
IPMI { A Gentle Introdution

with OpenIPMI

Corey Minyard <minyard�am.org>

Montavista Software

January 20, 2014

2

Prefae

This doument desribes IPMI in great detail; how it works and what it does and does not do. It starts

from the basis and moves into details. If you've heard about IPMI and want to �nd out more, this is the

doument for you. If you know something about IPMI but wish to �nd out more, you an gloss over the

introdutory text and dive more into the details.

This doument also desribes OpenIPMI and how to use that library. A basi understanding of IPMI is

required to use OpenIPMI. However, OpenIPMI hides the details of IPMI like messages and data formats;

if you do not are about those things you an skip those setions.

IPMI stands for Intelligent Platform Management Interfae. Not a great name, but not too bad. It is

intelligent (in a manner of speaking, anyway) beause it requires a proessor besides the main proessor that

is always on and maintaining the system. In most systems with IPMI, you an monitor and maintain the

system even when the main proessor is turned o� (though the system must generally be plugged in).

Platform means that IPMI deals with the platform, not the software running on the platform. Software

management is mostly out of the sope of IPMI

Management Interfae means that the management system uses IPMI to talk to the system to monitor

and perform maintenane on the platform. IPMI is mostly about monitoring, though it does have a few minor

management funtions. However, many ompanies and organizations have built more extensive management

ontrol using OEM extensions to IPMI.

The IPMI spei�ation[2℄, of ourse, has the details, but they an be obsure. This doument hopefully

provides an easier to understand introdution to IPMI.

i

ii PREFACE

Contents

Prefae i

Aronyms ix

1 Management, Systems, and IPMI 1

1.1 IPMI Implementation . 1

1.2 System Types . 4

2 OpenIPMI 9

2.1 The User View . 9

2.2 OpenIPMI Conepts . 10

2.2.1 Event-Driven Systems . 10

2.2.2 The OS Handler . 12

2.2.3 Error Handling . 14

2.2.4 Loking . 14

2.2.5 OpenIPMI Objets . 18

2.2.6 Callbaks . 20

2.3 OpenIPMI Inlude Files . 21

2.3.1 Files the normal user deals with . 22

2.3.2 Files dealing with messaging interfaes . 22

2.3.3 File for system on�guration . 22

2.3.4 Semi-internal inludes . 22

2.4 Starting Up OpenIPMI . 23

2.5 Creating OpenIPMI Domains . 23

2.5.1 Domain Connetions . 23

2.5.2 Domain Fully Up . 24

2.5.3 Redundany in Domain Connetions . 24

2.5.4 Domain Options . 25

3 Use Cases 27

3.1 Simple Hardware Monitoring . 27

3.2 Redundant Systems . 28

3.3 Monitoring Clusters of Systems . 28

3.4 Bus Systems . 30

iii

iv CONTENTS

4 IPMI Interfaes 31

4.1 OpenIPMI Generi Interfae . 31

4.2 System Interfaes . 31

4.2.1 Server Management Interfae Chip (SMIC) . 32

4.2.2 Keyboard Style Controller (KCS) . 32

4.2.3 Blok Transfer (BT) . 32

4.2.4 SMBus System InterFae (SSIF) . 32

4.2.5 The OpenIPMI Driver . 32

4.2.6 The OpenIPMI System Interfae . 38

4.3 Channels . 38

4.4 Bridging . 39

4.4.1 Channels . 39

4.4.2 Sending Bridged Messages . 41

4.4.3 Message Traking . 42

4.4.4 Reeiving Asynhronous Messages on the System Interfae 42

4.4.5 System Interfae to IPMB Bridging . 43

4.4.6 LAN to IPMB Bridging . 43

4.4.7 System Interfae to LAN . 48

4.5 IPMB . 48

4.5.1 IPMB Broadast . 48

4.5.2 OpenIPMI and IPMB . 49

4.6 ICMB . 49

4.7 SMBus . 49

4.8 Session Support . 49

4.9 LAN . 49

4.9.1 LAN Con�guration . 49

4.9.2 ARP ontrol . 55

4.9.3 LAN Messaging . 55

4.9.4 OpenIPMI LAN Con�guration . 55

4.9.5 The OpenIPMI LAN Interfae . 56

4.10 Serial . 57

4.10.1 Serial Con�guration . 58

4.10.2 Diret Serial . 58

4.10.3 Terminal Mode . 58

4.10.4 Serial over PPP . 58

4.11 User Management . 58

4.11.1 User management in OpenIPMI . 59

4.11.2 User management ommands . 60

4.12 Channel Con�guration . 63

4.12.1 Channel handling in OpenIPMI . 64

4.12.2 Channel handling ommands . 67

4.12.3 Channel Authentiation . 69

4.13 The PEF Table and SNMP Traps . 69

4.13.1 PEF and Alerting Commands . 69

4.13.2 The PEF Postpone Timer . 71

4.13.3 PEF Con�guration Parameters . 71

CONTENTS v

4.13.4 OpenIPMI and SNMP Traps . 80

4.13.5 The Alert Immediate Command . 82

4.14 OpenIPMI Addressing . 82

5 The MC 85

5.1 OpenIPMI and MCs . 85

5.1.1 Disovering MCs . 85

5.1.2 MC Ative . 86

5.1.3 MC Information . 86

5.1.4 MC Reset . 87

5.1.5 Global Event Enables . 88

6 IPMI Commands 89

6.1 Sending Commands in the OpenIPMI Library . 92

7 SDR Repositories 93

7.1 SDR Reservations . 93

7.2 The Main SDR Repository . 93

7.2.1 Modal and Non-Modal SDR Repositories . 93

7.2.2 Commands for Main SDR Repositories . 93

7.3 Devie SDR Repositories . 93

7.3.1 Dynami Devie SDR Repositories . 94

7.3.2 Commands for Devie SDR Repositories . 94

7.4 Reords in an SDR Repository . 94

7.5 Dealing with SDR Repositories in OpenIPMI . 94

7.5.1 Getting an SDR Repository . 94

7.5.2 SDR Repository Information . 96

7.5.3 Handling a SDR Repository . 97

8 Entities 99

8.1 Disovering Entities . 101

8.2 Entity Containment and OpenIPMI . 102

8.3 Entity Presene . 103

8.3.1 Entity Presene in OpenIPMI . 103

8.4 Entity Types and Info . 104

8.5 Sensor and Controls in an Entity . 106

8.6 Entity Hot-Swap . 109

8.6.1 Hot-Swap State . 109

8.6.2 Hot-Swap Events . 110

8.6.3 Hot-Swap Ativation and Deativation . 112

8.6.4 Auto Ativation and Deativation . 113

8.7 FRU Data . 113

8.7.1 Reading FRU Data . 113

8.8 Entity SDRs . 118

vi CONTENTS

9 Sensors 119

9.1 Sensor Events . 119

9.2 Rearm . 119

9.3 Threshold Sensors . 119

9.3.1 Threshold Sensor Events . 120

9.3.2 Hysteresis . 120

9.4 Disrete Sensors . 122

9.5 IPMI Commands Dealing with Sensors . 122

9.6 Using Sensors in OpenIPMI . 122

9.6.1 General Information About Sensors in OpenIPMI . 131

9.6.2 Threshold Sensors in OpenIPMI . 137

9.6.3 Disrete Sensors in OpenIPMI . 146

9.7 Sensor SDRs . 147

10 Controls and Misellany 149

10.1 Controls . 149

10.1.1 Control Name . 150

10.1.2 Controls and Events . 151

10.1.3 Basi Type Controls . 151

10.1.4 Light . 152

10.1.5 Display . 155

10.1.6 Identi�er . 155

10.1.7 Chassis Controls . 155

10.2 Wathdog Timer . 155

10.3 Diret I

2

C Aess . 156

11 Events 157

11.1 Event Format . 157

11.2 Event Data Information for Spei� Events . 157

11.3 MC Event Enables . 158

11.4 Coordinating Multiple Users of an SEL . 158

12 Other OpenIPMI Conerns 159

12.1 When Operations Happen . 159

A Speial IPMI Formats 161

A.1 IPMI strings . 161

A.1.1 OpenIPMI and IPMI strings . 161

B The Perl Interfae 163

C Comparison with SNMP 167

D Comparison with HPI 169

CONTENTS vii

E ATCA 171

E.1 Management Redundany in ATCA . 171

E.2 Hot Swap in ATCA . 171

E.3 ATCA FRU Data . 172

E.4 Speial ATCA Sensors . 172

E.5 Speial ATCA Shelf Controls . 172

E.6 Speial ATCA IPMC Controls . 172

E.7 Chassis Controls and ATCA . 173

E.8 AMC . 173

F Motorola MXP 175

G Intel Servers 177

H Sample Program Showing Basi Operations 179

I Sample Program Showing Event Setup 191

J Command Reeiver Program 207

K Connetion Handling Interfae (ipmi onn.h) 211

L OS Handler Interfae (os handler.h) 225

viii CONTENTS

Aronyms

ATCA AdvanedTCA

AMC AdvanedMC

IPMI Intelligent Platform Management Interfae

IPMC Intelligent Platform Management Controller (FIXME - wrong)

OEM Original Equipment Manufaturer

SDR Sensor Devie Reord

FRU Field Replaable Unit

KCS Keyboard Style Controller

BT Blok Transfer

SMIC Server Management Interfae Chip

SSIF SMBus System InterFae

MC Management Controller

BMC Baseboard Management Controller

I

2

C Inter Integrated Ciruit

SNMP Simple Network Management Protool

SPD Serial Presene Detet

HPI Hardware Platform Interfae

LUN Logial Unit Number

NetFN Network FuNtion

IPMB Intelligent Platform Management Bus

EEPROM Eletronially Erasable Programmable Read Only Memory

ix

x ACRONYMS

LAN Loal Area Network

SEL System Event Log

PPP Point to Point Protool

RMCP Remote Management Control Protool

IP Internet Protool

UDP User Datagram Protool

MD2 Message Digest 2

MD5 Message Digest 5

PDU Protool Data Unit In SNMP, this is a paket holding an SNMP operation.

PEF Platform Event Filter

MAC Media Aess Code?

ARP Address Resolution Protool

GUID Globally Unique IDenti�er

NMI Non Maskable Interrupt

EAR Entity Assoiation Reord

DREAR Devie Relative Entity Assoiation Reord

DLR Devie Loator Reord

MCDLR Management Controller Devie Loator Reord

FRUDLR Field Replaable Unit Devie Loator Reord

GDLR Generi Devie Loator Reord

ICMB Intelligent Chassis Management Bus

PET Platform Event Trap

DMI ?

C h a p t e r 1

Management, Systems, and IPMI

Management will mean di�erent things to di�erent industries. In simple server systems, a management

system may only deal with ontrolling power on a few servers and making sure they don't get too hot. In a

teleom system, management systems generally ontrol every aspet of the system, inluding startup of all

parts of the system, full monitoring of all omponents of the system, detetion and reovery from software

and hardware errors, basi on�guration of the system, and a host of other things. IPMI obviously only

plays one role in this, but it is a role that must be played. In the past, the monitoring and management of

hardware has been done with lots of proprietary interfaes. IPMI standardizes this interfae.

Figure 1.1 shows a management system and the things it manages. IPMI �ts mostly within the \Hard-

ware" box, although there may be other hardware interfaes the management system must manage. The

management system ties into all elements of the system and makes global deisions based upon inputs from

all parts of the systems. For instane, a server may be overheating or have a low voltage. The management

system will be informed of this through the hardware interfaes. It may hoose to move the funtion of that

server to another server and bring that server down so it may be repaired. If no other server is available to

take over the operation, the management system may look at the severity of the problem, predit how long

the system may survive, and let it ontinue. These types of deisions are alled \poliy".

In all ases these events are logged to permanent storage. An operator is informed of things that need

human attention. The operator may also issue manual operations to on�gure and override the management

system as neessary.

The operations the management system performs on the system are alled \Commands" in this piture.

Commands have \Responses" from the system. Asynhronous noti�ations from the system to the manage-

ment system are alled \Events". The system never sends ommands to the management system, and the

system may perform loal operations on its own (suh as ontrolling fan speed) but never perform global

operations unless pre-on�gured by the management system to do so. So the system may perform limited

poliy deisions, but the management system is �rmly in ontrol of poliy.

1.1 IPMI Implementation

The Management Controller (MC) sits at the enter of an IPMI system, providing the \intelligene" of IPMI.

It is suppose to be always on when the system is plugged in, even if the system is o�. The management

system ommuniates with the management ontroller; the management ontroller provides a normalized

1

2 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Figure 1.1: Management Interfaes

1.1. IPMI IMPLEMENTATION 3

Figure 1.2: Parts of a Management Controller

interfae to all the sensors, events, and Field Replaable Unit (FRU) data in the system.

Figure 1.2 shows the various parts of the management ontroller. Note that most everything is optional;

depending on what a management ontroller does it may only need some things. The Baseboard Management

Controller (BMC) is required to have a lot of the items.

The MC Proessor is generally a small, inexpensive, but reliable miroontroller. Several ompanies sell

proessors that have a lot of the IPMI omponents already implemented and software to help a ompany

implement IPMI on their system.

The system interfae provides a way for the main proessor to ommuniate with the management

ontroller. Some systems do not have this onnetion and only use external interfaes and/or Intelligent

Platform Management Bus (IPMB) interfaes. System interfaes inlude SMIC, KCS, and BT interfaes.

An MC (generally the BMC) may have other interfaes to an external management system through serial

ports or Ethernet.

Generally, sensors sit on an I

2

C bus sine many o�-the-shelf sensors an sit diretly on the bus with

no extra logi. Wherever the sensors sit, the MC provides a more abstrat interfae to the sensors so that

the management system does not have to know the details of how to talk to the sensor. Sensors may be

traditional analog sensors like temperature and voltage. But they may report other things, too, like the

4 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

urrent BIOS state, whether a devie is present or not, or other things like that.

FRU data is often stored in I

2

C EEPROMs on the I

2

C bus. FRU data is information about a Field

Replaable Unit. This inludes things like the manufaturer, the serial number, date of manufature, et. A

system generally has information about the hassis and information about eah �eld replaeable unit it has.

Field replaeable units may inlude power supplies, DIMMs (memory devies), plug-in-boards, or a host of

other things.

Connetions to other MCs may be done through an IPMB. On an IPMB, eah MC is a peer and they

ommuniate diretly through messages.

In addition to IPMB, IPMI systems an be interonneted through an Intelligent Chassis Management

Bus. This is a serial bus that runs between hassis.

A management ontroller may be able to ontrol various aspets of the hassis, suh as power and reset.

It may also have a wathdog timer for the main proessor.

The Sensor Devie Reord (SDR) repositories store information about the sensors and omponents of

the system. The BMC must have a main SDR repository; this repository is writable. There may only be

one main SDR repository in the system. Any MC may have a devie SDR repository; these are a read-only

repositories.

When a problem or hange in the system is deteted, the MC handling that sensor may issue an event.

This allows management software to detet these problems or hanges without having to poll every sensor

onstantly. The events are stored in an event log. Events may be forwarded through the system interfae or

other interfaes, but they are always stored in the event log. The BMC must have an event log; generally

the other management ontrollers forward their events to the BMC.

1.2 System Types

Although any arbitrary type of system may use IPMI for platform management, systems generally fall into

two ategories: server systems and bus systems.

Figure 1.3 shows a typial server system. It is a single stand-alone box that is a single omputer. It

has a BMC that is the main management ontroller in the system. It ontrols a number of sensors. In this

example, the power supply also has a MC with it's own sensors.

A BMC an have several onnetions to managing systems. It may have a system interfae onnetion to

the main proessor. It may share an interfae to the ethernet hip so the system may be managed through

the LAN when the main proessor is not working. Systems an have serial port onnetions. They an even

have onnetions to modems where they an dial up a management system or page an operator when they

detet a problem, or be dialed into by a management system.

Figure 1.4 shows a typial bus system. The word \bus" is perhaps a bit misleading; these types of

systems used to have busses (like CPCI and VME) but reently have tended to not have big busses and use

networking for interonnet (like PICMG 2.16 and ATCA). These systems generally ontain a number of

proessors on pluggable boards often alled Single Board Computers (SBCs) or blades. One or more power

supplies power the whole system. The boards and power supplies an be hot-pluggable.

These systems generally have one or two boards that manage the system; this an be on a standard SBC,

on another speial purpose blade (like a blade used as a network swith), or on a standalone board with this

purpose. The shelf management ontroller(s) generally at as the BMC in the system; they will have the

event log and the main SDRs in the system. A system with two shelf ontrollers will generally allow the

system to be managed even if one of the shelf ontrollers fails.

1.2. SYSTEM TYPES 5

Figure 1.3: A typial server system

6 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

Figure 1.4: A typial bus system

1.2. SYSTEM TYPES 7

Bus systems generally use one or more IPMBs (a sister standard to IPMI) to interonnet the various

omponents for management. IPMB is a modi�ed I

2

C interfae; it provides for a somewhat slow but simple

ommuniation bus.

