// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2017-2018 Netronome Systems, Inc. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* libbpf_num_possible_cpus */ #include #include "main.h" #ifndef BPF_FS_MAGIC #define BPF_FS_MAGIC 0xcafe4a11 #endif void p_err(const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (json_output) { jsonw_start_object(json_wtr); jsonw_name(json_wtr, "error"); jsonw_vprintf_enquote(json_wtr, fmt, ap); jsonw_end_object(json_wtr); } else { fprintf(stderr, "Error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); } va_end(ap); } void p_info(const char *fmt, ...) { va_list ap; if (json_output) return; va_start(ap, fmt); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); va_end(ap); } static bool is_bpffs(char *path) { struct statfs st_fs; if (statfs(path, &st_fs) < 0) return false; return (unsigned long)st_fs.f_type == BPF_FS_MAGIC; } /* Probe whether kernel switched from memlock-based (RLIMIT_MEMLOCK) to * memcg-based memory accounting for BPF maps and programs. This was done in * commit 97306be45fbe ("Merge branch 'switch to memcg-based memory * accounting'"), in Linux 5.11. * * Libbpf also offers to probe for memcg-based accounting vs rlimit, but does * so by checking for the availability of a given BPF helper and this has * failed on some kernels with backports in the past, see commit 6b4384ff1088 * ("Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK""). * Instead, we can probe by lowering the process-based rlimit to 0, trying to * load a BPF object, and resetting the rlimit. If the load succeeds then * memcg-based accounting is supported. * * This would be too dangerous to do in the library, because multithreaded * applications might attempt to load items while the rlimit is at 0. Given * that bpftool is single-threaded, this is fine to do here. */ static bool known_to_need_rlimit(void) { struct rlimit rlim_init, rlim_cur_zero = {}; struct bpf_insn insns[] = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }; size_t insn_cnt = ARRAY_SIZE(insns); union bpf_attr attr; int prog_fd, err; memset(&attr, 0, sizeof(attr)); attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; attr.insns = ptr_to_u64(insns); attr.insn_cnt = insn_cnt; attr.license = ptr_to_u64("GPL"); if (getrlimit(RLIMIT_MEMLOCK, &rlim_init)) return false; /* Drop the soft limit to zero. We maintain the hard limit to its * current value, because lowering it would be a permanent operation * for unprivileged users. */ rlim_cur_zero.rlim_max = rlim_init.rlim_max; if (setrlimit(RLIMIT_MEMLOCK, &rlim_cur_zero)) return false; /* Do not use bpf_prog_load() from libbpf here, because it calls * bump_rlimit_memlock(), interfering with the current probe. */ prog_fd = syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr)); err = errno; /* reset soft rlimit to its initial value */ setrlimit(RLIMIT_MEMLOCK, &rlim_init); if (prog_fd < 0) return err == EPERM; close(prog_fd); return false; } void set_max_rlimit(void) { struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY }; if (known_to_need_rlimit()) setrlimit(RLIMIT_MEMLOCK, &rinf); } static int mnt_fs(const char *target, const char *type, char *buff, size_t bufflen) { bool bind_done = false; while (mount("", target, "none", MS_PRIVATE | MS_REC, NULL)) { if (errno != EINVAL || bind_done) { snprintf(buff, bufflen, "mount --make-private %s failed: %s", target, strerror(errno)); return -1; } if (mount(target, target, "none", MS_BIND, NULL)) { snprintf(buff, bufflen, "mount --bind %s %s failed: %s", target, target, strerror(errno)); return -1; } bind_done = true; } if (mount(type, target, type, 0, "mode=0700")) { snprintf(buff, bufflen, "mount -t %s %s %s failed: %s", type, type, target, strerror(errno)); return -1; } return 0; } int mount_tracefs(const char *target) { char err_str[ERR_MAX_LEN]; int err; err = mnt_fs(target, "tracefs", err_str, ERR_MAX_LEN); if (err) { err_str[ERR_MAX_LEN - 1] = '\0'; p_err("can't mount tracefs: %s", err_str); } return err; } int open_obj_pinned(const char *path, bool quiet) { char *pname; int fd = -1; pname = strdup(path); if (!pname) { if (!quiet) p_err("mem alloc failed"); goto out_ret; } fd = bpf_obj_get(pname); if (fd < 0) { if (!quiet) p_err("bpf obj get (%s): %s", pname, errno == EACCES && !is_bpffs(dirname(pname)) ? "directory not in bpf file system (bpffs)" : strerror(errno)); goto out_free; } out_free: free(pname); out_ret: return fd; } int open_obj_pinned_any(const char *path, enum bpf_obj_type exp_type) { enum bpf_obj_type type; int fd; fd = open_obj_pinned(path, false); if (fd < 0) return -1; type = get_fd_type(fd); if (type < 0) { close(fd); return type; } if (type != exp_type) { p_err("incorrect object type: %s", get_fd_type_name(type)); close(fd); return -1; } return fd; } int mount_bpffs_for_pin(const char *name) { char err_str[ERR_MAX_LEN]; char *file; char *dir; int err = 0; file = malloc(strlen(name) + 1); if (!file) { p_err("mem alloc failed"); return -1; } strcpy(file, name); dir = dirname(file); if (is_bpffs(dir)) /* nothing to do if already mounted */ goto out_free; if (block_mount) { p_err("no BPF file system found, not mounting it due to --nomount option"); err = -1; goto out_free; } err = mnt_fs(dir, "bpf", err_str, ERR_MAX_LEN); if (err) { err_str[ERR_MAX_LEN - 1] = '\0'; p_err("can't mount BPF file system to pin the object (%s): %s", name, err_str); } out_free: free(file); return err; } int do_pin_fd(int fd, const char *name) { int err; err = mount_bpffs_for_pin(name); if (err) return err; err = bpf_obj_pin(fd, name); if (err) p_err("can't pin the object (%s): %s", name, strerror(errno)); return err; } int do_pin_any(int argc, char **argv, int (*get_fd)(int *, char ***)) { int err; int fd; if (!REQ_ARGS(3)) return -EINVAL; fd = get_fd(&argc, &argv); if (fd < 0) return fd; err = do_pin_fd(fd, *argv); close(fd); return err; } const char *get_fd_type_name(enum bpf_obj_type type) { static const char * const names[] = { [BPF_OBJ_UNKNOWN] = "unknown", [BPF_OBJ_PROG] = "prog", [BPF_OBJ_MAP] = "map", [BPF_OBJ_LINK] = "link", }; if (type < 0 || type >= ARRAY_SIZE(names) || !names[type]) return names[BPF_OBJ_UNKNOWN]; return names[type]; } void get_prog_full_name(const struct bpf_prog_info *prog_info, int prog_fd, char *name_buff, size_t buff_len) { const char *prog_name = prog_info->name; const struct btf_type *func_type; const struct bpf_func_info finfo = {}; struct bpf_prog_info info = {}; __u32 info_len = sizeof(info); struct btf *prog_btf = NULL; if (buff_len <= BPF_OBJ_NAME_LEN || strlen(prog_info->name) < BPF_OBJ_NAME_LEN - 1) goto copy_name; if (!prog_info->btf_id || prog_info->nr_func_info == 0) goto copy_name; info.nr_func_info = 1; info.func_info_rec_size = prog_info->func_info_rec_size; if (info.func_info_rec_size > sizeof(finfo)) info.func_info_rec_size = sizeof(finfo); info.func_info = ptr_to_u64(&finfo); if (bpf_obj_get_info_by_fd(prog_fd, &info, &info_len)) goto copy_name; prog_btf = btf__load_from_kernel_by_id(info.btf_id); if (!prog_btf) goto copy_name; func_type = btf__type_by_id(prog_btf, finfo.type_id); if (!func_type || !btf_is_func(func_type)) goto copy_name; prog_name = btf__name_by_offset(prog_btf, func_type->name_off); copy_name: snprintf(name_buff, buff_len, "%s", prog_name); if (prog_btf) btf__free(prog_btf); } int get_fd_type(int fd) { char path[PATH_MAX]; char buf[512]; ssize_t n; snprintf(path, sizeof(path), "/proc/self/fd/%d", fd); n = readlink(path, buf, sizeof(buf)); if (n < 0) { p_err("can't read link type: %s", strerror(errno)); return -1; } if (n == sizeof(path)) { p_err("can't read link type: path too long!"); return -1; } if (strstr(buf, "bpf-map")) return BPF_OBJ_MAP; else if (strstr(buf, "bpf-prog")) return BPF_OBJ_PROG; else if (strstr(buf, "bpf-link")) return BPF_OBJ_LINK; return BPF_OBJ_UNKNOWN; } char *get_fdinfo(int fd, const char *key) { char path[PATH_MAX]; char *line = NULL; size_t line_n = 0; ssize_t n; FILE *fdi; snprintf(path, sizeof(path), "/proc/self/fdinfo/%d", fd); fdi = fopen(path, "r"); if (!fdi) return NULL; while ((n = getline(&line, &line_n, fdi)) > 0) { char *value; int len; if (!strstr(line, key)) continue; fclose(fdi); value = strchr(line, '\t'); if (!value || !value[1]) { free(line); return NULL; } value++; len = strlen(value); memmove(line, value, len); line[len - 1] = '\0'; return line; } free(line); fclose(fdi); return NULL; } void print_data_json(uint8_t *data, size_t len) { unsigned int i; jsonw_start_array(json_wtr); for (i = 0; i < len; i++) jsonw_printf(json_wtr, "%d", data[i]); jsonw_end_array(json_wtr); } void print_hex_data_json(uint8_t *data, size_t len) { unsigned int i; jsonw_start_array(json_wtr); for (i = 0; i < len; i++) jsonw_printf(json_wtr, "\"0x%02hhx\"", data[i]); jsonw_end_array(json_wtr); } /* extra params for nftw cb */ static struct hashmap *build_fn_table; static enum bpf_obj_type build_fn_type; static int do_build_table_cb(const char *fpath, const struct stat *sb, int typeflag, struct FTW *ftwbuf) { struct bpf_prog_info pinned_info; __u32 len = sizeof(pinned_info); enum bpf_obj_type objtype; int fd, err = 0; char *path; if (typeflag != FTW_F) goto out_ret; fd = open_obj_pinned(fpath, true); if (fd < 0) goto out_ret; objtype = get_fd_type(fd); if (objtype != build_fn_type) goto out_close; memset(&pinned_info, 0, sizeof(pinned_info)); if (bpf_obj_get_info_by_fd(fd, &pinned_info, &len)) goto out_close; path = strdup(fpath); if (!path) { err = -1; goto out_close; } err = hashmap__append(build_fn_table, pinned_info.id, path); if (err) { p_err("failed to append entry to hashmap for ID %u, path '%s': %s", pinned_info.id, path, strerror(errno)); free(path); goto out_close; } out_close: close(fd); out_ret: return err; } int build_pinned_obj_table(struct hashmap *tab, enum bpf_obj_type type) { struct mntent *mntent = NULL; FILE *mntfile = NULL; int flags = FTW_PHYS; int nopenfd = 16; int err = 0; mntfile = setmntent("/proc/mounts", "r"); if (!mntfile) return -1; build_fn_table = tab; build_fn_type = type; while ((mntent = getmntent(mntfile))) { char *path = mntent->mnt_dir; if (strncmp(mntent->mnt_type, "bpf", 3) != 0) continue; err = nftw(path, do_build_table_cb, nopenfd, flags); if (err) break; } fclose(mntfile); return err; } void delete_pinned_obj_table(struct hashmap *map) { struct hashmap_entry *entry; size_t bkt; if (!map) return; hashmap__for_each_entry(map, entry, bkt) free(entry->pvalue); hashmap__free(map); } unsigned