int val; s->chans[y++]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR; val = should_set_alaw(wc) ? 0x20 : 0x28; #ifdef DEBUG val = (digitalloopback) ? 0x30 : val; #endif wcaxx_setreg(wc, mod, 33, val); wcaxx_voicedaa_set_ts(wc, mod, wc->chans[x]->timeslot); } else if (mod->type == FXS) { /* NOTE: Digital loopback does not work on the FXS * modules in the same way since the data is still * companded by the ProSLIC and doesn't appear to have * perfect symetry. */ s->chans[y++]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; wcaxx_setreg(wc, mod, 1, (should_set_alaw(wc) ? 0x20 : 0x28)); wcaxx_proslic_set_ts(wc, mod, wc->chans[x]->timeslot); } else { s->chans[y++]->sigcap = 0; } } } static bool wcaxx_init_fxs_port(struct wcaxx *wc, struct wcaxx_module *mod) { u8 readi; enum {UNKNOWN = 0, SANE = 1}; int ret = wcaxx_init_proslic(wc, mod, 0, 0, UNKNOWN); if (!ret) { if (debug & DEBUG_CARD) { readi = wcaxx_getreg(wc, mod, LOOP_I_LIMIT); dev_info(&wc->xb.pdev->dev, "Proslic module %d loop current is %dmA\n", mod->card, ((readi*3) + 20)); } return true; } if (ret != -2) { /* Init with Manual Calibration */ if (!wcaxx_init_proslic(wc, mod, 0, 1, SANE)) { if (debug & DEBUG_CARD) { readi = wcaxx_getreg(wc, mod, LOOP_I_LIMIT); dev_info(&wc->xb.pdev->dev, "Proslic module %d loop current is %dmA\n", mod->card, ((readi*3)+20)); } } else { dev_notice(&wc->xb.pdev->dev, "Port %d: FAILED FXS (%s)\n", mod->card + 1, fxshonormode ? fxo_modes[_opermode].name : "FCC"); } return true; } return false; } static void wcaxx_reset_module(struct wcaxx *wc, struct wcaxx_module *mod) { u32 reg_val = (1UL << (mod->spi->chip_select + 12)); wcxb_gpio_clear(&wc->xb, reg_val); udelay(500); wcxb_gpio_set(&wc->xb, reg_val); msleep(250); /* TODO: What should this value be? */ } static bool check_for_single_fxs(struct wcaxx *wc, unsigned int port) { bool result; struct wcaxx_module *mod = &wc->mods[port]; mod->spi = get_spi_device_for_port(wc, mod->card, false); mod->subaddr = 0; wcaxx_reset_module(wc, mod); wcaxx_fxsinit(mod->spi); result = wcaxx_init_fxs_port(wc, mod); if (!result) mod->type = NONE; /* It is currently unclear why this read is necessary for some of the * S100M modules to properly function. */ wcaxx_getreg(wc, mod, 0x00); return result; } static bool check_for_single_fxo(struct wcaxx *wc, unsigned int port) { bool result; struct wcaxx_module *mod = &wc->mods[port]; mod->spi = get_spi_device_for_port(wc, mod->card, false); mod->subaddr = 0; wcaxx_reset_module(wc, mod); result = (wcaxx_init_voicedaa(wc, mod, 0, 0, 0) == 0); if (!result) mod->type = NONE; return result; } static bool check_for_quad_fxs(struct wcaxx *wc, unsigned int base_port) { int port; int offset; struct wcaxx_module *mod = &wc->mods[base_port + 1]; /* Cannot have quad port modules on the 4 port base cards. */ if (is_four_port(wc)) return false; /* We can assume that the base port has already been configured as an * FXS port if we're even in this function */ mod->spi = get_spi_device_for_port(wc, mod->card, true); mod->subaddr = offset = 1; if (wcaxx_init_fxs_port(wc, mod)) { /* This must be a 4 port FXS module... */ for (port = base_port + 2; port < base_port+4; ++port) { mod = &wc->mods[port]; mod->spi = get_spi_device_for_port(wc, mod->card, true); mod->subaddr = ++offset; if (!wcaxx_init_fxs_port(wc, mod)) { /* This means that a quad-module failed to * setup ports 3 or 4? */ dev_err(&wc->xb.pdev->dev, "Quad-FXS at base %d failed initialization.