The boards an generally be individually power ontrolled, so even though a board is plugged into the

system it may be turned o�. The shelf managment ontroller may implement some poliy, suh as fan

ontrols or auto-powering up boards, but is generally used as a onduit for an external management system

to ontrol the parts of the system.

Individal SBCs vary on whether the loal Management Controller is onneted to the miroproessor on

an SBC. Some are, and some aren't. This onnetion has some limited usefulness if the software on the SBC

wishes to obtain loal information from the IPMI system or store logs in the IPMI event log.

These types of systems are used to ahieve high density in plaes with expensive real-estate, like a telo

entral oÆe. As you might imagine, you an pak a lot of proessing power into a small spae with a system

like this. Sine they are generally designed for hot-swap, and an have I/O ome out the bak of the system

on separate ards; it makes mainenane easier.

8 CHAPTER 1. MANAGEMENT, SYSTEMS, AND IPMI

C h a p t e r 2

OpenIPMI

So now we've got a BMC, MCs, and things like that. But how are you expeted to use raw IPMI?

The �rst things you must do, of ourse, is onnet to the BMC. If it's a diret SMI onnetion (A SMIC,

KCS, or BT interfae, or perhaps a non-standard serial interfae), you just open the driver on the operating

system and start messaging. If it's a LAN-type onnetion, you have to go through an authentiation

sequene. One you have a onnetion to the BMC, things are pretty muh the same no matter what

interfae you have. There are a few messaging for doing speial ontrols on a LAN interfae, but they don't

generally matter to the user.

One the onnetion to the BMC is up, the user should query to see what hannels the BMC supports.

For 1.5 and later, it gets this from a ommand. For 1.0, it gets it from the main SDR repository.

One you are onneted, you should san the SDRs in the main SDR repository for any entities and

sensors. Sensors and entities may also be in the devie SDR repository, whih should be sanned next. This

allows the user to disover the sensors in the system. Note that the sensors may point to entities that don't

have a entry in the SDR that de�nes them, those entities need to be handled when they are deteted.

After this point in time, the interfae ould be deemed to be \up". However, there's still more to do.

If the interfae supports an event queue, the user will have to poll it (if the driver doesn't deliver them

asynhronously, that is). If the interfae doesn't support an event queue the user should periodially san

the system event log for new events. (Note that even if it does support an event queue, the user should still

poll the system event log in ase the event queue missed any events oming in.)

Also, the user should start sanning the IPMB bus with broadast get devie id ommands to detet any

MCs on the bus.

This is what the OpenIPMI library does for you. Beyond this, it also represents the sensors, ontrols,

and entities in a nie OO fashion, and it handles the details of addressing, message routing, and other things

you don't really are about. It lets you get right at the sensors and entities.

2.1 The User View

A bunh of aronyms have just been introdued, along with a lot of vague onepts, and some desription

about how to use IPMI. The nie thing is that the user of OpenIPMI doesn't really have to know about all

these things.

9

10 CHAPTER 2. OPENIPMI

From the user's point of view, the entity provides the entral framework for sensors and ontrols. Sensors

monitor entities. Entities may be present or absent. When you onnet to an interfae, OpenIPMI takes

are of deteting the entities in the system and reporting them to you. You may register to be told when

entities are added or removed from the loal database. Note that an entity may be in the SDRs but not

physially present in the system; the reporting from OpenIPMI only gives the existane in the SDRs, not

physial presene in the system. Physial presene it handled through a separate interfae.

The user must know about two other OpenIPMI onepts: onnetions and domains. A onnetion

provides the interfae to the IPMI system. In essene, it is the BMC onnetion. You must alloate one or

more onnetions and reate a domain with them. OpenIPMI supports multiple onnetions to a domain in

some ases, but urrently it requires some OEM support for this. A domain represents a set of devies on a

bus (like IPMB) whose entities will be unique. For instane, a hassis with a lot of ards plugged in ould

be a domain, eah ard ould be an entity and then reate it's own sub-entities, but they will be designed

so the entity id's don't ollide.

OpenIPMI will automatially manage the onnetions, ativating and deatating the proper onnetions

(if the onnetions support that), deteting failures and swithing over, et.

Though the user doesn't have know the inner details of IPMI addressing and messaging, they do need

to know about entities and sensors. OpenIPMI mainly fouses on representing the entities and sensors in

onvenient ways. The user still needs to understand the apabilities of sensors, how the sensors advertise

those apabilities, and the things that an be done to the sensors.

You may register with an entity to be told when its physial presene in the system hanges. Some

devies (like power supplies) are �eld-replaeable while the system is running; this type of devie is alled a

hot-swappable FRU. They may have sensors that monitor them, but those sensors may not be ative if the

devie is not physially present in the system.

Sensors and ontrols are also automatially deteted and reported. This is done through entities; you

register with an entity to be told when a sensor or ontrol has been added or removed.

2.2 OpenIPMI Conepts

OpenIPMI is an event-driven library that is designed to be relatively operating system independent. If you

have written ontrol systems or things like that in the past, you will be quite familiar with event-driven

systems and may skip to the next setion. If not, you want to read this. Event-driven systems may seem a

little unusual, but they are aepted pratie and by far the best way to build ontrol systems.

2.2.1 Event-Driven Systems

In an event-driven system, you never stop and wait for something to happen. If you are not used to this,

you are probably used to writing ode like this:

while (true) {

wait_for_input();

perform_op1();

wait_for_op1_results();

perform_op2();

}

2.2. OPENIPMI CONCEPTS 11

This is fairly straightforward, but it has some problems. What if another more important input omes

in while you are waiting for the results of perform_op1()? Now the program will have to handle input in

wait_for_op1_results(), too, and somehow return and say something is happening. The loop will then

have to somehow handle multiple operations in progress. And this is a simple example, what if there were

hundreds of possible inputs, eah with their own result handler, and eah had to go through several states?

You ould assign eah to a thread, but if you have thousands of possible pending operations in a system,

that many threads may thrash your system and render it inoperable, probably right at the time you need it

most (sine a lot of things are going on).

In an event-driven system, instead you would say:

init()

{

<initialize input_data>

register_for_input(op1_handler, input_data);

}

op1_handler(input_data)

{

<alloate and initialize op_data>

perform_op1(..., op2_handler, op_data);

}

op2_handler(op_data)

{

perform_op2();

<free op_data>

}

As you see, when you start an operation, you provide the next thing to all when the operation ompletes.

The funtions passed around are alled \allbaks". You alloate and pass around hunks of data to be passed

to the handlers. And you register input handlers that get alled when ertain event ours. So the ode runs

in short non-bloking setions, registers for the next operation, then returns bak to some invisible main

loop that handles the details of sheduling operations. This may seem more ompliated than the previous

example, but it has a large number of advantages:

� The system is almost always ready to handle input. For instane, user-interfae systems (like most

widget sets) are almost always event-driven, this makes them muh more \live", sine they are always

ready to handle user input.

� This system an handle multiple simultaneous operations without threads. In general, threaded systems

are less reliable and more ompliated; unless you need priorities or salability on SMP, why use them?

And even if you use them, you an have muh better ontrol over what is running in the system with

an event-driven system..

� If you are building a redundant system with data repliation, this gives you a natural way to hold

your data, know when to transfer it over to the mate system, and ontinue an operation on the mate

system.

� If you trak the data, it's easy to monitor every operation ouring in the system, stop an operations,

or whatever.

12 CHAPTER 2. OPENIPMI

� It's muh easier to detet and manage overload situations in an event driven system. Event-driven

systems have event queues of things waiting to be proessed. You an put things in the queue and

wath the queue length. If the queue length gets too big, you are in overload, and an intelligently

deide whih events you want to throw away, based on priority, time to live, or some other riteria.

In general, a threaded system is easier to oneptually understand until you understand event-driven

methods. An event-driven system is almost always easier to orretly implement.

Note that event-driven systems don't prelude the use of threads. Threads may be vastly overused, but

they are important. You ould, for example, alloate one event loop thead per CPU to help sale your

system. You need to use threads to manage priorities. Some inputs may be more important than others, so

you may have an event loop for eah priority and feed them that way. You have a thread per CPU, and/or

a thread per priority, but you don't need a thread per operation.

This is often alled \state-mahine programming" sine most ontrol systems are state-mahine based,

and this is a natural way to implement a state mahine. The op_data holds the state of the state mahine,

eah input gets op_data, looks at the urrent state, and deides what to do next.

The OpenIPMI library is ompletely event-driven. It has no internal bloking operations, and it expets

that anything it alls will not blok. IPMI messaging and operating system primitives are provided through

external plug-in piees.

If a library funtion that takes a allbak does not return an error, the allbak is guaranteed to be alled,

even if the objet the all is assoiated with goes away. If it goes away, a NULL may be passed in as the

objet to the allbak, but the b_data will still be valid.

2.2.2 The OS Handler

The OS handler provides servies for the OpenIPMI library. OpenIPMI needs some things from the operating

system that are not standardized by the C language. The os-handler inlude �le is shown in Appendix L.

OS Handler Servies

The lasses of servies required by OpenIPMI are:

Input Callbaks The OpenIPMI ode uses the \�le desriptor" onept of *nix, input devies are num-

bered. This is not used internally in the library, but it is used by the messaging interfaes, so the

messaging interfaes and OS handler may implement their own onventions for these numbers. This

provides a way for OpenIPMI to register to reeive input from devies.

Timers OpenIPMI times everything (as it should), thus it needs timers.

Loks OpenIPMI does not require loks, you may leave the operations NULL and they won't be used.

However, if you are doing multi-threaded operations, you should almost ertainly provide loks. The

loks do not need to be reursive (they used to, but this has hanged in OpenIPMI 1.4). Read/write

loks are no longer required.

Condition Variables These are ondition variables like the ones spei�ed in POSIX threads. Although

OpenIPMI does not use ondition variables (sine it never waits for anything) it may be onvenient for

other things to have them. OpenIPMI does not use them, and if nothing in your system needs them,

they need not be provided.

2.2. OPENIPMI CONCEPTS 13

Random Data For ertain operations, OpenIPMI needs random data.

Logging Logs that OpenIPMI uses to report information and internal problems omes through the OS

Handler.

Database OpenIPMI an use an external database to hold persistent information (like SDRs) and thus

avoid having to feth them every time it starts up. This interfae is not required, but an greatly

redue the startup time of OpenIPMI.

User Funtions Not used by OpenIPMI, but available for the user for speial things the user will need.

Standard User Funtions in the OS Handler

OS handlers have some standard funtions pointers for the user. These are:

free os handler Free the OS handler. Do not use the OS handler after alling this.

perform one op Handle one event (a timer timeout or a �le operation) and return. This takes a

timeout; it will wait up to the amount of time given for the event.

operation loop Continuously handle events. This funtion will not return.

These operations may not be available on all OS handlers, see the partiular OS handler you are using

for more details.

These are part of the OS handler. As an example on how to use them, the following ode performs one

operation, prints any error it returns, then frees the OS handler:

strut timeval tv;

int rv;

tv.tv_se = 10;

tv.tv_use = 0;

rv = os_hnd->perform_one_op(os_hnd, &tv);

if (rv)

printf("Error handling operation: 0x%x", rv);

os_hnd->free_os_handler(os_hnd);

POSIX OS Handlers

OS handlers are already de�ned for POSIX systems, both with and without threads. These are de�ned in

the inlude �le ipmi_posix.h; see that �le for more details. If you are running in a threaded appliation,

you almost ertainly should use the threaded version of the OS handlers.

To alloate a POSIX OS handler, use one of the following:

os_hnd = ipmi_posix_setup_os_handler();

os_hnd = ipmi_posix_thread_setup_os_handler(wake_sig);

The wake_sig is a signal number that your program is not using (usually SIGUSR1, SIGUSR2, or a real-

time signal). The OS handlers uses this signal to send between threads to wake them up if they need to be

woken.

Freeing and handling the OS handler is done with the standard funtions in the OS handler, desribed

in setion 2.2.2.

14 CHAPTER 2. OPENIPMI

The GLIB OS Handler

An OS handler is already de�ned for glib and will work with threads. It is de�ned in the inlude �le

ipmi_glib.h; see that �le for more details.

To alloate a GLIB OS handler, use:

os_hnd = ipmi_glib_get_os_handler();

Presumably, GLIB handles the waking of threads, so unlike the POSIX version no wakeup signal is

required.

All the other the OS handler funtions are done with the standard funtions in the OS handler, desribed

in setion 2.2.2.

2.2.3 Error Handling

Almost all OpenIPMI alls that do anything besides feth a piee of loal data will return an integer error

value. A zero means no error. Two types of errors are returned, system errors (whih are standard Unix errno

values) and IPMI errors (whih are the standard IPMI error odes). You an use the maros IPMI_IS_OS_ERR

and IPMI_IS_IPMI_ERR to tell the type of error, and IPMI_GET_OS_ERR and IPMI_GET_IPMI_ERR to get the

atual error values.

Note that if your system doesn't have Unix-type error numbers, you will have to provide those for the

OpenIPMI library.

If a funtion returns an error, any allbaks provided to that funtion will never be alled. If a funtion

that takes a allbak returns suess, the allbak will always be alled, even if the objet assoiated has

eased to exist. If an objet with outstandard operations eases to exist, all the allbaks for outstanding

operations will be alled with ECANCELED as the error. Errors are passed into many allbaks, if an error is

present the rest of the data in the allbak is probably not valid exept for the b_data variable you provide,

and possibly the objet the allbak is assoiated with. The objet the allbak is assoiated with may be

NULL if it has eased to exist.

2.2.4 Loking

As mentioned before, you may or may not be using loking, but you must read this setion anyway. Loking

here involves existane of entities as well as normal loking.

Loking has hanged between OpenIPMI 1.3 and 1.4. In OpenIPMI 1.3, loks were held in user allbaks.

Loking was very ourse grained and the loks were reursive, so this was generally not a problem. However,

in general it is a bad idea to hold loks in user allbaks. The user might have two domains and ause

deadloks between them. For instane, if the user had one thread in a allbak from domain 1 that then

alled a funtion in domain 2, and another thread in a allbak from domain 2 that alled a funtion in

domain 1, the system an deadlok. This is beause the �rst thread holds loks in domain 1 that the seond

thread needs for the funtion in domain 1, and the seond thread holds loks in domain 2 that the �rst

thread needs for the domain 2 funtion. Beause of this, loking strategy has hanged in OpenIPMI 1.4.

The interfaes and basi usage are ompletely unhanged, but the semantis have hanged.

Loking priniples

The basi priniple of loking is that if you are in a allbak for an IPMI objet (an IPMI objet is passed

in the allbak), that objet is refounted (marked in-use) and the system annot delete it. In any allbak

2.2. OPENIPMI CONCEPTS 15

for an objet owned by a partiular domain, that objet and anything it belongs to will be marked in-use.

So, for instane, in a allbak for a sensor, the sensor is in-use, the entity the sensor belongs to is in-use,

the management ontroller the sensor is on is in-use, and the domain the sensor is in will be in-use. No

other sensors, entities, or management ontrollers will neessarily be marked in-use. Outside of allbaks,

the library is free to hange pointers, hange information, add and remove objets, or make whatever general

hanges that are required.

So how do you mark an IPMI objet in-use? If you are handling inoming IPMI allbaks you generally

don't have to worry about this. But say you are handling outside input, suh as a user interfae. What

then? If the pointers an hange, how do you keep a referene to something?

OpenIPMI provides two identi�ers for IPMI objets. One is a pointer, but a pointer is only good inside a

allbak. The other is an OpenIPMI id; the id is good outside allbaks. But the only thing you an do with

an id is pass it to a funtion that will all a allbak for you with the pointer. You an onvert a pointer to an

id (inside a allbak, of ourse) so you should do that if you need to save a referene to the objet. Note that

there are some funtions that take ids that do this for you (suh as ipmi_sensor_id_reading_get(), other

sensor funtions, hot-swap funtions, and a few others); these are provided for your onveniene. Almost all

sensor, ontrol, and entity funtions that you would generally all asynhronously support these ipmi_xxx_id

funtions. The operation is exatly the same as the same operation without the _id, it simply takes the id

instead of the diret pointer. See the ipmiif.h inlude �le to see if the funtion you desire exists.

This mehanism, though a little inonvenient, almost guarantees that you will not forget to derement a

use ount. It niely enapsulates the loked operation in a funtion

1

. You have to return from the funtion

unless you exit, longjmp, or throw an exeption that falls through the allbak, and you shouldn't do those

things.

You must do this whether you are using loking or not, beause the library uses this mehanism to

determine whether the id you are holding is good. One it onverts the id to the pointer, your pointer is

guaranteed to be good until the funtion returns.