int get_page_size(void) { static int result; if (!result) result = getpagesize(); return result; } unsigned int get_possible_cpus(void) { int cpus = libbpf_num_possible_cpus(); if (cpus < 0) { p_err("Can't get # of possible cpus: %s", strerror(-cpus)); exit(-1); } return cpus; } static char * ifindex_to_name_ns(__u32 ifindex, __u32 ns_dev, __u32 ns_ino, char *buf) { struct stat st; int err; err = stat("/proc/self/ns/net", &st); if (err) { p_err("Can't stat /proc/self: %s", strerror(errno)); return NULL; } if (st.st_dev != ns_dev || st.st_ino != ns_ino) return NULL; return if_indextoname(ifindex, buf); } static int read_sysfs_hex_int(char *path) { char vendor_id_buf[8]; int len; int fd; fd = open(path, O_RDONLY); if (fd < 0) { p_err("Can't open %s: %s", path, strerror(errno)); return -1; } len = read(fd, vendor_id_buf, sizeof(vendor_id_buf)); close(fd); if (len < 0) { p_err("Can't read %s: %s", path, strerror(errno)); return -1; } if (len >= (int)sizeof(vendor_id_buf)) { p_err("Value in %s too long", path); return -1; } vendor_id_buf[len] = 0; return strtol(vendor_id_buf, NULL, 0); } static int read_sysfs_netdev_hex_int(char *devname, const char *entry_name) { char full_path[64]; snprintf(full_path, sizeof(full_path), "/sys/class/net/%s/device/%s", devname, entry_name); return read_sysfs_hex_int(full_path); } const char * ifindex_to_arch(__u32 ifindex, __u64 ns_dev, __u64 ns_ino, const char **opt) { __maybe_unused int device_id; char devname[IF_NAMESIZE]; int vendor_id; if (!ifindex_to_name_ns(ifindex, ns_dev, ns_ino, devname)) { p_err("Can't get net device name for ifindex %d: %s", ifindex, strerror(errno)); return NULL; } vendor_id = read_sysfs_netdev_hex_int(devname, "vendor"); if (vendor_id < 0) { p_err("Can't get device vendor id for %s", devname); return NULL; } switch (vendor_id) { #ifdef HAVE_LIBBFD_SUPPORT case 0x19ee: device_id = read_sysfs_netdev_hex_int(devname, "device"); if (device_id != 0x4000 && device_id != 0x6000 && device_id != 0x6003) p_info("Unknown NFP device ID, assuming it is NFP-6xxx arch"); *opt = "ctx4"; return "NFP-6xxx"; #endif /* HAVE_LIBBFD_SUPPORT */ /* No NFP support in LLVM, we have no valid triple to return. */ default: p_err("Can't get arch name for device vendor id 0x%04x", vendor_id); return NULL; } } void print_dev_plain(__u32 ifindex, __u64 ns_dev, __u64 ns_inode) { char name[IF_NAMESIZE]; if (!ifindex) return; printf(" offloaded_to "); if (ifindex_to_name_ns(ifindex, ns_dev, ns_inode, name)) printf("%s", name); else printf("ifindex %u ns_dev %llu ns_ino %llu", ifindex, ns_dev, ns_inode); } void print_dev_json(__u32 ifindex, __u64 ns_dev, __u64 ns_inode) { char name[IF_NAMESIZE]; if (!ifindex) return; jsonw_name(json_wtr, "dev"); jsonw_start_object(json_wtr); jsonw_uint_field(json_wtr, "ifindex", ifindex); jsonw_uint_field(json_wtr, "ns_dev", ns_dev); jsonw_uint_field(json_wtr, "ns_inode", ns_inode); if (ifindex_to_name_ns(ifindex, ns_dev, ns_inode, name)) jsonw_string_field(json_wtr, "ifname", name); jsonw_end_object(json_wtr); } int parse_u32_arg(int *argc, char ***argv, __u32 *val, const char *what) { char *endptr; NEXT_ARGP(); if (*val) { p_err("%s already specified", what); return -1; } *val = strtoul(**argv, &endptr, 0); if (*endptr) { p_err("can't parse %s as %s", **argv, what); return -1; } NEXT_ARGP(); return 0; } int __printf(2, 0) print_all_levels(__maybe_unused enum libbpf_print_level level, const char *format, va_list args) { return