\n", base_port); goto error_exit; } } return true; } error_exit: for (port = base_port + 1; port < base_port + 4; ++port) { mod = &wc->mods[port]; mod->type = NONE; } return false; } static bool check_for_quad_fxo(struct wcaxx *wc, unsigned int base_port) { int port; int offset; struct wcaxx_module *mod = &wc->mods[base_port + 1]; /* Cannot have quad port modules on the 4 port base cards. */ if (is_four_port(wc)) return false; /* We can assume that the base port has already been configured as an * FXO port if we're even in this function */ mod->spi = get_spi_device_for_port(wc, mod->card, true); mod->subaddr = offset = 1; if (!wcaxx_init_voicedaa(wc, mod, 0, 0, 0)) { /* This must be a 4 port FXO module. */ for (port = base_port + 2; port < base_port + 4; ++port) { mod = &wc->mods[port]; mod->spi = get_spi_device_for_port(wc, mod->card, true); mod->subaddr = ++offset; if (wcaxx_init_voicedaa(wc, mod, 0, 0, 0)) { dev_err(&wc->xb.pdev->dev, "Quad-FXO at base %d failed initialization.\n", base_port); goto error_exit; } } return true; } error_exit: for (port = base_port + 1; port < base_port + 4; ++port) { mod = &wc->mods[port]; mod->type = NONE; } return false; } static void __wcaxx_identify_four_port_module_group(struct wcaxx *wc) { int i; for (i = 0; i < wc->desc->ports; i++) { if (!check_for_single_fxs(wc, i)) check_for_single_fxo(wc, i); } return; } static void __wcaxx_identify_module_group(struct wcaxx *wc, unsigned long base) { if (check_for_single_fxs(wc, base)) { if (check_for_quad_fxs(wc, base)) { /* S400M installed */ return; } else if (check_for_single_fxs(wc, base + 1)) { /* Two S110M installed */ return; } else if (check_for_single_fxo(wc, base + 1)) { /* 1 S110M 1 X100M */ return; } else { /* 1 S110M 1 Empty */ return; } } else if (check_for_single_fxo(wc, base)) { if (check_for_quad_fxo(wc, base)) { /* X400M installed */ return; } else if (check_for_single_fxo(wc, base + 1)) { /* Two X100M installed */ return; } else if (check_for_single_fxs(wc, base + 1)) { /* 1 X100M 1 S100M installed */ return; } else { /* 1 X100M 1 Empty */ return; } } else if (check_for_single_fxs(wc, base + 1)) { /* 1 Empty 1 S110M installed */ return; } else if (check_for_single_fxo(wc, base + 1)) { /* 1 Empty 1 X100M installed */ return; } /* No module */ return; } /** * wcaxx_print_moule_configuration - Print the configuration to the kernel log * @wc: The card we're interested in. * * This is to ensure that the module configuration from each card shows up * sequentially in the kernel log, as opposed to interleaved with one another. * */ static void wcaxx_print_module_configuration(const struct wcaxx *const wc) { int i; static DEFINE_MUTEX(print); mutex_lock(&print); for (i = 0; i < wc->mods_per_board; ++i) { const struct wcaxx_module *const mod = &wc->mods[i]; switch (mod->type) { case FXO: dev_info(&wc->xb.pdev->dev, "Port %d: Installed -- AUTO FXO (%s mode)\n", i + 1, fxo_modes[_opermode].name); break; case FXS: dev_info(&wc->xb.pdev->dev, "Port %d: Installed -- AUTO FXS/DPO\n", i + 1); break; case NONE: dev_info(&wc->xb.pdev->dev, "Port %d: Not installed\n", i + 1); break; } } mutex_unlock(&print); } static void wcaxx_identify_modules(struct wcaxx *wc) { int x; unsigned long flags; /* A8A/A8B - Reset the modules. */ wcxb_gpio_clear(&wc->xb, 0xf000); msleep(50); /* TODO: what should these values be? */ wcxb_gpio_set(&wc->xb, 0xf000); msleep(250); /* TODO: What should these values be? */ /* Place all units in the daisy chain mode of operation. This allows * multiple devices to share a chip select (like on the X400 and S400 * modules) */ for (x = 0; x < ARRAY_SIZE(wc->spi_devices); ++x) wcaxx_fxsinit(wc->spi_devices[x]); spin_lock_irqsave(&wc->reglock, flags); wc->mods_per_board = wc->desc->ports; spin_unlock_irqrestore(&wc->reglock, flags); BUG_ON(wc->desc->ports % 4); if (is_four_port(wc)) { __wcaxx_identify_four_port_module_group(wc); } else { for (x = 0; x < wc->desc->ports/4; x++) __wcaxx_identify_module_group(wc, x*4); } wcaxx_print_module_configuration(wc); } static struct pci_driver wcaxx_driver; static void wcaxx_back_out_gracefully(struct wcaxx *wc) { int i; unsigned long flags; clear_bit(INITIALIZED, &wc->bit_flags); smp_mb__after_atomic(); /* Make sure we're not on the card list anymore. */ mutex_lock(&card_list_lock); list_del(&wc->card_node); mutex_unlock(&card_list_lock); wcxb_release(&wc->xb); for (i = 0; i < wc->mods_per_board; i++) { struct wcaxx_module *const mod = &wc->mods[i]; kfree(mod->mod_poll); mod->mod_poll = NULL; } kfree(wc->span.chans); wc->span.chans = NULL; spin_lock_irqsave(&wc->reglock, flags); for (i = 0; i < wc->span.channels; ++i) { kfree(wc->chans[i]); kfree(wc->ec[i]); wc->chans[i] = NULL; wc->ec[i] = NULL; } spin_unlock_irqrestore(&wc->reglock, flags); for (i = 0; i < ARRAY_SIZE(wc->spi_devices); i++) wcxb_spi_device_destroy(wc->spi_devices[i]); wcxb_spi_master_destroy(wc->master); kfree(wc->board_name); if (wc->ddev) { kfree(wc->ddev->devicetype); kfree(wc->ddev->location); kfree(wc->ddev->hardware_id); dahdi_free_device(wc->ddev); } kfree(wc); } static void wcaxx_handle_error(struct wcxb *xb) { struct wcaxx *wc = container_of(xb, struct wcaxx, xb); wc->ddev->irqmisses++; } static const struct wcxb_operations wcxb_operations = { .handle_receive = wcaxx_handle_receive, .handle_transmit = wcaxx_handle_transmit, .handle_error = wcaxx_handle_error, }; struct cmd_results { u8 results[8]; }; static int wcaxx_check_firmware(struct wcaxx *wc) { char *filename; u32 firmware_version; const bool force_firmware = false; const unsigned int A4A_VERSION = 0x0a0017; const unsigned int A4B_VERSION = 0x0d001e; const unsigned int A8A_VERSION = 0x1d0017; const unsigned int A8B_VERSION = 0x1f001e; if (wc->desc == &device_a8a) { firmware_version = A8A_VERSION; filename = "dahdi-fw-a8a.bin"; } else if (wc->desc == &device_a8b) { firmware_version = A8B_VERSION; filename = "dahdi-fw-a8b.bin"; } else if (wc->desc == &device_a4a) { firmware_version = A4A_VERSION; filename = "dahdi-fw-a4a.bin"; } else if (wc->desc == &device_a4b) { firmware_version = A4B_VERSION; filename = "dahdi-fw-a4b.bin"; } else { /* This is a bug in the driver code */ WARN_ON(1); return 0; } return wcxb_check_firmware(&wc->xb, firmware_version, filename, force_firmware, WCXB_RESET_NOW); } static void wcaxx_check_sethook(struct wcaxx *wc, struct wcaxx_module *mod) { if (mod->sethook) { wcaxx_setreg(wc, mod, ((mod->sethook >> 8) & 0xff), mod->sethook & 0xff); mod->sethook = 0; } } static void wcaxx_poll_fxs_complete(void *arg) { struct wcaxx_mod_poll *poll_fxs = arg; struct wcaxx *wc = poll_fxs->wc; struct wcaxx_module *const mod = poll_fxs->mod; if (!is_initialized(wc)) { kfree(poll_fxs); return; } mod->mod.fxs.hook_state_shadow = poll_fxs->buffer[2]; mod->mod.fxs.linefeed_control_shadow = poll_fxs->buffer[5]; wcaxx_isr_misc_fxs(poll_fxs->wc, poll_fxs->mod); memcpy(poll_fxs->buffer, poll_fxs->master_buffer, sizeof(poll_fxs->buffer)); wcaxx_check_sethook(poll_fxs->wc, poll_fxs->mod); mod->mod_poll = poll_fxs; } /** * wcaxx_start_poll_fxs - Starts the interrupt polling loop for FXS modules. * * To stop the polling loop, clear the initialized bit and then flush the * pending wcxb_spi messages. * */ static int wcaxx_start_poll_fxs(struct wcaxx *wc, struct wcaxx_module *mod) { struct wcaxx_mod_poll *mod_poll = kzalloc(sizeof(*mod_poll), GFP_KERNEL); struct wcxb_spi_message *m = &mod_poll->m; struct wcxb_spi_transfer *t = &mod_poll->t; WARN_ON(!is_initialized(wc)); if (!mod_poll) return -ENOMEM; memset(t, 0, sizeof(*t)); wcxb_spi_message_init(m); t->tx_buf = t->rx_buf = mod_poll->buffer; t->len = sizeof(mod_poll->buffer); wcxb_spi_message_add_tail(t, m); mod_poll->wc = wc; mod_poll->mod = mod; mod_poll->master_buffer[0] = 1 << mod_poll->mod->subaddr; mod_poll->master_buffer[1] = (LOOP_STAT | 0x80) & 0xff; mod_poll->master_buffer[2] = 0; mod_poll->master_buffer[3] = mod_poll->master_buffer[0]; mod_poll->master_buffer[4] = (LINE_STATE | 0x80) & 0xff; mod_poll->master_buffer[5] = 0; memcpy(mod_poll->buffer, mod_poll->master_buffer, sizeof(mod_poll->buffer)); m->arg = mod_poll; m->complete = &wcaxx_poll_fxs_complete; wcxb_spi_async(mod->spi, m); return 0; } static void wcaxx_poll_fxo_complete(void *arg) { struct wcaxx_mod_poll *poll_fxo = arg; struct wcaxx *wc = poll_fxo->wc; struct wcaxx_module *const mod = poll_fxo->mod; if (!is_initialized(wc)) { kfree(poll_fxo); return; } mod->mod.fxo.hook_ring_shadow = poll_fxo->buffer[2]; mod->mod.fxo.line_voltage_status = poll_fxo->buffer[5]; wcaxx_voicedaa_check_hook(poll_fxo->wc, poll_fxo->mod); memcpy(poll_fxo->buffer, poll_fxo->master_buffer, sizeof(poll_fxo->buffer)); wcaxx_check_sethook(poll_fxo->wc, poll_fxo->mod); mod->mod_poll = poll_fxo; } /** * wcaxx_start_poll_fxo - Starts the interrupt polling loop for FXS modules. * * To stop the polling loop, clear the initialized bit and then flush the * pending wcxb_spi messages. * */ static int wcaxx_start_poll_fxo(struct wcaxx *wc, struct wcaxx_module *mod) { static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c}; struct wcaxx_mod_poll *poll_fxo = kzalloc(sizeof(*poll_fxo), GFP_KERNEL); struct wcxb_spi_message *m = &poll_fxo->m; struct wcxb_spi_transfer *t = &poll_fxo->t; WARN_ON(!is_initialized(wc)); if (!poll_fxo) return -ENOMEM; memset(t, 0, sizeof(*t)); wcxb_spi_message_init(m); t->tx_buf = t->rx_buf = poll_fxo->buffer; t->len = sizeof(poll_fxo->buffer); wcxb_spi_message_add_tail(t, m); poll_fxo->wc = wc; poll_fxo->mod = mod; poll_fxo->master_buffer[0] = 0x60 | ADDRS[poll_fxo->mod->subaddr]; poll_fxo->master_buffer[1] = 5 & 0x7f; /* Hook / Ring State */ poll_fxo->master_buffer[2] = 0; poll_fxo->master_buffer[3] = poll_fxo->master_buffer[0]; poll_fxo->master_buffer[4] = 29 & 0x7f; /* Battery */ poll_fxo->master_buffer[5] = 0; memcpy(poll_fxo->buffer, poll_fxo->master_buffer, sizeof(poll_fxo->buffer)); m->arg = poll_fxo; m->complete = &wcaxx_poll_fxo_complete; wcxb_spi_async(mod->spi, m); return 0; } /** * wcaxx_read_serial - Returns the serial number of the board. * @wc: The board whos serial number we are reading. * * The buffer returned is dynamically allocated and must be kfree'd by the * caller. If memory could not be allocated, NULL is returned. * * Must be called in process context. * */ static char *wcaxx_read_serial(struct wcaxx *wc) { int i; static const int MAX_SERIAL = 20*5; const unsigned int SERIAL_ADDRESS = 0x1f0000; unsigned char *serial = kzalloc(MAX_SERIAL + 1, GFP_KERNEL); struct wcxb const *xb = &wc->xb; struct