The funtions to onvert an id to a pointer are named ipmi_xxx_pointer_b(), where \xxx" is ontrol,

entity, domain, or sensor. Unlike many other allbaks, the allbak funtion you provide to these funtions

will be alled immediately in the same thread of exeution, this allbak is not delayed or spawned o� to

another thread. So, for instane, you an use data on the stak of the alling funtion and pass it to the

allbak funtion to use.

Loking example

For instane, suppose you have a allbak registered with the domain for �nding when new entities are ready,

and you are looking for a spei� entity. The ode might look like:

ipmi_entity_id_t my_entity_id = IPMI_ENTITY_ID_INVALID;

stati void

entity_hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *b_data)

{

1

This is how loking works in Ada95 and Java, although their mehanisms are a little more onvenient sine they are built

into the language

16 CHAPTER 2. OPENIPMI

ipmi_entity_id tmp_id;

swith (op) {

ase IPMI_ADDED:

if (entity_i_are_about(entity))

my_entity_id = ipmi_entity_onvert_to_id(entity);

break;

ase IPMI_DELETED:

tmp_id = ipmi_entity_onvert_to_id(entity);

if (ipmi_mp_entity_id(my_entity_id, tmp_id) == 0)

ipmi_entity_id_set_invalid(&my_entity_id);

break;

default:

break;

}

}

In this example, the entity is in-use in this all, beause you have reeived a pointer to the entity in the

allbak.

However, suppose you want to use the entity id later beause the user asks about the entity to see if it

is present. You might have a piee of ode that looks like:

stati void

my_entity_id_b(ipmi_entity_t *entity, void *b_data)

{

my_data_t *data = b_data;

data->exists = 1;

data->present = ipmi_entity_is_present(entity);

}

void

hek_if_my_entity_present(my_data_t *data)

{

int rv;

data->exists = 0;

data->present = 0;

rv = ipmi_entity_pointer_b(my_entity_id, my_entity_id_b, data);

if (rv)

printf("The entity ould not be found\n");

}

Most of the data about the various OpenIPMI objets is stati, so you an pre-ollet the information

about the objets in the allbak where there existane is reported. Some loal information, suh as entity

2.2. OPENIPMI CONCEPTS 17

presene, whether a MC is ative, and entity hot-swap state is dynami, but the vast majority of information

is not. So, it is reommended that you ollet all the stati information that you need from an objet when

it is reported to you.

Many operations require a message to the remote system; the ones that take allbaks. For these opera-

tions, funtions that diretly take the id are available.

Use of the id-base funtions is reommended. The entity presene ode ould be rewritten using this to

be:

void

hek_if_my_entity_present(my_data_t *data)

{

int rv;

data->exists = 0;

data->present = 0;

rv = ipmi_entity_id_is_present(my_entity_id, &data->present);

if (rv)

printf("The entity ould not be found\n");

else

data->exists = 1;

}

Loking semantis

As mentioned before, OpenIPMI will not delete an objet you have a pointer to while in a allbak, but in

multi-threaded systems it is free to do pretty muh anything else to the objet, inluding all allbaks on

it. This means, for instane, that you an be iterating over the entities in the system and a new entity an

be added, have the entity update allbak alled on it, and be added to the list. There is no guarantee or

order between the adding of entities to the list and the allbak. So the new entity might be iterated, it

might not, the iteration might be before or after the the allbak, et.

How an you avoid this? You have a few options:

� Ignore the problem. I strongly reommend that you do not take this option.

� Single-thread your program. If you don't need be able to take advantage of multiple CPUs in an

SMP system, and you have no need for priorities, single-threading is a good option. With OpenIPMI,

you an have a single-threaded appliation that is non-bloking and an perform very well. Plus,

single-threaded programs are easier to debug, easier to understand and maintain, and more reliable.

� Do your own loking. For instane, you ould laim a lok in both the entity iteration and the allbak

for a new entity. This would prevent the both piees of ode from running at the same time. You are

in ontrol of the loks, so you an handle it as appropriate. You have to know what you are doing, but

that goes without saying when doing multi-threaded programming.

This is pretty standard in multi-threaded systems. Hardware Platform Interfae (HPI), for instane has

the same problem. If you have one thread waiting for events from an HPI domain, and another iterating the

RDRs, or you have two threads eah doing operations on sensors, you have exatly the same situation. You

have to protet yourself with loks the same way.

18 CHAPTER 2. OPENIPMI

Note that data about an objet (like the devie id data, whether the MC is ative, or the entity is present,

or whatever) will not hange while the objet is in use. This data is held until the objet is no longer in use

and then installed (and in the ase of ativity or presene, the allbaks are then alled).

2.2.5 OpenIPMI Objets

In OpenIPMI, the user deals with six basi objets: onnetions, domains, entities, sensors, ontrols, and

events.

Connetions

A onnetion provides the low-level interfae to the system. It is usually a onnetion to a BMC in a system.

It handles getting IPMI messages to the proper elements in the system.

Domains

The domain is the ontainer for the system, the entities in the system are attahed to it. You reate a

domain with a onnetion to a system; the domain handles the job of disovery of the things in the system.

Entities

Entities are things that are monitored. They may be physial things suh as a power supply or proessor,

or more abstrat things suh as the set of all power supplies or the ambient air in a hassis. Sensors monitor

entities, and ontrols are attahed to entities.

Entities may be grouped inside other entities, thus an entity may have a parent (if it is grouped inside

another entity) and hildren (if it ontains other entities). A raw system with no SDR data will not have

any relationships de�ned. Relationships are stored in the SDR repository. You may hange them and store

them bak, if you like and if the system supports that, but hanging SDR data is not reommended.

FRU information about the entity is sometimes available. You an register with an entity to see if/when

it beomes available using:

int ipmi_entity_add_fru_update_handler(ipmi_entity_t *ent,

ipmi_entity_fru_b handler,

void *b_data);

One it is available, you an feth the FRU data using the ommands de�ned in the IPMI inlude �le.

Devie-Relative vs System-Relative Entities In IPMI, entities may be either in a �xed plae in the

system, or they may be moved about the system. Fixed entities, are, well, in a �xed loation in the system.

These are alled system relative entities. They have an entity instane less than 60h.

Other entities may not reside in a �xed loation. For instane, a power supply or CompatPCI board

may be plugged in to one of many loations in a hassis; it doesn't know ahead of time whih one. These

types of entities are generally devie-relative and thus have an entity instane of 60h or larger. For these

types of entities, the management ontroller on whih they reside beomes part of the entity. In OpenIPMI,

the IPMB hannel number and IPMB address are part of the entity. In ipmi_ui and ipmish, these are

printed and entered as \r<hannel>.<ipmb>.<entity id>.<entity instane>".

2.2. OPENIPMI CONCEPTS 19

Sensors

Sensor monitor something about an objet. IPMI de�nes many types of sensors, but groups them into two

main ategories: Threshold and disrete. Threshold sensors are \analog", they have ontinuous (or mostly

ontinuous) readings. Things like fans speed, voltage, or temperature.

Disrete sensors have a set of binary readings that may eah be independently zero or one. In some

sensors, these may be independent. For instane, a power supply may have both an external power failure

and a preditive failure at the same time. In other ases they may be mutually exlusive. For instane, eah

bit may represent the initialization state of a piee of software.

Controls

Controls are not part of the IPMI spe, but are neessary items in almost all systems. They are provided

as part of OpenIPMI so that OEM ode has a onsistent way to represent these, and so OpenIPMI is ready

when the IPMI team �nally sees the light and adds ontrols. OpenIPMI de�nes many types of ontrol:

lights, relays, displays, alarms, reset, one-shot-reset, power, fan speed, general outputs, one-shot outputs,

and identi�ers.

For all ontrols exept displays and identi�ers, the ontrol may atually ontrol more than one devie.

With some ontrols, multiple devie may be ontrolled together and individual ones annot be set (ie, the

same message sets all of them). For these types of ontrols, OpenIPMI represents them as a single ontrol

with multiple devies. All the devies are read and set at one.

Reset ontrols are reset settings that an be turned on and o�. One-shot-reset ontrols ause a reset by

setting the value to 1; they are not readable and setting them to zero returns an error.

Lights are on/o� olored devies, like an LED. They may be multi-olor, but an only show one olor

at a time. For instane, if you work for Kmart, or you are managing a CompatPCI system with hot-swap,

you will have a blue light in your system. You an searh through the ontrols to �nd a light that's blue.

Then, if a speial is on, or you want the operator to remove a ard, you an light the blue light. Lights

may blink, too. Two types of lights are available. Transition lights an have a series of transitions; as series

of transition is alled a value. Eah value desribes a sequene of one or more transitions the light may go

through. Setting lights allow diret setting of the olor and on/o� time of the light.

Relays are binary outputs. Most telephony systems have them; they are required by telephony spes.

They are simple on/o� devies.

Displays are two-dimensional arrays of haraters. OpenIPMI allows you to hange individual haraters

at will.

Alarms are bells, whistles, gongs, or anything that an alert the user that something is wrong.

Reset ontrols are used to reset the entity to whih they are attahed.

Power ontrols an be used to ontrol power to or from an entity. A power ontrol on a power supply

would generally ontrol output power. A power ontrol on a board would generally ontrol input power to

the board.

Fan speed ontrols an be used to set the speed of a fan.

General outputs are outputs that don't fall into one of the previous ategories. One-shot outputs are

like general outputs, but perform some ation when set to one and are not readable. Setting them to zero

returns an error.

Identi�er ontrols hold identi�ation information for a system, suh as a hassis id, hassis type, geo-

graphi address, or whatever.

20 CHAPTER 2. OPENIPMI

Events

When an external event omes into OpenIPMI, the user will always reeive that event in some manner

(unless they do not register with a generi event handler, but they should always do that). The event may

ome through a allbak for a sensor, ontrol, entity, or other allbak.

All the allbaks you should be using return a value telling whether the handler has \handled" the event.

Handling the event means that the allbak is going to manage the event. Primarily, this means that it is

responsible for deleting the event from the event log with ipmi_event_delete(). If no allbak handles

the event, then it will be delivered to the main event handler(s). This allows alls to reeive events but the

events to be managed in a single loation.

To handle the event, the event handler should return IPMI_EVENT_HANDLED. To pass the event on, it

should return IPMI_EVENT_NOT_HANDLED.

If a allbak handles the event, then all future allbaks alled due to the event will reeive a NULL for

the event. So be ready to handle a NULL event in all your event handlers. A NULL may also be passed to an

event handler if the allbak was not due to an event.

Where OpenIPMI Gets Its Data

OpenIPMI generally gets all of its data from the IPMI system, either from SDRs, the event log, or via

ommands. OpenIPMI will pull in anything it an reognize. Note that some data in an IPMI system is

dupliated; if the data is not onsistent it will ontinue to be inonsistent in OpenIPMI.

For instane, OpenIPMI gets all the information about a management ontroller from the \Get Devie Id"

ommand. However, the system may have a reord in the SDR repository desribing an entity that represents

the management ontroller. If the data from the ommand and the SDR repository is inonsistent, OpenIPMI

will happily provide the data from the SDR repository when looking at the entity, and the data from the

\Get Devie Id" ommand when looking at the MC.

If the system has OEM ontrols and sensors, they may have been reated by OEM ode and may not

have ome from SDRs (thus the phrase \generally" in the �rst sentane of this setion). This is a major

reason not to use diret IPMI messaging with OpenIPMI. OpenIPMI provides an abstration for the sensors

and ontrols and thus multiple implementations an sit below it. If software bypasses the abstration, it will

loose the ability to talk to non-standard sensors and ontrols that use the same abstration.

2.2.6 Callbaks

As you will disover, OpenIPMI is very allbak based. The allbaks are somewhat �ned grained; you

register for exatly what you want to see on individual objets. This is not as bad as you might imagine

(even though it may seem somewhat strange). It does mean that you have to do a lot of registering in all the

right plaes, though. IPMI has a large number of asynhronous things that it has to inform you about. If it

delivered all these through one interfae, you would have to look at eah all and try to �gure out what type

of things was being reported, what objet is was assoiated, et. In e�et, that work is done by OpenIPMI.

For user-level allbaks, the objet the allbak is for will always be valid, it will never be NULL. This

means, for instane, if you request a reading from a sensor, the reading response will always get alled and

the sensor parameter will always be valid. It may be in the destrution proess and you annot set any

setting, get any readings, or anything else that requires sending a message. If the handler gets an ECANCELED

error, the sensor is being destroyed. This also applies to all ontrol, entity, and most domain allbaks. This

is new for OpenIPMI 1.4, but is fully bakwards ompatible.

2.3. OPENIPMI INCLUDE FILES 21

This does not apply to internal interfaes, espeially ones that send messages. If you send a message to

a MC, for instane, the MC an be NULL when the response omes bak. Be very areful.

Note that the handlers don't get alled immediately with urrent state when you add a allbak handler.

So you must register for the event then query the urrent state.

Updated Callbaks

Updated allbaks tell you when an objet omes into existane, is destroyed, or if on�guration information

about an objet has hanged. On an entity, for instane, when an entity is �rst added, the entity update

handler on the domain will be alled with the entity. when an SDR is read and auses a hange to the entity,

the updated handler will be alled again with the hange. When the entity is deleted, it will be alled again.

In general, you should add updated handlers whenever the thing you want to register against omes into

existane. So for entities and the main event handler, you should register them in the setup_done allbak

for the domain. The entity update handler should register the update handlers for sensors, ontrols, and

FRU information. It should register the event handlers for presene and hot-swap there, too.

Sensor and ontrol update handlers should set up and register for events from the sensor.

Asynhronous Callbaks

Asynhronous allbaks tell you when asynhronous things happen in the system. For instane, a ard gets

plugged in and an entity beomes present. You will be told with the present allbak on the entity. The

hot-swap state of an entity hanges. That is reported via the hot-swap state allbak. Events beause of

sensors going out of range is another example.

Note that these are usually due to an IPMI event, but do not neessarily have to be aused by an IPMI

event. For instane, if, during an audit, OpenIPMI disovers that it has the state wrong for something, it

will report the orret state in a allbak.

Synhronous Callbaks

Synhronous allbaks are allbaks for things you request and are one-shot operations. For instane, if you

want to know the urrent value of a sensor, you all all ipmi_reading_get() and you give it a handler to

all when the reading has been fethed.

This is always done for things that OpenIPMI might have to send a message to do. It is a result of

OpenIPMI's requirement to be able to work in non-threaded systems and still be responsive to operations

while waiting.

2.3 OpenIPMI Inlude Files

OpenIPMI has a large number of inlude �les. The ones dealing with internals are in the internal diretory

and are only needed for OEM ode. The inlude �le are lassi�ed by need in the setions below.

22 CHAPTER 2. OPENIPMI

2.3.1 Files the normal user deals with

ipmiif.h The main inlude �le for OpenIPMI. It ontains the main funtions the user must deal

with when working with the OpenIPMI library. Almost everything will inlude this. It

inludes ipmi types.h and ipmi bits.h, too, so you don't have to inlude those.

ipmi fru.h Interfae for FRU data.

ipmi auth.h The �le holding information about athentiation algorithms. You need this if dealing

with an authentiated interfae.

ipmi bits.h Various values, mostly for sensors, used by the user. ipmiif.h inludes this �le, so you

generally don't have to inlude it expliitly.

ipmi types.h Types for the basi IPMI objets. ipmiif.h inludes this �le, so you generally don't

have to inlude it expliitly.

ipmi err.h Error values, both IPMI and system, as well as maros for interpreting these.

os handler.h The os-spei� handler types are de�ned here. You must implement this and supply it

to the IPMI ode.

seletor.h For *nix systems, This �le provides a default mehanism for handling many of the os-

spei� handler operations.

ipmi posix.h This de�nes some POSIX OS handlers.

ipmi log.h Holds de�nitions for the logging interfae.

2.3.2 Files dealing with messaging interfaes

ipmi lan.h This is the LAN messaging interfae, this ontains the alls for reating a LAN onnetion.

ipmi smi.h This is the messaging interfae for talking to loal IPMI interfaes (like KCS), this ontains

the alls for reating an SMI onnetion.

2.3.3 File for system on�guration

ipmi pef.h Contains ode for on�guring the PEF.

ipmi lanparm.h Contains ode for on�guring the LAN on�guration data.

ipmi pet.h Contains ode that allows the user to easily set up an IPMI LAN interfae on a BMC

to send SNMP traps.

2.3.4 Semi-internal inludes

These �les expose the more IPMI-ish parts of OpenIPMI; things that are loser to raw IPMI. You should

not use these unless you really need them.

ipmi m.h This de�nes interfaes for the management ontrollers.

ipmi addr.h The �le holding information about IPMI addresses.

ipmi onn.h This de�nes the interfae for the messaging interfaes.

ipmi msgbits.h This de�nes various IPMI messages.

ipmi pimg.h This de�nes various PIGMC messages.

ipmi sdr.h This de�nes internal interfaes for the SDR repository.