vfprintf(stderr, format, args); } static int prog_fd_by_nametag(void *nametag, int **fds, bool tag) { char prog_name[MAX_PROG_FULL_NAME]; unsigned int id = 0; int fd, nb_fds = 0; void *tmp; int err; while (true) { struct bpf_prog_info info = {}; __u32 len = sizeof(info); err = bpf_prog_get_next_id(id, &id); if (err) { if (errno != ENOENT) { p_err("%s", strerror(errno)); goto err_close_fds; } return nb_fds; } fd = bpf_prog_get_fd_by_id(id); if (fd < 0) { p_err("can't get prog by id (%u): %s", id, strerror(errno)); goto err_close_fds; } err = bpf_obj_get_info_by_fd(fd, &info, &len); if (err) { p_err("can't get prog info (%u): %s", id, strerror(errno)); goto err_close_fd; } if (tag && memcmp(nametag, info.tag, BPF_TAG_SIZE)) { close(fd); continue; } if (!tag) { get_prog_full_name(&info, fd, prog_name, sizeof(prog_name)); if (strncmp(nametag, prog_name, sizeof(prog_name))) { close(fd); continue; } } if (nb_fds > 0) { tmp = realloc(*fds, (nb_fds + 1) * sizeof(int)); if (!tmp) { p_err("failed to realloc"); goto err_close_fd; } *fds = tmp; } (*fds)[nb_fds++] = fd; } err_close_fd: close(fd); err_close_fds: while (--nb_fds >= 0) close((*fds)[nb_fds]); return -1; } int prog_parse_fds(int *argc, char ***argv, int **fds) { if (is_prefix(**argv, "id")) { unsigned int id; char *endptr; NEXT_ARGP(); id = strtoul(**argv, &endptr, 0); if (*endptr) { p_err("can't parse %s as ID", **argv); return -1; } NEXT_ARGP(); (*fds)[0] = bpf_prog_get_fd_by_id(id); if ((*fds)[0] < 0) { p_err("get by id (%u): %s", id, strerror(errno)); return -1; } return 1; } else if (is_prefix(**argv, "tag")) { unsigned char tag[BPF_TAG_SIZE]; NEXT_ARGP(); if (sscanf(**argv, BPF_TAG_FMT, tag, tag + 1, tag + 2, tag + 3, tag + 4, tag + 5, tag + 6, tag + 7) != BPF_TAG_SIZE) { p_err("can't parse tag"); return -1; } NEXT_ARGP(); return prog_fd_by_nametag(tag, fds, true); } else if (is_prefix(**argv, "name")) { char *name; NEXT_ARGP(); name = **argv; if (strlen(name) > MAX_PROG_FULL_NAME - 1) { p_err("can't parse name"); return -1; } NEXT_ARGP(); return prog_fd_by_nametag(name, fds, false); } else if (is_prefix(**argv, "pinned")) { char *path; NEXT_ARGP(); path = **argv; NEXT_ARGP(); (*fds)[0] = open_obj_pinned_any(path, BPF_OBJ_PROG); if ((*fds)[0] < 0) return -1; return 1; } p_err("expected 'id', 'tag', 'name' or 'pinned', got: '%s'?", **argv); return -1; } int prog_parse_fd(int *argc, char ***argv) { int *fds = NULL; int nb_fds, fd; fds = malloc(sizeof(int)); if (!fds) { p_err("mem alloc failed"); return -1; } nb_fds = prog_parse_fds(argc, argv, &fds); if (nb_fds != 1) { if (nb_fds > 1) { p_err("several programs match this handle"); while (nb_fds--) close(fds[nb_fds]); } fd = -1; goto exit_free; } fd = fds[0]; exit_free: free(fds); return fd; } static int map_fd_by_name(char *name, int **fds) { unsigned int id = 0; int fd, nb_fds = 0; void *tmp; int err; while (true) { struct bpf_map_info info = {}; __u32 len = sizeof(info); err = bpf_map_get_next_id(id, &id); if (err) { if (errno != ENOENT) { p_err("%s", strerror(errno)); goto err_close_fds; } return nb_fds; } fd = bpf_map_get_fd_by_id(id); if (fd < 0) { p_err("can't get map by id (%u): %s", id, strerror(errno)); goto err_close_fds; } err = bpf_obj_get_info_by_fd(fd, &info, &len); if (err) { p_err("can't get map info (%u): %s", id, strerror(errno)); goto err_close_fd; } if (strncmp(name, info.name, BPF_OBJ_NAME_LEN)) { close(fd); continue; } if (nb_fds > 0) { tmp = realloc(*fds, (nb_fds + 1) * sizeof(int)); if (!tmp) { p_err("failed to realloc"); goto err_close_fd; } *fds = tmp; } (*fds)[nb_fds++] = fd; } err_close_fd: close(fd); err_close_fds: while (--nb_fds >= 0) close((*fds)[nb_fds]); return -1; } int map_parse_fds(int *argc, char ***argv, int **fds) { if (is_prefix(**argv, "id")) { unsigned int id; char *endptr; NEXT_ARGP(); id = strtoul(**argv, &endptr, 0); if (*endptr) { p_err("can't parse %s as ID", **argv); return -1; } NEXT_ARGP(); (*fds)[0] = bpf_map_get_fd_by_id(id); if ((*fds)[0] < 0) { p_err("get map by id (%u): %s", id, strerror(errno)); return -1; } return 1; } else if (is_prefix(**argv, "name")) { char *name; NEXT_ARGP(); name = **argv; if (strlen(name) > BPF_OBJ_NAME_LEN - 1) { p_err("can't parse name"); return -1; } NEXT_ARGP(); return map_fd_by_name(name, fds); } else if (is_prefix(**argv, "pinned")) { char *path; NEXT_ARGP(); path = **argv; NEXT_ARGP(); (*fds)[0] = open_obj_pinned_any(path, BPF_OBJ_MAP); if ((*fds)[0] < 0) return -1; return 1; } p_err("expected 'id', 'name' or 'pinned', got: '%s'?", **argv); return -1; } int map_parse_fd(int *argc, char ***argv) { int *fds = NULL; int nb_fds, fd; fds = malloc(sizeof(int)); if (!fds) { p_err("mem alloc failed"); return -1; } nb_fds = map_parse_fds(argc, argv, &fds); if (nb_fds != 1) { if (nb_fds > 1) { p_err("several maps match this handle"); while (nb_fds--) close(fds[nb_fds]); } fd = -1; goto exit_free; } fd = fds[0]; exit_free: free(fds); return fd; } int map_parse_fd_and_info(int *argc, char ***argv, void *info, __u32 *info_len) { int err; int fd; fd = map_parse_fd(argc, argv); if (fd < 0) return -1; err = bpf_obj_get_info_by_fd(fd, info, info_len); if (err) { p_err("can't get map info: %s", strerror(errno)); close(fd); return err; } return fd; } size_t hash_fn_for_key_as_id(long key, void *ctx) { return key; } bool equal_fn_for_key_as_id(long k1, long k2, void *ctx) { return k1 == k2; } const char *bpf_attach_type_input_str(enum bpf_attach_type t) { switch (t) { case BPF_CGROUP_INET_INGRESS: return "ingress"; case BPF_CGROUP_INET_EGRESS: return "egress"; case BPF_CGROUP_INET_SOCK_CREATE: return "sock_create"; case BPF_CGROUP_INET_SOCK_RELEASE: return "sock_release"; case BPF_CGROUP_SOCK_OPS: return "sock_ops"; case BPF_CGROUP_DEVICE: return "device"; case BPF_CGROUP_INET4_BIND: return "bind4"; case BPF_CGROUP_INET6_BIND: return "bind6"; case BPF_CGROUP_INET4_CONNECT: return "connect4"; case BPF_CGROUP_INET6_CONNECT: return "connect6"; case BPF_CGROUP_INET4_POST_BIND: return "post_bind4"; case BPF_CGROUP_INET6_POST_BIND: return "post_bind6"; case BPF_CGROUP_INET4_GETPEERNAME: return "getpeername4"; case BPF_CGROUP_INET6_GETPEERNAME: return "getpeername6"; case BPF_CGROUP_INET4_GETSOCKNAME: return "getsockname4"; case BPF_CGROUP_INET6_GETSOCKNAME: return "getsockname6"; case BPF_CGROUP_UDP4_SENDMSG: return "sendmsg4"; case BPF_CGROUP_UDP6_SENDMSG: return "sendmsg6"; case BPF_CGROUP_SYSCTL: return "sysctl"; case BPF_CGROUP_UDP4_RECVMSG: return "recvmsg4"; case BPF_CGROUP_UDP6_RECVMSG: return "recvmsg6"; case BPF_CGROUP_GETSOCKOPT: return "getsockopt"; case BPF_CGROUP_SETSOCKOPT: return "setsockopt"; case BPF_TRACE_RAW_TP: return "raw_tp"; case BPF_TRACE_FENTRY: return "fentry"; case BPF_TRACE_FEXIT: return "fexit"; case BPF_MODIFY_RETURN: return "mod_ret"; case BPF_SK_REUSEPORT_SELECT: return "sk_skb_reuseport_select"; case BPF_SK_REUSEPORT_SELECT_OR_MIGRATE: return "sk_skb_reuseport_select_or_migrate"; default: return libbpf_bpf_attach_type_str(t); } }