wcxb_spi_master *flash_spi_master = NULL; struct wcxb_spi_device *flash_spi_device = NULL; const unsigned int FLASH_SPI_BASE = 0x200; if (!serial) return NULL; flash_spi_master = wcxb_spi_master_create(&xb->pdev->dev, xb->membase + FLASH_SPI_BASE, false); if (!flash_spi_master) return NULL; flash_spi_device = wcxb_spi_device_create(flash_spi_master, 0); if (!flash_spi_device) goto error_exit; wcxb_flash_read(flash_spi_device, SERIAL_ADDRESS, serial, MAX_SERIAL); for (i = 0; i < MAX_SERIAL; ++i) { if ((serial[i] < 0x20) || (serial[i] > 0x7e)) { serial[i] = '\0'; break; } } if (!i) { kfree(serial); serial = NULL; } else { /* Limit the size of the buffer to just what is needed to * actually hold the serial number. */ unsigned char *new_serial; new_serial = kasprintf(GFP_KERNEL, "%s", serial); kfree(serial); serial = new_serial; } error_exit: wcxb_spi_device_destroy(flash_spi_device); wcxb_spi_master_destroy(flash_spi_master); return serial; } static void wcaxx_start_module_polling(struct wcaxx *wc) { int x; WARN_ON(!is_initialized(wc)); for (x = 0; x < wc->mods_per_board; x++) { struct wcaxx_module *const mod = &wc->mods[x]; switch (mod->type) { case FXO: wcaxx_start_poll_fxo(wc, mod); break; case FXS: wcaxx_start_poll_fxs(wc, mod); break; case NONE: break; } } wc->module_poll_time = wc->framecount + MODULE_POLL_TIME_MS; } /** * t43x_assign_num - Assign wc->num a unique value and place on card_list * */ static void wcaxx_assign_num(struct wcaxx *wc) { mutex_lock(&card_list_lock); if (list_empty(&card_list)) { wc->num = 0; list_add(&wc->card_node, &card_list); } else { struct wcaxx *cur; struct list_head *insert_pos; int new_num = 0; insert_pos = &card_list; list_for_each_entry(cur, &card_list, card_node) { if (new_num != cur->num) break; new_num++; insert_pos = &cur->card_node; } wc->num = new_num; list_add_tail(&wc->card_node, insert_pos); } mutex_unlock(&card_list_lock); } #ifdef USE_ASYNC_INIT struct async_data { struct pci_dev *pdev; const struct pci_device_id *ent; }; static int __devinit __wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent, async_cookie_t cookie) #else static int __devinit __wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) #endif { struct wcaxx *wc; int i, ret; int curchan; neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK; wc = kzalloc(sizeof(*wc), GFP_KERNEL); if (!wc) return -ENOMEM; wcaxx_assign_num(wc); wc->desc = (struct _device_desc *)ent->driver_data; spin_lock_init(&wc->reglock); wc->board_name = kasprintf(GFP_KERNEL, "%s%d", wcaxx_driver.name, wc->num); if (!wc->board_name) { wcaxx_back_out_gracefully(wc); return -ENOMEM; } #ifdef CONFIG_VOICEBUS_DISABLE_ASPM if (is_pcie(wc)) { pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); }; #endif pci_set_drvdata(pdev, wc); wc->xb.ops = &wcxb_operations; wc->xb.pdev = pdev; wc->xb.debug = &debug; ret = wcxb_init(&wc->xb, wc->board_name, int_mode); if (ret) { wcaxx_back_out_gracefully(wc); return ret; } wcxb_set_minlatency(&wc->xb, latency); wcxb_set_maxlatency(&wc->xb, max_latency); ret = wcaxx_check_firmware(wc); if (ret) { wcaxx_back_out_gracefully(wc); return ret; } wcxb_lock_latency(&wc->xb); wc->mods_per_board = NUM_MODULES; if (alawoverride) { companding = "alaw"; dev_info(&wc->xb.pdev->dev, "The module parameter alawoverride has been deprecated. Please use the parameter companding=alaw instead"); } if (!strcasecmp(companding, "alaw")) /* Force this card's companding to alaw */ wc->companding = DAHDI_LAW_ALAW; else