2.4. STARTING UP OPENIPMI 23

2.4 Starting Up OpenIPMI

Starting up OpenIPMI is relatively easy. You must alloate an OS handler and initialize the library with it.

Then you are free to set up onnetions. The following ode shows this for a non-threaded POSIX program:

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_on: Unable to alloate os handler\n");

exit(1);

}

/* Initialize the OpenIPMI library. */

ipmi_init(os_hnd);

The ipmi_init funtion should be done one when your program starts up. Generally, you only have

one OS handler, but you are free to have more if they interwork properly and you have some speial need.

2.5 Creating OpenIPMI Domains

If you want to talk to an IPMI BMC, you must reate a onnetion to it. The onnetion method depends

on the type of onnetion; these are desribed in Chapter 4.

One you have a onnetion, you an open a domain with it. You do this like so:

ipmi_on_t ons[N℄;

int num_ons, rv;

ipmi_domain_id_t id;

/* Set up onnetion(s) here */

rv = ipmi_open_domain(ons, num_ons, on_hange, user_data,

domain_fully_up, user_data2,

options, num_options, &domain_id);

2.5.1 Domain Connetions

Up to two onnetions to a single domain are urrently supported. A onnetion is an independent MC in the

same domain; if two MCs have external onnetions, they an both be used for fault-tolerane. This generally

requires some speial support for the partiular domain type, see the appendies on spei� domain types

for more detail. The on_hange funtion is alled whenever the onnetion hanges states (a onnetion is

established or lost). The onnetion hange allbak looks like:

stati void

on_hange(ipmi_domain_t *domain,

int err,

unsigned int onn_num,

unsigned int port_num,

24 CHAPTER 2. OPENIPMI

int still_onneted,

void *user_data)

{

...

}

If a onnetion is established, then err will be zero. Otherwise it is the error that aused the onnetion

to fail. The onn_num parm is the partiular onnetion number (from the ons array passed into the

domain setup). A onnetion may have spei� ports, generally multiple onnetions to the same MC. The

still_onneted parm tells if you still have some onnetion to the domain.

If a onnetion is down, the onnetion hange allbak will be alled periodially to report the problem

as OpenIPMI attempts to re-establish the onnetion.

2.5.2 Domain Fully Up

The domain_fully_up allbak will be alled after the domain has been fully sanned, all SDRs fethed,

all FRUs fethed, and all SELs read for the �rst time. This gives you an indiation that the domain is

ompletely \up", although there really is no onept of ompletely \up" in IPMI sine the system may

dynamially hange. It is useful for some things, though (and people omplained a lot about not having it

in the past) so it is now available. The allbak is in the form:

stati void

domain_fully_up(ipmi_domain_t *domain,

void *user_data2)

{

...

}

Note that this will not be alled until the domain is fully up. If the domain never omes up, this will never

be alled. So don't rely on this. The onnetion up allbak will always be alled.

2.5.3 Redundany in Domain Connetions

Sine maintenane interfaes often need to be reliable in the fae of network or hardware outages, they often

have multiple onnetions. The IPMI standards do not address this, but many systems implement some

form of redundany.

The OpenIPMI library manages two di�erent forms of redundany in onnetions:

Two IP addresses for the same BMC - In this mode, the library talks to the same BMC over two

di�erent hannels. This is managed by the onnetion ode itself. The LAN ode does this; it allows

you to speify more than one IP address and port. It will make onnetions to both and make them

look like they are one onnetion. It will report, through the onnetion interfae, if the individual

onnetions go up or down. Note that some systems have multiple IP addresses but are unable to use

both at the same time, so hek with your hardware to see if this will work.

Connetions to multiple BMCs - This means you have onnetions to more than one BMC. The domain

ode will round-robin messages on the ative onnetions, handle and report failures, and swithover

from failed to working onnetions. A onnetion has the onept of being \ative" or \inative". An

2.5. CREATING OPENIPMI DOMAINS 25

inative onnetion is one where the onnetion is up but the BMC in question is not fully operational;

you don't want to use it. This is an ative/standby type on�guration. If all onnetions are always

ative (an ative/ative type on�guration), no speial handling is required. If some onnetions an

be inative, speial OEM ode is required for that onnetion as the domain handling must have a

way to ativate an inative onnetion if the ative onnetion goes down. See the Motorola MXP in

appendix F on page 175 for an example of an ative/standby onnetion.

Note that the two redundany modes an be used together. You an have two LAN onnetions eah to

two BMCs. In the author's opinion, this, with an ative/ative on�guration is the best redundany and is

simple to implement.

Some systems like ATCA have a \oating" address that is used. The system has more than one BMC,

generally, but it has an address that will \oat" between the BMCs depending on whih one is ative. If a

BMC fails, another BMC transparently takes over the oating address. So in this type of on�guration the

redundany is managed by the BMCs. This leaves the question open of how to monitor the inative BMCs,

though. ATCA has addressed this in reent standards. See appendix E on page 171 for details on how this

works in ATCA.

2.5.4 Domain Options

When a domain is reated, it may be passed options to ontrol how the domain operates. For instane, if

you do not want to san FRUs, or you do not want to feth SDRs, you an ontrol exatly what OpenIPMI

will do.

Control of this is done through the options. This is an array of values passed to ipmi_open_domain.

Eah element is:

typedef strut ipmi_open_option_s

{

int option;

union {

long ival;

void *pval;

};

} ipmi_open_option_t;

The option goes into the option variable and the union holds the option value, whose type depends on the

option. Table 2.1 on the following page shows the options available.

26 CHAPTER 2. OPENIPMI

IPMI OPEN OPTION ALL Uses the ival value as a boolean. This is an all-or-nothing enable.

If this is enabled, then all startup proessing will be done. If this

is disabled, then the individual startup proessing options will be

used to individually ontrol the enables. This is true by default.

IPMI OPEN OPTION SDRS Uses the ival value as a boolean. The all option overrides this.

This enables or disables fething SDRs. This is false by default.

IPMI OPEN OPTION FRUS Uses the ival value as a boolean. The all option overrides this.

This enables or disables fething FRU information. This is false by

default.

IPMI OPEN OPTION SEL Uses the ival value as a boolean. The all option over-

rides this. This enables or disables fething SELs. Note

that you an feth the SELs by hand from an MC by set-

ting ipmi m set sel resan time() to zero and then alling

ipmi m reread sel() when you want to reread the SEL. This

is false by default.

IPMI OPEN OPTION IPMB SCAN Uses the ival value as a boolean. The all option overrides this.

This enables or disables automati sanning of the IPMB bus. If

you turn this o� you an still san the bus by hand using the

ipmi start ipmb m san() funtion. This is false by default.

IPMI OPEN OPTION OEM INIT Uses the ival value as a boolean. The all option overrides this.

This will enable or disable OEM startup ode for handling speial

devies. This is the ode that reates ustom ontrols and things

like that. This is false by default.

IPMI OPEN OPTION SET EVENT RCVR Uses the ival value as a boolean. This is not a�eted by the all

option. This enables setting the event reeiver automatially. If

true, OpenIPMI will detet if the event destination of an MC is

not set to a valid value and set it. However, this requires admin

level aess; you will get errors if you onnet with a lower level of

aess and have this turned on. This is true by default.

Table 2.1: Domain options in OpenIPMI

C h a p t e r 3

Use Cases

IPMI brings a lot of omplexity, so it better be useful for something and we better know how to use it. This

hapter brings up several di�erent ways it an be used to improve system reliability.

3.1 Simple Hardware Monitoring

If you have a single system and wish to improve its reliability, you may use IPMI to monitor the hardware.

We know a few things about hardware:

1. Heat dereases the lifetime of silion.

2. As apaitors degrade, they tend to fail slowly.

3. Fans tend to fail slowly.

4. If something fails, you generally have some time to do something about it before the failure is atas-

trophi.

By monitoring long-term trends of temperature, voltage, and fan speed we may aurately predit when

ertain system omponents are going to fail. Then they an be replaed graefully.

In addition, if software fails, you want want some mehanism to automatially restart the failed software.

To do this, you need a four-fold approah:

� Reord and periodially analyze long-term trends of heat, voltage, and fan speed. IPMI stores infor-

mation about the limits of the various omponents. Long-term trending will tell you when values of

ritial omponents are going to reah the limits. It's a lot better to know that your power supply will

probably fail in �ve days than to know that your power supply will fail in 30 seonds, or that your

system is now dead and you don't know why.

� Monitor events oming from the system. In the event of a sudden failure, the IPMI system event log

may give you some warning that something is about to happen. In the event of a atastrophi failure,

it may give you useful information for post-mortem analysis.

27

28 CHAPTER 3. USE CASES

� Use a wathdog timer to monitor for system software failures. It is espeially useful if the wathdog

timer has a pretimeout that says \Hey, I'm going to reset you in a few seonds." that omes in via

an NMI. If you have this, you an pani the system and get useful information about what the system

was doing when it failed.

� Create a software system to monitor the rest of your software and detet when it fails and restart the

software.

OpenIPMI, of ourse, an be used to do a lot of this, but other useful tools exist for this. HPI an be

used in many plaes where OpenIPMI an be used. See hapter D on page 169 for details on the di�erenes

between OpenIPMI and HPI.

However, HPI and OpenIPMI an be overkill for this type of monitoring. Another tool, ipmitool[3℄, an

provide a simple interfae to the IPMI system. It is easy to sript and simple to use.

For the wathdog timer, the operation system generally provides an abstrat interfae. The OpenIPMI

Linux devie driver does this; it provides a wathdog timer with pretimeouts via an NMI. In an operating

system that does not have a nie interfae to the wathdog timer, it is possible to talk diretly to the IPMI

system to do this, the NMI handling may be hard to do.

Software monitoring is beyond the sope of this book.

Figure 3.1 on the faing page shows the piees to aomplish this.

3.2 Redundant Systems

In this ase, your appliation may onsist of two systems so that is one fails, the other takes over. In e�et,

these two systems are \mated". For this on�guration, you generally want eah system to monitor both

itself (as desribed in setion 3.1 on the previous page and its mate. This way, long-term trend data is held

both in the loal system and the mate so it is resiliant agains faults. It is generally a good idea to monitor

the mate's software.

Note that to monitor another system via IPMI, the IPMI system to be monitored must have a LAN

interfae as desribed in setion 4.9 on page 49.

In addition to monitoring, it is generally neessary for a system to be able to reset it's mate to reover

it to a known state. You an do this over the IPMI LAN interfae.

Sine you now have multiple things managing the SEL, some extra logi is required to oordinate their

operation. Setion 11.4 on page 158 desribes methods to do this.

In this situation, ipmitool beomes less attrative due to the polled nature of it's operation. Setting up

LAN onnetions is expensive. OpenIPMI and HPI tools will maintain a permanent onnetion to the mate

and redue the onnetion overhead.

3.3 Monitoring Clusters of Systems

In this situation, you have a number of systems that are monitored by a single management system

1

. This is

muh like handling redundant systems as desribed in setion 3.2 but instead of monitoring one other system,

the management system monitors a number of other systems. The system may or may not need hardware

monitoring on the individual monitored systems, as the management system an do all that. Individual

system will still need software monitoring, of ourse.

1

The management system may have multiple nodes for fault tolerane, but an generally be viewed as a single system

3.3. MONITORING CLUSTERS OF SYSTEMS 29

Figure 3.1: Simple Monitoring

30 CHAPTER 3. USE CASES

In this situation, the overhead of ipmitool may beome burdensome to the management systems. Plus,

these types of systems tend more toward having a ontinuously running system management appliation. In

these types of systems, something like OpenIPMI or HPI beomes even more attrative.

3.4 Bus Systems

Bussed systems (as desribed in setion 1.2 on page 4 generally have a number of omputers plugged into

and managed on a single bakplane. They have a entral management interfae (that may be redundant)

that manages the system and ommuniates over a LAN to a remote management appliation

2

.

In some ways these omputers appear as individual systems and an be viewed as suh with an extra

\hop" over the bus to get to them. However, these systems have extra management apabilities and shared

resoures that make monitoring somewhat di�erent.

In a bussed system, ooling and power supply are shared. In general the management ontroller on the

bus handles ooling ontrol and power management. But if a power supply is about to fail or the ooling

system fails, it a�ets all the omputers on the bus, not just one. The management system must take this

into aount.

Also, these systems generally support hot-swap of the omputers. This is generally done as a request

mehanism where a maintenane person will request (via a swith or something of that nature) that the

board be prepared for removal. In general, the maintenane appliation must approve the request and may

need to inform the software on the board what is happening.

Beause these types of systems require more monitoring and persistent state, ipmitool is not an option

for maintaining a system like this. It an still be used for querying information, but it annot handle the

hot-swap operations. OpenIPMI and/or HPI are needed for these types of systems.

2

The management appliation may atually run on one or more of the omputers on the bus, but is viewed as \remote"

beause it would ome in over the LAN.

C h a p t e r 4

IPMI Interfaes

IPMI has a large number of interfaes for talking to management ontrollers. They vary in performane and

apability, but the same messages work over the top of all of them. Generally, it does not matter how you

interfae to an IPMI system, the messages will work the same.

4.1 OpenIPMI Generi Interfae

The OpenIPMI libary has a generi interfae to the various onnetions. You use a per-interfae ommand

to set up the interfae, but one set up, the interfaes all work the same. The �le shown in Appendix K

de�nes the interfae for onnetions.

Note that not all operations are available on all interfaes. LAN onnetions, for instane, annot reeive

ommands.

4.2 System Interfaes

The most ommon interfae to a management ontroller is the system interfae. This provides a diret

onnetion between the main proessor of a system and the management ontroller. Obviously, this interfae

isn't very useful if the system is turned o�, but it allows a running system to monitor itself.

The low-level format of a system interfae message that is n bytes long is:

0

Bits 0-1 - Destination LUN

Bits 2-7 - NetFN

1

Command

2 - n-1 Message Data

Commands and responses have basially the same format, exept that responses always have the om-

pletion ode as the �rst byte of the message data. See hapter 6 for more details.

31

32 CHAPTER 4. IPMI INTERFACES

4.2.1 SMIC

The SMIC interfae has been around a long time, but mostly during a period when IPMI was not popular.

This is a low-performane, byte-at-a-time interfae with no interrupt apability.

TBD - desribe this interfae in detail

4.2.2 KCS

The KCS interfae is urrently the most popular IPMI system interfae. The KCS interfae looks eletrially

muh like a standard PC keyboard interfae. It was hosen beause lots of heap hardware was available for

these types of interfaes. But it is still a byte-at-a-time interfae and performs poorly. It has the apability

for interrupts, but very few systems have working interrupt apability with KCS interfaes.

TBD - desribe this interfae in detail

4.2.3 BT

The BT interfae is the best interfae for IPMI. Messages are sent a whole message at a time through the

interfae, thus it is a muh higher performane interfae than the other system interfaes.

TBD - desribe this interfae in detail

4.2.4 SSIF

The SSIF interfae was added in the 2.0 spe. It provides an interfae over an Inter Integrated Ciruit (I

2

C)

interfae using the SMBus protool. This is very ost e�etive interfae; most systems generally already have

an I

2

C bus, so no new interfaes to proessor busses are required. However, I

2

C busses are not very fast and

the interfaes from the proessor to the I

2

C bus tends to perform poorly.

TBD - desribe this interfae in detail

4.2.5 The OpenIPMI Driver

The OpenIPMI driver on Linux provides a user interfae to all the standard IPMI system interfaes. It does

so in a manner that allows multiple users to use the driver at the same time, both users in the kernel and

users in user spae.

To do this, the OpenIPMI driver handles all the details of addressing and sequening messages. Other

drivers allowed more diret aess to the IPMI interfae; that means that only one user at a time ould

use the driver. Sine the IPMI an be used for di�erent purposes by di�erent users, it is useful to do the

multiplexing in the kernel.

The details of on�guring the IPMI driver are found in the IPMI.txt �le in the kernel doumentation;

those details won't be disussed here.

To use the IPMI devie driver, you open the /dev/ipmi0 or /dev/ipmidev/0 �le. The driver allows

multiple IPMI devies at the same time; you would inrement the number to get to suessive devies.

However, most systems only have one.

The primary interfae to the driver is through iotl alls. read and write alls will not work beause

the IPMI driver separates the addressing and data for an IPMI message.

The ore desription of an IPMI message is:

4.2. SYSTEM INTERFACES 33

strut ipmi_msg

{

unsigned har netfn;

unsigned har md;

unsigned short data_len;

unsigned har *data;

};

The netfn desribes Network FuNtion (NetFN) of the lass of message being sent. IPMI messages are

grouped into di�erent lasses by funtion. The md is the ommand within the lass. Chapter 6 disusses

this is more detail. The data and data_len �elds are the message ontents. This struture is used in both

sent and reeived messages.

Sending Commands

To send a ommand, use the following:

rv = iotl(fd, IPMICTL_SEND_COMMAND, &req);

The req struture has the following format:

strut ipmi_req

{

unsigned har *addr;

unsigned int addr_len;

long msgid;

strut ipmi_msg msg;

};

The addr and addr_len �elds desribe the destination address of the management ontroller to reeive

message. The msg �eld itself gives the message to send. The msgid is a �eld for the user; the user may

put any value they want in this �eld. When the response omes bak for the ommand, it will ontain the

message id. Sine it is a long value, it an be used to hold a pointer value.

The driver guarantees that the user will reeive a response for every message that is suessfully sent. If

the message times out or is undeliverable, an error resonse will be generated and returned.

The following ode fragment shows how to send a message to the loal management ontroller, in this

ase a ommand to read the value of a sensor:

strut ipmi_req req;

unsigned har data[1℄;

strut ipmi_system_interfae_addr si;

/* Format the address. */

si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;

si.hannel = IPMI_BMC_CHANNEL;

si.lun = 0;

34 CHAPTER 4. IPMI INTERFACES

req.addr = (void *) &si;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x04; /* Sensor/Event netfn */

req.msg.md = 0x2d; /* Get sensor reading */

req.msg.data = data;

req.msg.data_len = 1;

data[0℄ = 10; /* Read sensor 10 */

rv = iotl(fd, IPMICTL_SEND_COMMAND, &req);

Note that sending the ommand is asynronous; you will not immediately get the response. Instead,

the response omes bak later and an be reeived at that point in time. This is what makes the msgid

important.

The following example shows sending a get devie id request to IPMB address 0xb2.

strut ipmi_req req;

strut ipmi_ipmb_addr si;

/* Format the address. */

si.addr_type = IPMI_IPMB_ADDR_TYPE;

si.hannel = 0;

si.lun = 0;

si.slave_addr = 0xb2;

req.addr = (void *) &si;

req.addr_len = sizeof(si);

req.msgid = 0x1234;

req.msg.netfn = 0x06; /* App netfn */

req.msg.md = 0x01; /* Get devie id */

req.msg.data = NULL;

req.msg.data_len = 0;

rv = iotl(fd, IPMICTL_SEND_COMMAND, &req);

Reeiving Responses and Events

As mentioned before, the responses to ommands ome bak in later. You an use standard selet and

poll alls to wait for messages to ome in. However, you annot use read to get the message. The following

data struture is used to reeive messages:

strut ipmi_rev

{

int rev_type;

unsigned har *addr;

unsigned int addr_len;

long msgid;

4.2. SYSTEM INTERFACES 35

strut ipmi_msg msg;

};

The rev_type �eld an be one of the following values:

IPMI RESPONSE RECV TYPE A response to a sent ommand.

IPMI ASYNC EVENT RECV TYPE An asynronous event.

IPMI CMD RECV TYPE A ommand was reeived for the system software.

IPMI RESPONSE RESPONSE TYPE Responses sent by this interfae get aked using one of these.

This way you an tell if there was an error sending the response.

Reeived ommands are disussed in setion 4.2.5. You have to �ll in the data for the driver to put the

reeived information into. The following shows how to reeive a message:

unsigned har data[IPMI_MAX_MSG_LENGTH℄;

strut ipmi_addr addr;

strut ipmi_rev rev;

int rv;

rev.msg.data = data;

rev.msg.data_len = sizeof(data);

rev.addr = (unsigned har *) &addr;

rev.addr_len = sizeof(addr);

rv = iotl(fd, IPMICTL_RECEIVE_MSG_TRUNC, &rev);

if (rv == -1) {

if (errno == EMSGSIZE) {

/* The message was trunated, handle it as suh. */

...

}

}

swith (rev.rev_type) {

ase IPMI_RESPONSE_RECV_TYPE: ...

ase IPMI_ASYNC_EVENT_RECV_TYPE: ...

ase IPMI_CMD_RECV_TYPE: ...

ase IPMI_RESPONSE_RESPONSE_TYPE: ...

The msgid omes in very handy for this responses, it lets you easily orrelate ommands and responses.

It has no meaning for events.

The netfn for a reeived message have a \one" bitwise or-ed onto the value. In IPMI, even NetFNs are

always ommands and odd NetFNs are always responses.

For responses, the address will always be the same as the sent address.

An interfae will not reeive events by default. You must register to reeive them with the following:

int val = 1;

rv = iotl(fd, IPMICTL_SET_GETS_EVENTS_CMD, &val)

36 CHAPTER 4. IPMI INTERFACES

Setting val to true turns on events, setting it to false turns o� events. Multiple users may register to

reeive events; they will all get all events. Note that this is for reeiving asynronous events through the

interfae. The events also go into the event log as desribed in hapter 11, but that is a di�erent thing. If

you reeive an event through this interfae, you will also get it in the event log. Setion 11.1 desribes the

format of events.

Reeiving Commands and Responding

Commands sent to Logial Unit Number (LUN) two of a management ontroller will generally be routed to

the driver. If the driver does not have a registered user for that ommand, it will respond that it does not

handle that ommand.

If you wish to reeive ommands, you must register to reeive those ommands. The mdspe struture

de�nes ommands the program wishes to reeive:

strut ipmi_mdspe

{

unsigned har netfn;

unsigned har md;

};

These are registered with the following iotl:

rv = iotl(fd, IPMICTL_REGISTER_FOR_CMD, &mdspe);

To remove a registered ommand, use the following:

rv = iotl(fd, IPMICTL_UNREGISTER_FOR_CMD, &mdspe);

If you reeive a message, you must send a response. The driver makes this easy, you an always use the

reeived address to send the response to. The program in Appendix J reeives one message, sends a response,

and exits. When you respond, you must supply the msgid that ame into the ommand.

Overriding Default Timing Values

Be default, ommands over IPMB get resent up to 5 times with a 1 seond timeout between the sends. For

very selet appliations, this is not suitable. Primarily, some appliations need to only send one, they have

a higher-level resend mehanism and the OpenIPMI resends will only get in the way.

Note that responses over IPMB will not get timed or resent.

The user may modify the timing values two di�erent ways. The user an set the default resend and retry

times for a �le desriptor with the following struture:

strut ipmi_timing_parms

{

int retries;

unsigned int retry_time_ms;

};

The retries parm is the number of times the message will be resent. The retry_time_ms is the time

in milliseonds between resends. To get and set the parameters, use the following:

4.2. SYSTEM INTERFACES 37

strut ipmi_timing_parms tparms;

rv = iotl(fd, IPMICTL_GET_TIMING_PARMS_CMD, &tparms);

if (rv == -1)

error handling...

printf("parms were: %d %d", tparms.retries, tparms.retry_time_ms);

tparms.retries = 0; /* No resends */

tparms.retry_time_ms = 1000; /* one seond */

rv = iotl(fd, IPMICTL_SET_TIMING_PARMS_CMD, &tparms);

if (rv == -1)

error handling...

This will set the timing parameters for all future messages. You an also override the timing on individual

messages.

strut ipmi_req_settime

{

strut ipmi_req req;

int retries;

unsigned int retry_time_ms;

};

The req is the request as shown previously. Use the following iotl to perform the request:

rv = iotl(fd, IPMICTL_SEND_COMMAND_SETTIME, &req_time);

Setting Your Loal IPMB Address

Unfortunately, IPMI has no standard way to determing your loal IPMB address. It is usually set to 20h

but, espeially in bussed systems, the loal management ontroller may have a di�erent address.

If you do not set your IPMB address properly, messages sent out on the IPMB will not have the proper

soure address and thus the response will go to the wrong plae. To avoid this problem, the OpenIPMI

allows the user to set the loal IPMB address and the loal LUN. The following shows how to get and set

the IPMB address:

unsigned int ipmb_addr;

rv = iotl(fd, IPMICTL_GET_MY_ADDRESS_CMD, &ipmb_addr);

if (rv == -1)

error handling...

printf("My address was: %x", ipmb_addr);

ipmb_addr = 0xb2;

38 CHAPTER 4. IPMI INTERFACES

0h Primary IPMB Channel 0 is the primary IPMB bus on the system.

1h-7h

Implementation-

spei�

This hannel may be any type of hannel, inluding IPMB, and LAN inter-

faes.

8h-Dh Reserved

Eh Present I/F This spei�es the hannel the message is going over. It's not really very

useful, sine you have to put the real hannel in the ommand to send a

message to it.

Fh System Interfae This spei�es the system interfae, but is really never used.

Table 4.2: Channel Numbers

rv = iotl(fd, IPMICTL_SET_MY_ADDRESS_CMD, &ipmb_addr);

if (rv == -1)

error handling...

The driver also has iotls to get and set the LUN, but you should almost ertainly leave that alone.

4.2.6 The OpenIPMI System Interfae

The OpenIPMI library system interfae an be set up with the following funtion:

int ipmi_smi_setup_on(int if_num,

os_handler_t *handlers,

void *user_data,

ipmi_on_t **new_on);

The if_num is the spei� interfae number. Generally this is 0, but if a system has more than one

system interfae then this will be the spei� interfae number. The handlers is the OS handler data to

use for the onnetion (as desribed in setion 2.2.2). The user_data �eld is put into the user_data �led

in the ipmi_on_t data struture. A new onnetion is returned in new_on.

The OpenIPMI library understands how to get the loal IPMB address for ertain sytems. If it an get

the loal IPMB address, it will set it automatially.

One you have a onnetion, you an start it and use it diretly. However, usually you pass this to the

domain startup ode for reation of a domain, as desribed in setion 2.5.

4.3 Channels

The IPMI interfaes on a management ontroller are alled \hannels". These are messaging hannels. LAN,

IPMB, system interfae, and any other messaging interfaes will eah have their own hannel on the MC.

Messages diretly sent to the loal management ontroller do not require any type of hannel information.

When the user sends a message out to another interfae, it must speify the hannel. This is alled \bridging".

Channels also may have some type of on�guration information suh as users and passwords.

4.4. BRIDGING 39

4.4 Bridging

Intelligent Platform Management Interfae (IPMI) does not have any type of automati routing. Instead,

ommands and responses are \bridged" between di�erent interfaes generally using a \Send Message" om-

mand. So you have to know the route to the destination when you send the message. Generally, this is not a

big deal beause only one level is generally bridged (eg system interfae to IPMB, Loal Area Network (LAN)

interfae to IPMB).

Note that OpenIPMI handles most of the bridging work for you. The OpenIPMI address desribed in

setion 4.14 has address formats for routing messages to the proper plaes. But knowing what goes on behind

the senes an be helpful, and some of this information is required even with OpenIPMI.

4.4.1 Channels

An interfae has the onept of a \hannel". A hannel is an independent ommuniation interfae. Eah

LAN interfae, serial interfae, IPMB interfae, and system interfae has its own hannel number. Messages

are bridged to spei� hannels.

There are 16 spei�ed hannels. Channel 0 is always the primary IPMB hannel. Channels 1-7 are for

general use, like for LAN, seondary IPMB, Intelligent Chassis Management Bus (ICMB), et. Channels

8-Dh are reserved. Channel Fh is for the system interfae. Channel Eh is used for whatever the present

interfae is. This is useful beause some ommands take a hannel as one of their �elds, if you just want to

use the urrent hannel you an put Eh here.

To disover the hannels in a system, the \Get Channel Info" ommand shown in table 4.3 must be sent

for eah possible hannel.

Request

0

bits 0-3 - Channel number

bits 4-7 - reserved

Response

0 Completion Code

1

bits 0-3 - Atual hannel number (if you put Eh in the request, the real hannel

number is returned here)

bits 4-7 - reserved

40 CHAPTER 4. IPMI INTERFACES

2

bits 0-6 - Channel medium type. Valid values are:

00h - reserved

01h - IPMB (I

2

C)

02h - ICMB version 1.0

03h - ICMB version 0.9

04h - 802.3 (Ethernet)

05h - Asyn serial/modem (RS-232)

06h - Other LAN

07h - PCI SMBus

08h - SMBus Versions 1.0/1.1

09h - SMBus Version 2.0

0Ah - reserved for USB 1.x

0Bh - reserved for USB 2.x

0Ch - System Interfae

60h-7Fh - OEM

All other values are reserved.

bit 7 - reserved

3

bits 0-4 - Channel protool type. Valid values are:

00h - reserved

01h - IPMB-1.0, used for asIPMB, serial/modem basi mode, and LAN.

02h - ICMB-1.0, see setion 4.6

03h - reserved

04h - IPMI over SMBus

05h - KCS, see setion 4.2.2

06h - SMIC, see setion 4.2.1

07h - BT from IPMI v1.0, see setion 4.2.3

08h - BT from IPMI v1.5, see setion 4.2.3

09h - Terminal mode, see setion 4.10.3

1Ch-1Fh - OEM

All other values are reserved.

bits 5-7 - reserved

4

This �eld desribes session information about the hannel. See setion 4.8 for details

on sessions.

bits 0-5 - The number of sessions that have been ativated on a given hannel. This

is only valid if the hannel has session support.

bits 6-7 - Session support, values are:

00b - hannel does not support sessions.

01b - hannel is single-session.

10b - hannel is multi-session.

11b - hannel is sessions based, but may swith between single and multiple

sessions.

5-7

Vendor ID, used to speify the IANA number for the organization that de�ned the

protool. This should always be the IPMI IANA, whih is 7154 (deimal), or F2H,

1Bh, and 00H for these bytes.

4.4. BRIDGING 41

8-9

Auxiliary hannel info.

For hannel Fh, this is byte 8 is the interrupt for the system interfae, byte 9 is the

interrupt for the event message bu�er interfae. Valid values are:

00h-0Fh - IRQ 0-15

10h-13h - PCI A-D, respetively

14h - SMI

15h - SCI

20h-5Fh - System interrupt 0-62, respeitively

60h - Assigned by ACPI, SMBIOS, or a plug and play mehanism.

FFh - No interrupt or unspei�ed

All other values are reserved.

For Original Equipment Manufaturer (OEM) hannel types, this value is OEM de�ned.

These bytes are reserved for all other hannel types.

Table 4.3: Get Channel Info Command, NetFN App (06h), Cmd

42h

4.4.2 Sending Bridged Messages

Table 4.4 shows the format of a Send Message ommand. Note that the spe says the response an have

response data for non-system interfae hannels. However, this is not atually the ase, response data for

LAN and serial hannels is arried in a di�erent manner.

Request

0

Channel information, bits are:

0-4 - Channel number

4-5 - reserved

6-7 - traking type. See setion 4.4.3 for more information. Values are:

00b - No traking

01b - Trak request

10b - Send raw. This is a test mehanism or a mehanism used for transmitting

proprietary protools. It is optional.

11b - reserved

1-n

Message data. The format depends on the hannel type. See the setion on the spei�

hannel type for more information.

Response

0

Completion ode. If transmitting on an IPMB, SMBus, or PCI management bus, the

following return odes are used to inform the sender of sending problems:

81h - lost arbitration

82h - Bus Error

83h - NAK on Write

Table 4.4: Send Message Command, NetFN App (06h), Cmd 34h

42 CHAPTER 4. IPMI INTERFACES

4.4.3 Message Traking

Message traking is relatively simple, but diÆult to understand from the spe. This setion should lear

that up.

Messages sent from the system interfae to the IPMB interfae do not have to be traked. Instead, the

sender sets the requester (soure) LUN to 2. In the response, the responder will thus set the requester

(destination) LUN to 2. If an MC reeives a message with a destination LUN of 2, it will route it bak to

the system interfae. Simple to do and no state is required in the MC.

Other hannels annot do this. They must instead rely on message traking to handle the responding.

With message traking, the MC reformats the message with its own information and remembers the original

message information. When the response omes bak, the MC will restore the original information in the

response. Note that the sender must still format the message properly for the destination hannel.

4.4.4 Reeiving Asynhronous Messages on the System Interfae

Asynhronous messages to the system interfaes (ones with the destination LUN set to 2), both ommands

and responses, have no diret route to be sent up the system interfae. Instead, they go into the reeive

message queue and the software is informed through the system interfae that something is in the queue.

The software must then feth the message from the queue using the Get Message ommand desribed in

table 4.5.

Request

-

Response

0 Completion ode

1

Channel information, bits are:

0-4 - Channel number

4-7 - Inferred privilege level for the message. Table 4.18 desribes the privilege levels.

If the message is reeived from a session-oriented hannel, this will generally be

set to the maximum privilege level of the session.

If per-message authentiation is enabled, this will be set to User privilege for

unauthentiated messages.

The privilege will be then lowered based on the privilege limit set by the Set

Session Privilege Level ommand.

For messages from sessionless hannels, this will always be set to \None".

Privilege levels are:

0 - None (unspei�ed)

1 - Callbak

2 - User

3 - Operator

4 - Admin

5 - OEM

2-n

Message data. The format depends on the hannel type. See the setion on the spei�

hannel type for more information.