if (!strcasecmp(companding, "ulaw")) /* Force this card's companding to ulaw */ wc->companding = DAHDI_LAW_MULAW; else /* Auto detect this card's companding */ wc->companding = DAHDI_LAW_DEFAULT; wc->master = wcxb_spi_master_create(&pdev->dev, wc->xb.membase + 0x280, true); for (i = 0; i < ARRAY_SIZE(wc->spi_devices); i++) wc->spi_devices[i] = wcxb_spi_device_create(wc->master, 3-i); for (i = 0; i < ARRAY_SIZE(wc->mods); i++) { struct wcaxx_module *const mod = &wc->mods[i]; mod->dacssrc = -1; mod->card = i; mod->spi = NULL; mod->subaddr = 0; mod->type = NONE; } ret = wcaxx_vpm_init(wc); if (!ret) wcxb_enable_echocan(&wc->xb); /* Now track down what modules are installed */ wcaxx_identify_modules(wc); /* Start the hardware processing. */ if (wcxb_start(&wc->xb)) { WARN_ON(1); return -EIO; } if (fatal_signal_pending(current)) { wcaxx_back_out_gracefully(wc); return -EINTR; } curchan = 0; wcaxx_init_span(wc); wcaxx_fixup_span(wc); curchan += wc->desc->ports; #ifdef USE_ASYNC_INIT async_synchronize_cookie(cookie); #endif wc->ddev = dahdi_create_device(); if (!wc->ddev) { wcaxx_back_out_gracefully(wc); return -ENOMEM; } wc->ddev->manufacturer = "Digium"; wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d", pdev->bus->number, PCI_SLOT(pdev->devfn) + 1); if (!wc->ddev->location) { wcaxx_back_out_gracefully(wc); return -ENOMEM; } if (wc->vpm) wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (%s)", wc->desc->name, "VPMOCT032"); else wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->desc->name); if (!wc->ddev->devicetype) { wcaxx_back_out_gracefully(wc); return -ENOMEM; } wc->ddev->hardware_id = wcaxx_read_serial(wc); list_add_tail(&wc->span.device_node, &wc->ddev->spans); if (dahdi_register_device(wc->ddev, &wc->xb.pdev->dev)) { dev_notice(&wc->xb.pdev->dev, "Unable to register device with DAHDI\n"); wcaxx_back_out_gracefully(wc); return -1; } dev_info(&wc->xb.pdev->dev, "Found a %s (SN: %s)\n", wc->desc->name, wc->ddev->hardware_id); set_bit(INITIALIZED, &wc->bit_flags); wcaxx_start_module_polling(wc); wcxb_unlock_latency(&wc->xb); return 0; } #ifdef USE_ASYNC_INIT static __devinit void wcaxx_init_one_async(void *data, async_cookie_t cookie) { struct async_data *dat = data; __wcaxx_init_one(dat->pdev, dat->ent, cookie); kfree(dat); } static int __devinit wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct async_data *dat; dat = kmalloc(sizeof(*dat), GFP_KERNEL); /* If we can't allocate the memory for the async_data, odds are we won't * be able to initialize the device either, but let's try synchronously * anyway... */ if (!dat) return __wcaxx_init_one(pdev, ent, 0); dat->pdev = pdev; dat->ent = ent; async_schedule(wcaxx_init_one_async, dat); return 0; } #else static int __devinit wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { return __wcaxx_init_one(pdev, ent); } #endif static void wcaxx_release(struct wcaxx *wc) { if (is_initialized(wc)) dahdi_unregister_device(wc->ddev); wcaxx_back_out_gracefully(wc); } static void __devexit wcaxx_remove_one(struct pci_dev *pdev) { struct wcaxx *wc = pci_get_drvdata(pdev); if (!wc) return; dev_info(&wc->xb.pdev->dev, "Removing a %s.\n", wc->desc->name); flush_scheduled_work(); wcxb_stop(&wc->xb); if (wc->vpm) release_vpm450m(wc->vpm); wc->vpm = NULL; wcaxx_release(wc); } static DEFINE_PCI_DEVICE_TABLE(wcaxx_pci_tbl) = { { 0xd161, 0x800d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &device_a8b }, { 0xd161, 0x800c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &device_a8a }, { 0xd161, 0x8010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &device_a4b }, { 0xd161, 0x800f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &device_a4a }, { 0 } }; MODULE_DEVICE_TABLE(pci, wcaxx_pci_tbl); static void wcaxx_shutdown(struct pci_dev *pdev) { struct wcaxx *wc = pci_get_drvdata(pdev); wcxb_stop(&wc->xb); } static int wcaxx_suspend(struct pci_dev *pdev, pm_message_t state) { return -ENOSYS; } static struct pci_driver wcaxx_driver = { .name = "wcaxx", .probe = wcaxx_init_one, .remove = __devexit_p(wcaxx_remove_one), .shutdown = wcaxx_shutdown, .suspend = wcaxx_suspend, .id_table = wcaxx_pci_tbl, }; static int __init wcaxx_init(void) { int res; int x; for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < ARRAY_SIZE(fxo_modes)) { _opermode = x; } else { pr_notice("Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode); for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) pr_notice(" %s\n", fxo_modes[x].name); pr_notice("Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } if (-1 == fastpickup) { if (!strcmp(opermode, "JAPAN")) fastpickup = 1; else fastpickup = 0; } /* for the voicedaa_check_hook defaults, if the user has not * overridden them by specifying them as module parameters, then get * the values from the selected operating mode */ if (!battdebounce) battdebounce = fxo_modes[_opermode].battdebounce; if (!battalarm) battalarm = fxo_modes[_opermode].battalarm; if (!battthresh) battthresh = fxo_modes[_opermode].battthresh; res = pci_register_driver(&wcaxx_driver); if (res) return -ENODEV; #ifdef USE_ASYNC_INIT async_synchronize_full(); #endif return 0; } static void __exit wcaxx_cleanup(void) { pci_unregister_driver(&wcaxx_driver); } module_param(debug, int, 0600); module_param(int_mode, int, 0400); MODULE_PARM_DESC(int_mode, "0 = Use MSI interrupt if available. 1 = Legacy interrupt only.\n"); module_param(fastpickup, int, 0400); MODULE_PARM_DESC(fastpickup, "Set to 1 to shorten the calibration delay when taking an FXO port off " "hook. This can be required for Type-II CID. If -1 the calibration " "delay will depend on the current opermode.\n"); module_param(fxovoltage, int, 0600); module_param(loopcurrent, int, 0600); module_param(reversepolarity, int, 0600); #ifdef DEBUG module_param(robust, int, 0600); module_param(digitalloopback, int, 0400); MODULE_PARM_DESC(digitalloopback, "Set to 1 to place FXO modules into loopback mode for troubleshooting."); #endif module_param(opermode, charp, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(nativebridge, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); module_param(ringdebounce, int, 0600); module_param(latency, int, 0400); module_param(max_latency, int, 0400); module_param(neonmwi_monitor, int, 0600); module_param(neonmwi_level, int, 0600); module_param(neonmwi_envelope, int, 0600); module_param(neonmwi_offlimit, int, 0600); module_param(vpmsupport, int, 0400); module_param(forceload, int, 0600); MODULE_PARM_DESC(forceload, "Set to 1 in order to force an FPGA reload after power on."); module_param(companding, charp, 0400); MODULE_PARM_DESC(companding, "Change the companding to \"auto\" or \"alaw\" or \"ulaw\". Auto " "(default) will set everything to ulaw unless a BRI module is " "installed. It will use alaw in that case."); MODULE_DESCRIPTION("A4A,A4B,A8A,A8B Driver for Analog Telephony Cards"); MODULE_AUTHOR("Digium Incorporated "); MODULE_LICENSE("GPL v2"); module_init(wcaxx_init); module_exit(wcaxx_cleanup);