Table 4.5: Get Message Command, NetFN App (06h), Cmd 33h

4.4. BRIDGING 43

To know if a message is waiting in the asynhronous queue, the interfae will generally set some ag so

that the user may immediately know. The software will then send a Get Message Flags ommand (table

4.6) to know �nd out what is up. A bit will be set in the response to tell it something is in the queue.

Request

-

Response

0 Completion ode

1

Flags. The bits are:

0 - message(s) in the reeive message queue.

1 - Event message bu�er is full

2 - reserved

3 - Wathdog pre-timeout

4 - reserved

5 - OEM 0

6 - OEM 1

7 - OEM 2

Table 4.6: Get Message Flags Command, NetFN App (06h), Cmd

31h

4.4.5 System Interfae to IPMB Bridging

For bridging from a system interfae to IPMB, format an IPMB message as desribed in setion 4.5 and set

the requester LUN to 2. Then issue a Send Message ommand with the IPMB message as the data to the

proper IPMB hannel; the message will be routed out onto the IPMB bus.

The response will ome bak to the MC with the requester LUN set to 2. This will route the message

bak to the system interfae, where it will be put into the reeive message queue. The software running on

the system must reeive the message from the queue using the Get Message ommand desribed in setion

4.4.4.

The response data will be in the same IPMB format.

4.4.6 LAN to IPMB Bridging

Unfortunately, the desription in the spe of the LAN protool is very onfusing. An errata was introdued

that, instead of learing things up, added another possible interpretation. Four popular interpretations are

ommon. Fortunately, one piee of software an be written to work with three of these possibilities, and the

fourth possibility is rather broken. The three main possibilities are:

� Response omes bak in the Send Message response

� Separate Send Message and IPMB responses

� Separate Send Message and Translated responses

One might also infer from the spe that you implement the reeive message queue on the LAN interfae

and poll it with the Get Message ommand. It is yet another possible interpretation, but the side e�ets of

this are very bad. This will not be disussed any more.

44 CHAPTER 4. IPMI INTERFACES

In the examples below, a Get Devie ID is enasulated in a Send Message and sent to IPMB address

C0h. For these examples, the RMCP headers and authentiation information are skipped, we start diretly

with the IPMI message. The sent data is always the same, and is:

Byte Value Desription

0 20h LAN Responder address, this is the BMC's IPMB, generally

1 18h LAN Responder LUN in bits 0-1 (0 in this ase), Send Message NetFN in

bits 2-7 (6 in this ase)

2 C8h Cheksum for the previous two bytes

3 81h LAN Requester address (this is the value for system management software)

4 B8h Requester LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7 (2eh

in this ase). Note that the sequene number is returned in the response

as-is and helps di�erentiate the messages.

5 34h The ommand, a Send Message for NetFN 6.

6 40h The hannel number in bits 0-4 (0 in this ase), and message traking sele-

tion in bits 6-7 (10b in this ase, message traking is on).

7 C0h The destination IPMB address

8 18h IPMB Responder LUN in bits 0-1 (0 in this ase), Get Devie ID NetFN in

bits 2-7 (6 in this ase)

9 28h Cheksum for the previous two bytes

10 20h Soure address, the IPMB address of the BMC.

11 BEh Requester LUN in bits 0-1 (2 in this ase, although it generally doesn't

matter), Sequene number in bits 2-7 (2fh in this ase).

12 01h The ommand, a Get Devie Id for NetFN 6

13 25h Cheksum for the IPMB message (from bytes 7-12)

14 49h Cheksum for the whole message

If you look at this, a lot of the ontents seem pretty silly. The addresses in the LAN header, for instane,

are pretty useless, but probably there for onsisteny.

Response omes bak in the Send Message response

In this possibility, the send message response ontains the message data response. This seems to be implied

in the text of the Send Message ommand, and is ertainly the most eÆient way to handle this. However,

it does not seem to be the aepted way.

As an example, the following shows the response to the Get Devie ID previously sent:

Byte Value Desription

0 81 Requester Address

1 1 LAN Requester LUN in bits 0-1 (0 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

2 63 Cheksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7

(2eh in this ase).

4.4. BRIDGING 45

5 34 The ommand, a Send Message response in this ase.

6 00 Completion ode

7 20 IPMB Destination address (the BMC's IPMB address)

8 1E IPMB Requester LUN in bits 0-1 (2 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

9 C2 Cheksum for the previous two bytes

10 C0 Responder IPMB address

11 BC Requester LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7 (2fh

in this ase).

12 01 Command, a Get Devie ID response

13 00 message data

14 00 message data

15 00 message data

16 01 message data

17 05 message data

18 51 message data

19 29 message data

20 57 message data

21 01 message data

22 00 message data

23 00 message data

24 09 message data

25 01 message data

26 01 message data

27 00 message data

28 00 message data

29 94 Cheksum for the entire message

That's it, the Send Message response ontains all the data.

Separate Send Message and IPMB responses

In this possibility, a Send Message response omes bak with no data and the Send Message header data

in the response header, then a separate message omes bak with the IPMB parameters in the header. For

instane, in the �rst message the soure is the BMC, in the seond message the soure is the IPMB sender.

The following is the �rst message, the Send Message response, from this format:

Byte Value Desription

0 81 Requester Address

1 1 LAN Requester LUN in bits 0-1 (0 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

2 63 Cheksum for the previous two bytes

3 20 Responder Address

46 CHAPTER 4. IPMI INTERFACES

4 b8 Responder LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7

(2eh in this ase).

5 34 The ommand, a Send Message response in this ase.

6 00 Completion ode

7 f4 Cheksum for the whole message.

The following is the seond message, the IPMB response:

Byte Value Desription

0 20 IPMB Destination address (the BMC's IPMB address)

1 1E IPMB Requester LUN in bits 0-1 (2 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

2 C2 Cheksum for the previous two bytes

3 C0 Responder IPMB address

4 BC Requester LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7 (2fh

in this ase).

5 01 Command, a Get Devie ID response

6 00 message data

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 a0 Cheksum for the whole message

Notie that in this seond response, the destination address, LUNs, sequene numbers, et. are from the

IPMB message, not from the original LAN message.

Separate Send Message and Translated responses

In this possibility, a Send Message response omes bak with no data, then a separate message omes bak

with the data, but the data in the seond message has the same header information as the �rst, with a

di�erent ommand. This ould be inferred from the errata, but it makes things more diÆult to trak. For

instane, if you enapsulated a Send Message ommand inside a Send Message, the seond response would

4.4. BRIDGING 47

have the same ommand number as the �rst, so it would be harder to tell the �rst response from the seond.

The �rst response for the Get Devie ID would be:

Byte Value Desription

0 81 Requester Address

1 1 LAN Requester LUN in bits 0-1 (0 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

2 63 Cheksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7

(2eh in this ase).

5 34 The ommand, a Send Message response in this ase.

6 00 Completion ode

7 f4 Cheksum for the whole message.

This is the same as the previous example. However, the seond response would be:

Byte Value Desription

0 81 Requester Address

1 1 LAN Requester LUN in bits 0-1 (0 in this ase), Send Message response

NetFN in bits 2-7 (7 in this ase)

2 63 Cheksum for the previous two bytes

3 20 Responder Address

4 b8 Responder LUN in bits 0-1 (0 in this ase), Sequene number in bits 2-7

(2eh in this ase).

5 01 Command, a Get Devie ID response

6 00 IPMB ompletion ode

7 00 message data

8 00 message data

9 01 message data

10 05 message data

11 51 message data

12 29 message data

13 57 message data

14 01 message data

15 00 message data

16 00 message data

17 09 message data

18 01 message data

19 01 message data

20 00 message data

21 00 message data

22 44 Cheksum for the whole message

Notie that the header information, exept for the ommand, is from the LAN header, not from the

48 CHAPTER 4. IPMI INTERFACES

IPMB header.

4.4.7 System Interfae to LAN

TBD - write this, use the formats desribed in the send/reeive message ommands.

4.5 IPMB

IPMB provides the main hannel for transferring messages around an IPMI system. It is a message bus that

works somewhat like Ethernet, it is a CSMA (arrier-sense multiple aess) system. It does hek to see if

another sender is transmitting before sending, and will wait for that sender to omplete before starting to

transmit. However, it does not have ollision detetion; so if two MCs attempt to transmit at the same time,

both messages will be lost. Beause of this, IPMB does not sale very well; areful use needs to be made of

the bandwith on the bus.

The format of an IPMB message of n bytes is:

0

Destination IPMB address

1

Bits 0-1 - Destination LUN

Bits 2-7 - NetFN

2 Cheksum for bytes 0-1

3

Soure IPMB address

4

Bits 0-1 - Soure LUN

Bits 2-7 - Sequene Number

5

Command

6 .. n-2 Message Contents

n-1 Cheksum for the whole message

Note that for ommands, the \destination LUN" will be alled the \responder LUN" and the \soure

LUN" will be alled the \requester LUN." For responses, the \destination LUN" will be alled the \requester

LUN" and the \soure LUN" will be alled the \responder LUN." IPMB is a peer-to-peer protool, but

there is a strong master-slave sentiment in IPMI.

Unfortunately, IPMI does not have any type of routing handling or transpareny of messages. To send a

message out on the IPMB, you enapsulate the entire IPMB message in a Send Message ommand and send

it over the proper hannel.

Sine IPMB an lose messages, the OpenIPMI devie driver implements a resend mehanism on ommands

sent over IPMB; if a response is not seen withing a given period of time, the ommand will be resent. This

will be done a few times before an error is returned.

4.5.1 IPMB Broadast

One speial type of message is the broadast IPMB message. This message is exatly like a normal IPMB

message, but it has a 0 byte prepended to the message. This an only be a Get Devie Id ommand. It

is used to disover management ontrollers in the system. Broadast is a really bad name, beause it will

not atually broadast, it will go to the IPMB address in the seond byte of the message. This is used for

disovery beause it will not have any e�et on I

2

C devies on the bus, but IPMI devies will do a normal

4.6. ICMB 49

response.

Many IPMI systems do not orretly implement broadast; it seems to be an oft ignored part of the spe.

4.5.2 OpenIPMI and IPMB

The OpenIPMI driver and library handle the details of IPMB for the user. To send a message over IPMB,

the user reates an OpenIPMI IPMB address as desribed in setion 4.14 and sends a normal OpenIPMI

message. The library and driver take are of seleting the sequene numbers, formatting the messages,

traking and deoding the response, and resending messages.

4.6 ICMB

TBD - write this.

4.7 SMBus

TBD - write this.

4.8 Session Support

TBD - write this.

4.9 LAN

The IPMI LAN interfae allows users to onnet to IPMI systems over an Ethernet interfae. This an

generally even be done when the system is turned o�, although it probably has to be plugged in. This lets

you do things like power ontrol the system and reset the main proessor even when the operating system is

not operational on the system.

The IPMI LAN protool runs over a subset of the Remote Management Control Protool (RMCP)

protool. RMCP is de�ned in RMCP[1℄.

The IPMI LAN is not well de�ned in the spe. Many valid interpretations of the spe were possible. Some

errata has been issued, but that really only added one more possible interpretation. OpenIPMI implements

the three di�erent ommon interpretations of the spe. They an interwork seamlessly, so it is not a problem.

TBD - desribe the protool in detail.

4.9.1 LAN Con�guration

Most systems have tools to on�gure the IPMI LAN interfae. IPMI has a built-in way to do this, too,

through a set of tables.

LAN Con�guration Commands

To set up the LAN on�guration table, the ommand shown in table 4.14 is used to set parameters.

50 CHAPTER 4. IPMI INTERFACES

Request

0

Bits 0-3 - Channel Number

Bits 4-7 - reserved

1 Parameter Seletor. This selets the entry in the table that you want to set.

2-n

The data for the parameter. You must look up the entry in table 4.16 for the exat

ontents, it depends on whih entry you are setting.

Response

0

Completion ode. Standard ompletion odes, plus:

80h - Parameter not supported

81h - Attempt to set the \set in progress' value (parm 0) when the parameter is not in

the free (set omplete) state.

82h - Attempt to write a read-only parameter.

Table 4.14: Set LAN Con�guration Parameters Command, NetFN

Transport (0Ch), Cmd 01h

Table 4.15 shows the ommand used to get LAN parameters.

Request

0

Bits 0-3 - Channel Number

Bits 4-6 - reserved

Bit 7 - If 1, only get parameter revision

1 Parameter Seletor. This selets the entry in the table that you want to get.

2

Set Seletor. Some parameters are in an array, this tells whih array element to set.

Set to zero if the parameter does not have a set seletor.

3

Blok Seletor. Some parameters have two levels of arrays (an array inside of the array).

The Set Seletor is the �rst level array spei�er, this is the seond level. No standard

LAN parameters use this, although OEM ones might. Set to zero if the parameter does

not have a blok seletor.

Response

0

Completion ode. Standard odes, plus:

80h - parameter not supported

1

Parameter revision. Format is:

Bits 0-3 - Oldest revision parameter is bakward ompatible with

Bits 4-7 - Current parameter revision

2-n

Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.

The ontents of this depends on the partiular parameter being fethed, see table 4.16

for the parameters.

Table 4.15: Get LAN Con�guration Parameters Command, NetFN

Transport (0Ch), Cmd 02h

The LAN Con�guration Table

The LAN Con�guration table has an unusual loking mehanism (although it is usual for IPMI). Parameter

zero is a lok. If you set the value to one, it will only sueed if the value is zero. Thus, to lok the table, you

4.9. LAN 51

set the value to one until it sueeds. You then set it to zero when you are done. This loking mehanism

leads to problem if the loker dies while it holds the lok, so you probably need some way to override the

lok if this happens. The lok does not atually keep anyone from hanging the data, it is simply a ommon

mehanism to mutual exlusion. Note also that the lok has a \ommit" mehanism, writing two to the lok

will ommit the ontents if the system supports it. If the system supports rollbak, setting the value to zero

will rollbak and not ommit the hanges you made. So for orretness, you should write a two when you

are omplete, and if that fails then write a zero.

All network parameters suh as IP address, port, and MAC address are in network order, also alled big

endian or most signi�ant byte �rst. Unless marked \volatile", all of these will survive removal of power.

Table 4.16: LAN Con�guration Parameters

Parameter # Desription

Set In Progress

(volatile)

0 Used to indiate that the parameters are being updated. Bits 2-7 are

reserved. Bits 0-1 have the following values:

00b - set omplete. This is the state the system omes up in. This

means that any user is �nished updating the parameters. If roll-

bak is implemented, setting this value will ause any hanges

made sine last setting this value to \set in progress" to be un-

done.

01b - set in progress. A user will set this value to inform others that

it is updating these parameters. This value an only be set if the

urrent value is \set omplete".

10b - ommit write (optional). This will ommit any hanges that

are pending and go to \set omplete" state. Some systems may

not support this, if setting this returns an error you should set

this value to \set omplete" by hand.

Authentiation Type

Support (Read only)

1 A read only �eld showing whih authentiation types are supported.

The format for this is de�ned in table 4.31.

Authentiation Type

Enables

2 A 5 byte �eld that holds the allowed authentiation type for eah priv-

ilege level. The bytes are:

byte 0 - allbak

byte 1 - user

byte 2 - operator

byte 3 - admin

byte 4 - oem

The format for eah byte is de�ned in table 4.31.

IP Address 3 A 4 byte �eld holding the IP address, in network order. This is the

loal IP address used for this partiular hannel. You only need to set

this if parameter 4 is set to \stati address".

52 CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Con�guration Parameters

Parameter # Desription

IP Address Soure 4 One byte �eld telling the BMC where to get its IP address. Bits 4-7

are reserved. Values for bits 0-3 are:

0 - unspei�ed (I don't know what that means)

1 - stati address, on�gured from parameter 3

2 - get address from DHCP

3 - get address from BIOS or system software

4 - get address by some other method

As you probably an tell, stati address and DHCP are really the only

useful values.

MAC Address 5 A 6 byte �eld. This is the Ethernet Media Aess Code? (MAC)

address to use as the soure when transmitting pakets, in network

order. You must set this value properly.

Subnet Mask 6 A 4 byte �eld holding the subnet mask for the IP onnetion, in network

order.

IPv4 Header Parms 7 A 3 byte �eld ontrolling some parameters in the IP header. The bytes

are:

byte 0 - time to live (default 40h) - The number of network hops

allowed for IP pakets sent by the BMC.

byte 1 bits 0-4 - reserved

bits 5-7 - ags. Sets the of the ags �eld in the IP header.

The default value is 010b, or do not fragment.

byte 2 This is the setting of the 8-bit type of servie �eld in the IP

header. Only one of bits 1-4 should be set.

bit 0 - unused, set to zero.

bit 1 - minimize monetary ost

bit 2 - maximize reliability

bit 3 - maximize throughput

bit 4 - minimize delay

bits 5-7 - Preedene, whih is unused by IP systems now.

The default value is 00010000b.

Primary RMCP port

number (optional)

8 A 2 byte �eld holding the UDP port number to use for primary RMCP.

Default value is 623.

Seondary RMCP

port number (op-

tional)

9 A 2 byte �eld holding the UDP port number to use for the seure aux

bus RMCP port. IPMI does not use this, but it is here for omplete-

ness. Default value is 664.

4.9. LAN 53

Table 4.16: LAN Con�guration Parameters

Parameter # Desription

BMC-generated ARP

ontrol (optional)

10 A 1 byte �eld ontrolling how the BMC generates ARPs. If a user

attempts to set an unsupported �eld, the BMC will return an error.

The bits are:

bit 0 - set to 1 to enable BMC generated gratuitous ARPs.

bit 1 - set to 1 to enable BMC generated ARP responses.

bits 2-7 - reserved

Gratuitous ARP in-

terval (optional)

11 A one byte �eld holding the interval between gratuitous ARPs. The

interval is spei�ed in 500 milliseond inrements, with a 10% auray.

If this is not implemented, the interval will be 2 seonds.

Default gateway ad-

dress

12 A 4 byte �eld holding the IP address of the default gateway, in network

order. The BMC will send pakets to this address if the destination is

not on its subnet, if this gateway is hosen as the gateway to use.

Default gateway

MAC address

13 A 6 byte �led holding the Ethernet MAC address to use in the desti-

nation when sending pakets to the default gateway.

Bakup gateway ad-

dress

14 A 4 byte �eld holding the IP address of the bakup gateway, in network

order. The BMC will send pakets to this address if the destination is

not on its subnet, if this gateway is hosen as the gateway to use.

Bakup gateway

MAC address

15 A 6 byte �led holding the Ethernet MAC address to use in the desti-

ination when sending pakets to the bakup gateway.

Community String 16 An 18 byte �eld holding the SNMP ommunity string to use in traps

send by the BMC. The default is \publi".

Number of Destina-

tions (read only)

17 The number of entries in the destination type and destination address

tables in parameters 18 and 19.

54 CHAPTER 4. IPMI INTERFACES

Table 4.16: LAN Con�guration Parameters

Parameter # Desription

Destination type 18 This is an array of destination types, eah 4 bytes long. The �rst byte

in bits 0-3 is the index into the array, you put the index here when

you set the value, and that index gets set. This index omes from the

alert poliy entry destination �eld de�ned in table 4.38. Destination 0

is speial and used by the Alert Immediate ommand as desribed in

setion 4.13.5. The �elds are:

byte 0 bits 0-3 - The index into the array

bits 4-7 - reserved

byte 1 The destination type. The bits are:

bits 0-2 - Destination type, values are:

000b - PET Trap

001b-101b - reserved

110b - OEM 1

111b - OEM 1

bits 3-6 - reserved

bit 7 - If zero, the alert does not need to be aknowledged to be

onsidered suessful. If 1, the alert needs to be aknowl-

edged with a PET Aknowledge Command as de�ned in

table 4.35.

byte 2 PET Retry Time. This spei�ed the amount of time between

resends when waiting for an aknowledge of the sent trap.

byte 3 Max PET Retries.

bits 0-2 - The maximum number of retries of a trap before

giving up.

bits 3-7 - reserved

4.9. LAN 55

Table 4.16: LAN Con�guration Parameters

Parameter # Desription

Destination address 19 This is an array of destination address, eah 13 bytes long. The �rst

byte in bits 0-3 is the index into the array, you put the index here when

you set the value, and that index gets set. This index omes from the

alert poliy entry destination �eld de�ned in table 4.38. Destination 0

is speial and used by the Alert Immediate ommand as desribed in

setion 4.13.5. The �elds are:

byte 0 bits 0-3 - The index into the array

bits 4-7 - reserved

byte 1 The address format:

bits 0-3 - The address type, 0h is the only valid value, spei-

fying IP.

bits 4-7 - reserved

byte 2 Gateway seletor

bit 0 0 - use the default gateway

0 - use the bakup gateway

bits 1-7 - reserved

bytes 3-6 The IP address to send the alert to when using this des-

tination, in network order.

bytes 7-12 The Ethernet MAC address to send the alert to when

using this destination, in network order.

OEM 192+ Parameters 192 to 255 are OEM parameters. The rest of the parame-

ters are reserved.

4.9.2 ARP ontrol

TBD - write this, inlude ommand, talk about on�g table entries.

4.9.3 LAN Messaging

TBD - write this, desribe the formatting of LAN messages

4.9.4 OpenIPMI LAN Con�guration

OpenIPMI has some support for handling the LAN on�guration. This is de�ned in the ipmi_lanparm.h

inlude �le; it has all the details on how to use this.

To on�gure the LAN parameters for a BMC, you must �rst alloate a lanparm struture with:

int ipmi_lanparm_allo(ipmi_m_t *m,

unsigned int hannel,

ipmi_lanparm_t **new_lanparm);

The hannel is the IPMI hannel number of the LAN port you are on�guring. Generally, if a server has

more than one port, it will have a separate hannel for eah port, you will have to �nd the hannel numbers

from the manufaturer, although hannels 6 and 7 are ommonly used as the LAN hannels.

56 CHAPTER 4. IPMI INTERFACES

One you have a lanparm struture, you an get and set individual parms assuming you follow all the

rules assoiated with the on�guration table. However, there is a muh easier way that OpenIPMI provides.

After you have alloated a lanparm struture these, the funtion:

typedef void (*ipmi_lan_get_onfig_b)(ipmi_lanparm_t *lanparm,

int err,

ipmi_lan_onfig_t *onfig,

void *b_data);

int ipmi_lan_get_onfig(ipmi_lanparm_t *lanparm,

ipmi_lan_get_onfig_b done,

void *b_data);

will feth the full urrent on�guration. Note that when you all this, you will be holding a lok if it sueeds.

You must release the lok when you are done, or no one else will be able to hange the on�guration unless

they forefully remove your lok.

At this point, you an hange the value in the onfig struture. But those hanges are only loal. When

you have omplete making the hanges, you must ommit them bak to the BMC. To do this, all:

int ipmi_lan_set_onfig(ipmi_lanparm_t *lanparm,

ipmi_lan_onfig_t *onfig,

ipmi_lanparm_done_b done,

void *b_data);

After this point in time, the onfig annot be used for future set operation, beause it has been ommitted.

You must re-read it to modify parameters again.

If you do not wish to modify the on�guration, you still need to lear the lok. Do that with:

int ipmi_lan_lear_lok(ipmi_lanparm_t *lanparm,

ipmi_lan_onfig_t *onfig,

ipmi_lanparm_done_b done,

void *b_data);

One you are done with the onfig struture, you must free it with:

void ipmi_lan_free_onfig(ipmi_lan_onfig_t *onfig);

When you are done with a lanparm struture, you must free it with:

int ipmi_lanparm_destroy(ipmi_lanparm_t *lanparm,

ipmi_lanparm_done_b handler,

void *b_data);

If the lanparm struture urrently has operations pending on it, the destroy will be delayed until those

operations are omplete. The handler will be alled when the atual destroy takes plae.

4.9.5 The OpenIPMI LAN Interfae

The LAN interfae is ompliated, but OpenIPMI handles most of the details for the user. A single funtion

sets up the interfae. Unfortunately, that funtion takes a huge number of parameters due to the large

number of things required to on�gure a IPMI LAN onnetion. The funtion is:

4.10. SERIAL 57

int ipmi_ip_setup_on(har * onst ip_addrs[℄,

har * onst ports[℄,

unsigned int num_ip_addrs,

unsigned int authtype,

unsigned int privilege,

void *username,

unsigned int username_len,

void *password,

unsigned int password_len,

os_handler_t *handlers,

void *user_data,

ipmi_on_t **new_on);

The parameters are:

ip addrs An array of IP addresses. Eah IP address must be an address that onnets to the exat same

management ontroller. If you need onnetions to multiple management ontrollers, you must set up

two di�erent onnetions and use multiple onnetions in the domain.

ports An array of UDP ports for eah IP address. This is de�ned as 623 in the IPMI spe, but is here for

exibility.

num ip addrs The number of IP addresses and ports.

authtype The authentiation type to use for the onnetion. Table 4.30 desribes the di�erent authentiation

types.

privilege The privilege level to onnet at. Table 4.18 desribes the di�erent privilege levels.

username The username to onnet as. See setion 4.11 for details on users.

username len The length of the username. Required beause usernames an be binary and ontain zeros.

password The password for the user. See setion 4.11 for details on users.

password len The length of the password. Required beause usernames an be binary and ontain zeros.

handlers The OS handler to use for this domain. See setion 2.2.2 for more details.

user data This is a �eld that will be put into the onnetion data struture of the same name. This is for

user use and OpenIPMI will not use it.

new on The new onnetion is returned in this �eld.

One you have a onnetion, it works like a normal onnetion as de�ned in setion 4.1.

4.10 Serial

TBD - OpenIPMI does not support serial interfaes, but this needs to be written someday.

58 CHAPTER 4. IPMI INTERFACES

IPMI PRIVILEGE CALLBACK (1) The user is only allowed to request that the IPMI system all bak

home.

IPMI PRIVILEGE USER (2) A \read-only" user. The user an look at system state, but not hange

anything. For instane, the user an feth SEL entries, but not delete

them.

IPMI PRIVILEGE OPERATOR (3) This user an do everything but on�guration ommands. For instane,

they an lear the SEL and on�gure sensors, but they annot add users

or on�gure LAN parameters.

IPMI PRIVILEGE ADMIN (4) This user an do pretty muh anything on an IPMI system.

IPMI PRIVILEGE OEM (5) Unde�ned by the spe, it's whatever the OEM wants.

Table 4.18: Privilege levels in IPMI

4.10.1 Serial Con�guration

4.10.2 Diret Serial

4.10.3 Terminal Mode

4.10.4 Serial over PPP

Table 4.17: Serial Con�guration Parameters

Parameter # Desription

4.11 User Management

IPMI uses users for aess ontrol on IPMI systems with LAN or serial interfaes. The loal system interfae

has no aess ontrols, but the more external interfaes require authentiation to be able to use the interfae.

Users may be able to authentiate links and send and reeive IPMI messages.

Users have a de�ned maximum privilege level. They may not negotiate a onnetion with a higher

privilege level than that. The privilege levels are de�ned in table 4.18 and they a�et what messages the

system will aept from the user. In addition to that, the user may be restrited to only work in a allbak

session.

The systems have two ways of identifying users: by number and by name. A BMC will have a set of

users (up to 63, but the BMC may have a lower limit) indexed by number. User 0 is reserved. User 1 is

a speial user that is de�ned to not have a name. This provides a simple but inseure way to aess the

system, espeially if user 1 does not have a password. All the other user numbers may be assigned names.

The name is used for system authentiation.

Users may have passwords assigned to them. If no password is assigned, then an empty password is able

to authentiate the user. The passwords are used to authentiate the link and the messages.

The user number, name, password and enable are global for all hannels in an BMC. The link/message

authentiation enables are done per-hannel.

4.11. USER MANAGEMENT 59

4.11.1 User management in OpenIPMI

Enabling a user is a ompliated proess. The user must have a name and password assigned. It must be

set with the proper authentiation enables. Then it must be enabled with a separate enable ommand.

Fortunately, OpenIPMI handles a lot of this proess for you. The funtions are found in the ipmi user.h

inlude �le. You may get a list of users (or a spei� user in a one-user list) with the ommand:

typedef void (*ipmi_user_list_b)(ipmi_m_t *m,

int err,

ipmi_user_list_t *list,

void *b_data);

#define IPMI_MC_ALL_USERS 0

int ipmi_m_get_users(ipmi_m_t *m,

unsigned int hannel,

unsigned int user,

ipmi_user_list_b handler,

void *b_data);

Using IPMI_MC_ALL_USERS will feth all users, otherwise the user spei�ed will be used. The hannel-spei�

information will be fethed for only the given hannel.

One you have the list, you an feth information from the list:

int ipmi_user_list_get_hannel(ipmi_user_list_t *list, unsigned int *hannel);

int ipmi_user_list_get_max_user(ipmi_user_list_t *list, unsigned int *max);

int ipmi_user_list_get_enabled_users(ipmi_user_list_t *list, unsigned int *e);

int ipmi_user_list_get_fixed_users(ipmi_user_list_t *list, unsigned int *f);

You an also feth individual users from the user list. Note that if you feth a user this way, you must

free it with ipmi_user_free().

unsigned int ipmi_user_list_get_user_ount(ipmi_user_list_t *users);

ipmi_user_t *ipmi_user_list_get_user(ipmi_user_list_t *list,

unsigned int idx);

One you feth a user, you an get information from it. You an also set information for the user. This

only sets the loal opy, it must be written out into the real data to ativate it on the BMC.

int ipmi_user_get_hannel(ipmi_user_t *user, unsigned int *hannel);

/*

* Get/set the number for the user.

*/

int ipmi_user_get_num(ipmi_user_t *user, unsigned int *num);

int ipmi_user_set_num(ipmi_user_t *user, unsigned int num);

/*

* Get/set the name for the user. When getting the name, the pointer

* to "len" should point to a value of the length of "name". "len"

* will be updated to the atual number of haraters opied. The

60 CHAPTER 4. IPMI INTERFACES

* password set is for 16-byte passwords, the password2 is for 20-byte

* passwords.

*/

int ipmi_user_get_name_len(ipmi_user_t *user, unsigned int *len);

int ipmi_user_get_name(ipmi_user_t *user, har *name, unsigned int *len);

int ipmi_user_set_name(ipmi_user_t *user, har *name, unsigned int len);

int ipmi_user_set_password(ipmi_user_t *user, har *pw, unsigned int len);

int ipmi_user_set_password2(ipmi_user_t *user, har *pw, unsigned int len);

/*

* Various bits of information about a user, this is per-hannel.

*/

int ipmi_user_get_link_auth_enabled(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_link_auth_enabled(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_msg_auth_enabled(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_msg_auth_enabled(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_aess_b_only(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_aess_b_only(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_privilege_limit(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_privilege_limit(ipmi_user_t *user, unsigned int val);

int ipmi_user_get_session_limit(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_session_limit(ipmi_user_t *user, unsigned int val);

/*

* The enable for the user. Note that the enable value annot be

* fethed and will return an error unless set.

*/

int ipmi_user_get_enable(ipmi_user_t *user, unsigned int *val);

int ipmi_user_set_enable(ipmi_user_t *user, unsigned int val);

To atually set the user information on the BMC, the following ommand an be used:

int ipmi_m_set_user(ipmi_m_t *m,

unsigned int hannel,

unsigned int num,

ipmi_user_t *user,

ipmi_m_done_b handler,

void *b_data);

Note that OpenIPMI keeps trak of what has hanged in the user and will only write out the hanged

information. If you wish to rewrite all information in the user (like if you want to write the same information

to a new user number) you an all ipmi_user_set_all() with the user to set the hanged bits for all items.

Then you an write the user out.

4.11.2 User management ommands

Table 4.19 on the next page shows the ommand used to set the enables for the user (this is not the same

as the user enable). These are all per-hannel.

4.11. USER MANAGEMENT 61

Request

0

Sets various ontrols for the user on the hannel:

bits 0-3 - hannel number

bit 4 - Enable IPMI messaging for the user. If this is not set, the user may not send

IPMI messages.

bit 5 - Enable link authentiation for the user. If this is not set, the user may not

authentiate a link.

bit 6 - User restrited to allbak only. If this is set, the user is restrited to allbak

authentiation in non-allbak situations. In a allbak situation, the privilege

level is determined by the normal setting.

bit 7 - If this is 1, modify the �elds in this byte. If this is 0, the �elds in this byte

are ignored.

1

User ID:

bits 0-5 - User number

bits 6-7 - reserved

2

User limits

bits 0-3 - The privilege level, as de�ned in table 4.18 on page 58. Putting a value of

Fh in this �eld will disable aess to this hannel for the user.

bits 4-7 - reserved.

(3)

User session limit - optional byte

bits 0-3 - The user session limit. If set to 0, then the limit is the hannel's session

limit. There does not appear to be any way to read this value, so it is a \write

only" parameter.

bits 4-7 - reserved

Response

0 Completion Code

Table 4.19: Set User Aess Command, NetFN S/E (06h), Cmd

43h

To feth the hannel information for a user, use the ommand shown in table 4.20 on the next page.

Request

0

bits 0-3 - hannel number

bits 4-7 - reserved

1

bits 0-5 - User number

bits 6-7 - reserved

Response

0 Completion Code

1

bits 0-5 - Maximum number of user ids available. If this is 1, then only user 1 is

supported.

bits 6-7 - reserved

2

bits 0-5 - Number of enabled user ids.

bits 6-7 - reserved

62 CHAPTER 4. IPMI INTERFACES

3

bits 0-5 - Count of user ids with �xed names (that annot be hanged with the set

user name ommand). This inludes user 1 and must be sequential starting with

user 2.

bits 6-7 - reserved

1

Various ontrols for the user on the hannel:

bits 0-3 - User privilege limit.

bit 4 - IPMI messaging enabled for the user. If this is not set, the user may not send

IPMI messages.

bit 5 - Link authentiation enabled for the user. If this is not set, the user may not

authentiate a link.

bits 6 - User restrited to allbak only. If this is set, the user is restrited to allbak

authentiation in non-allbak situations. In a allbak situation, the privilege

level is determined by the normal setting.

bits 7 - If reserved.

Table 4.20: Get User Aess Command, NetFN S/E (06h), Cmd

44h

The user name is set using the ommand de�ned in table 4.21 and the name an be fethed with the

ommand de�ned in table 4.22.

Request

0

User ID:

bits 0-5 - User number

bits 6-7 - reserved

1-16 User name - These bytes are ASCII-enoded bytes that de�ne the name of the user.

Response

0 Completion Code

Table 4.21: Set User Name Command, NetFN S/E (06h), Cmd 45h

Request

0

User ID:

bits 0-5 - User number

bits 6-7 - reserved

Response

0 Completion Code

1-16 User name - These bytes are ASCII-enoded bytes that de�ne the name of the user.

Table 4.22: Get User Name Command, NetFN S/E (06h), Cmd

46h

The Set User Password ommand de�ned in table 4.23 on the faing page sets the password and also

enables and disables the user with a di�erent mode of the ommand. Obviously, there is no way to get the

password, but unfortunately, there is no way to get the enable value, either. Passwords for the IPMI 1.5

4.12. CHANNEL CONFIGURATION 63

authentiation are 16-bytes long. Passwords for RMCP+ may be either 16 or 20 bytes long. You may set

a 20-byte password for a user, but then that user may not be used for IPMI 1.5 authentiation, only for

RMCP+ authentiation.

Request

0

User ID:

bits 0-5 - User number

bit 6 - If this is 0, then use 16-byte passwords. If this is 1, then use 20-byte passwords.

bit 7 - reserved

1

bits 0-1 - Operation:

00b - disable the user.

01b - enable the user.

10b - set the password to the value in this ommand.

11b - test the password in this ommand and return an error ode if it is

inorret.

bits 2-7 - reserved

2-17/20

Password - These bytes are ASCII-enoded bytes that de�ne the name of the user.

This is only present for the set and test password operations.

Response

0

Completion Code. Speial values are:

80h - Password test failed

81h - Password was the wrong length

Table 4.23: Set User Password Command, NetFN S/E (06h), Cmd

45h

4.12 Channel Con�guration

The hannels on an IPMI system are ontrolled with a hannel setting ommand. In addition, hannel

information is available.

Channels are numbered 0-7 and Fh. Channel 0 is generally IPMB. Channels 1-7 are used for other IPMB

hannels, LAN interfaes, serial interfaes, and whatnot. Channel Fh is used for the system interfae.

If you speify hannel Eh in a ommand, it will use the hannel the ommand ame from; any returned

hannel number will be the atual hannel number of the hannel. This an be used to disover the hannel

number of the urrent hannel.

The hannel information ontains the hannel type, protool, and other detailed information about the

hannel.

The hannel aess allows ontrol of how the hannel works. It allows alerting to be enabled, it ontrols

whether user and per-message authentiation are required for the hannel, it ontrols when the hannel

is available and the privilege limit of the hannel. Channel aess has two separate areas to store the

information, a volatile area and a non-volatile area. The volatile area is the area that is used in normal

operation, setting that modi�ed behaviour immediately. This area is lost if power is lost to the system. The

system loads the volatile area from the non-volatile area at startup. The areas are set separately.

In addition to this, LAN interfaes have spei� on�guration information as de�ned in setion 4.9.1 on

page 49 and serial interfaes have their own information as de�ned in setion 4.10.1 on page 58.

64 CHAPTER 4. IPMI INTERFACES

4.12.1 Channel handling in OpenIPMI

Channel Information

OpenIPMI allows the user to get hannel information with the following ommand:

typedef strut ipmi_hannel_info_s ipmi_hannel_info_t;

typedef void (*ipmi_hannel_info_b)(ipmi_m_t *m,

int err,

ipmi_hannel_info_t *info,

void *b_data);

int ipmi_m_hannel_get_info(ipmi_m_t *m,

unsigned int hannel,

ipmi_hannel_info_b handler,

void *b_data);

The allbak gets a hannel information struture whih an be aessed with the following funtions:

int ipmi_hannel_info_get_hannel(ipmi_hannel_info_t *info,

unsigned int *hannel);

int ipmi_hannel_info_get_medium(ipmi_hannel_info_t *info,

unsigned int *medium);

int ipmi_hannel_info_get_protool_type(ipmi_hannel_info_t *info,

unsigned int *prot_type);

int ipmi_hannel_info_get_session_support(ipmi_hannel_info_t *info,

unsigned int *sup);

/* Data is 3 bytes long */

int ipmi_hannel_info_get_vendor_id(ipmi_hannel_info_t *info,

unsigned har *data);

/* Data is 2 bytes long */

int ipmi_hannel_info_get_aux_info(ipmi_hannel_info_t *info,

unsigned har *data);

Table 4.24 on the next page desribes the hannel mediums de�ned in OpenIPMI. Table 4.25 on the

faing page desribes the hannel protool types. Table 4.26 on the next page desribes the hannel session

support settings.

Channel Aess

Channels have aess ontrols that de�ne who may use them, privilege limits, and other things of that nature.

These are available to be fethed and set with OpenIPMI funtions:

typedef strut ipmi_hannel_aess_s ipmi_hannel_aess_t;

typedef void (*ipmi_hannel_aess_b)(ipmi_m_t *m,

int err,

ipmi_hannel_aess_t *info,

void *b_data);

int ipmi_m_hannel_get_aess(ipmi_m_t *m,

4.12. CHANNEL CONFIGURATION 65

IPMI CHANNEL MEDIUM IPMB (1)

IPMI CHANNEL MEDIUM ICMB V10 (2)

IPMI CHANNEL MEDIUM ICMB V09 (3)

IPMI CHANNEL MEDIUM 8023 LAN (4)

IPMI CHANNEL MEDIUM RS232 (5)

IPMI CHANNEL MEDIUM OTHER LAN (6)

IPMI CHANNEL MEDIUM PCI SMBUS (7)

IPMI CHANNEL MEDIUM SMBUS v1 (8)

IPMI CHANNEL MEDIUM SMBUS v2 (9)

IPMI CHANNEL MEDIUM USB v1 (10)

IPMI CHANNEL MEDIUM USB v2 (11)

IPMI CHANNEL MEDIUM SYS INTF (12)

Table 4.24: Channel mediums in IPMI

IPMI CHANNEL PROTOCOL IPMB (1)

IPMI CHANNEL PROTOCOL ICMB (2)

IPMI CHANNEL PROTOCOL SMBus (4)

IPMI CHANNEL PROTOCOL KCS (5)

IPMI CHANNEL PROTOCOL SMIC (6)

IPMI CHANNEL PROTOCOL BT v10 (7)

IPMI CHANNEL PROTOCOL BT v15 (8)

IPMI CHANNEL PROTOCOL TMODE (9)

Table 4.25: Protool types in IPMI

IPMI CHANNEL SESSION LESS (0)

IPMI CHANNEL SINGLE SESSION (1)

IPMI CHANNEL MULTI SESSION (2)

IPMI CHANNEL SESSION BASED (3)

Table 4.26: Session support in IPMI

66 CHAPTER 4. IPMI INTERFACES

IPMI CHANNEL ACCESS MODE DISABLED (0) Channel is never available.

IPMI CHANNEL ACCESS MODE PRE BOOT (1) Channel is only available when the �rmware is running, not

when an OS is running.

IPMI CHANNEL ACCESS MODE ALWAYS (2) Channel is always available.

IPMI CHANNEL ACCESS MODE SHARED (3) Channel is always available for multiple simultaneous users.

Table 4.27: Channel aess modes in IPMI

unsigned int hannel,

enum ipmi_set_dest_e dest,

ipmi_hannel_aess_b handler,

void *b_data);

int ipmi_m_hannel_set_aess(ipmi_m_t *m,

unsigned int hannel,

enum ipmi_set_dest_e dest,

ipmi_hannel_aess_t *aess,

ipmi_m_done_b handler,

void *b_data);

One you have a hannel aess type, you an get/set information in it with the following funtions:

int ipmi_hannel_aess_get_hannel(ipmi_hannel_aess_t *aess,

unsigned int *hannel);

int ipmi_hannel_aess_get_alerting_enabled(ipmi_hannel_aess_t *aess,

unsigned int *enab);

int ipmi_hannel_aess_set_alerting_enabled(ipmi_hannel_aess_t *aess,

unsigned int enab);

int ipmi_hannel_aess_get_per_msg_auth(ipmi_hannel_aess_t *aess,

unsigned int *msg_auth);

int ipmi_hannel_aess_set_per_msg_auth(ipmi_hannel_aess_t *aess,

unsigned int msg_auth);

int ipmi_hannel_aess_get_user_auth(ipmi_hannel_aess_t *aess,

unsigned int *user_auth);

int ipmi_hannel_aess_set_user_auth(ipmi_hannel_aess_t *aess,

unsigned int user_auth);

int ipmi_hannel_aess_get_aess_mode(ipmi_hannel_aess_t *aess,

unsigned int *aess_mode);

int ipmi_hannel_aess_set_aess_mode(ipmi_hannel_aess_t *aess,

unsigned int aess_mode);

int ipmi_hannel_aess_get_priv_limit(ipmi_hannel_aess_t *aess,

unsigned int *priv_limit);

int ipmi_hannel_aess_set_priv_limit(ipmi_hannel_aess_t *aess,

unsigned int priv_limit);

Table 4.18 on page 58 gives the privilege levels that the privilege limits used in this ommand. Table 4.27

gives the modes the hannel an run in. Not that not all hannel types an support all modes.

4.12. CHANNEL CONFIGURATION 67

Note that OpenIPMI traks what has hanged in the hannel aess and only writes out the hanged

information. If you wish to fore all data to be rewritten, you may use the ipmi_hannel_aess_setall()

funtion to mark all data as hanged.

4.12.2 Channel handling ommands

Table 4.3 on page 41 gives the ommand used to feth the hannel information.

Channel aess is fethed and written with the ommands de�ned in table 4.28 and table 4.29 on the

following page.

Request

0

bits 0-3 - Channel

bits 4-7 - reserved

1

bits 0-2 - Set the hannel aess mode per table 4.27 on the preeding page

bit 3 - If 1, require authentiation for user-level ommand. Otherwise authentiation

is not required for user-level ommands. Note that this has no e�et on operator

or admin level ommands.

bit 4 - If 1, require per-message authentiation. If 0, no authentiation is required

per-message. Note that if this is 0, a session must still be established, but subse-

quent messages after session establishment do not require authentiation.

bit 5 - Enable or diable PEF alerting on the hannel. Note that if this is 0 (disabled)

alert immediate still works.

bits 6-7 - Operation:

00b - Do not modify the values spei�ed in the rest of this byte.

01b - Set the non-volatile area

10b - Set the volatile area.

11b - reserved

2

bits 0-3 - Set the privilege limit for the hannel per table 4.18 on page 58.

bits 4-5 - reserved

bits 6-7 - Operation:

00b - Do not modify the values spei�ed in the rest of this byte.

01b - Set the non-volatile area

10b - Set the volatile area.

11b - reserved

Response

0 Completion Code

Table 4.28: Set Channel Aess Command, NetFN S/E (06h), Cmd

40h

Request

0

bits 0-3 - Channel

bits 4-7 - reserved

68 CHAPTER 4. IPMI INTERFACES

IPMI AUTHTYPE NONE No authentiation.

IPMI AUTHTYPE MD2 MD2 style authentiation.

IPMI AUTHTYPE MD5 MD5 style authentiation. This is the reommended type of authentiation.

IPMI AUTHTYPE STRAIGHT Puts the password into the message in plain text. Don't use this.

Table 4.30: Authentiation types in IPMI

0 no authentiation

1 MD2 authentiation

2 MD5 authentiation

3 reserved

4 straight password authentiation

5 OEM authentiation

6-7 reserved

Table 4.31: Authentiation bitmask often used in IPMI

1

bits 0-5 - reserved

00b - reserved

01b - Get the non-volatile area

10b - Get the volatile area.

11b - reserved

Response

0

Completion Code. The following speial return odes are de�ned:

82h - The hannel is session-less thus does not support this ommand.

1

bits 0-2 - The hannel aess mode per table 4.27 on page 66

bit 3 - If 1, require authentiation for user-level ommand. Otherwise authentiation

is not required for user-level ommands. Note that this has no e�et on operator

or admin level ommands.

bit 4 - If 1, require per-message authentiation. If 0, no authentiation is required

per-message. Note that if this is 0, a session must still be established, but subse-

quent messages after session establishment do not require authentiation.

bit 5 - Enable or diable PEF alerting on the hannel. Note that if this is 0 (disabled)

alert immediate still works.

bits 6-7 - reserved

2

bits 0-3 - The privilege limit for the hannel per table 4.18 on page 58.

bits 4-7 - reserved

Table 4.29: Get Channel Aess Command, NetFN S/E (06h),

Cmd 41h

4.13. THE PEF TABLE AND SNMP TRAPS 69

4.12.3 Channel Authentiation

4.13 The PEF Table and SNMP Traps

Many IPMI systems an speify that ertain operations be done when an event omes in. This an depend

on the event's ontents; di�erent ations an be done for di�erent sets of events. This is done with the

Platform Event Filter (PEF) on�guration. Not all IPMI systems an do event �ltering, but ones that do

will work as this setion desribes.

The PEF on�guration allows several di�erent ations to be performed when an IPMI event omes in

(or when the BMC powers up and there are pending events in its event queue). Exept for sending an alert,

if multiple event �lters math, the higher priority ation will be done and the lower priority ation will be

ignored. The ations are:

Ation Priority Desription

power down 1 (optional) Power the system down.

power yle 2 (optional) Power o� the system, then power it bak on.

reset 3 (mandatory) Reset the main proessor in the system.

Diagnosti Interrupt 4 (optional) Send a system-de�ned diagnosti interrupt to the main

proessor in the system. This is generall an NMI.

Send Alert 5 Send an alert of some type, via an SNMP trap, a page, or a modem

dialup. Note that unlike the rest of the ations, this ation will still be

done if a higher priority ation is done. Alerts an also be prioritized

via the Alert Poliy Table as desribed in setion 4.13.3.

OEM OEM (optional) Priority is de�ned by the OEM.

This setions will mainly fous on sending SNMP traps with alerts, although the other parts will also

be overed. The PEF on�guration an speify sending SNMP traps to inform the the management system

that something has happened. Generally, it is saying that an event has been plaed into the event log. Most

of the event information is in the SNMP trap, but unfortunately, some key information is not there. It does

give the system an immediate noti�ation.

To have a system send traps, two tables must be set up. The LAN on�guration table desribed in setion

4.9.1 has parameters to set the SNMP ommunity string and the trap destination addresses available. The

PEF table ontains information about how to �lter traps. Di�erent events an ause di�erent traps to be

sent to di�erent plaes. As well, spei� events an do other things, suh as reset or power o� the system.

The thing we are interested in is the \Alert" apability.

Note that alerts an also ause telephone pages, serial dialups and things like that to happen. They are

pretty exible, although this setion will mostly fous on SNMP traps.

4.13.1 PEF and Alerting Commands

These ommands ontrol the PEF and alerting apabilities of a system.

Table 4.32 shows the ommand used to �nd out what alert apabilities a BMC has.

Request

-

-

Response

0 Completion Code

70 CHAPTER 4. IPMI INTERFACES

1

PEF version, enoded as:

bits 0-3 - Major version #

bits 4-7 - Minor version #

2

Supported PEF ations, if the bit is one then the ation is supported:

bit 0 - alert

bit 1 - power down

bit 2 - reset

bit 3 - power yle

bit 4 - OEM ation

bit 5 - diagnosti interrupt

bits 6-7 - reserved

3

Number of entries in teh event �lter table

Table 4.32: Get PEF Capabilities Command, NetFN S/E (04h),

Cmd 10h

Table 4.33 shows the ommand used to set the PEF on�guration parameters in a BMC.

Request

0 Parameter Seletor. This selets the entry in the table that you want to set.

1-n

The data for the parameter. You must look up the entry in table 4.36 for the exat

ontents, it depends on whih entry you are setting.

Response

0

Completion ode. Standard ompletion odes, plus:

80h - Parameter not supported

81h - Attempt to set the \set in progress' value (parm 0) when the parameter is not in

the free (set omplete) state.

82h - Attempt to write a read-only parameter.

Table 4.33: Set PEF Con�guration Parameters Command, NetFN

S/E (04h), Cmd 12h

Table 4.34 shows the ommand used to get PEF on�guration parameters in a BMC.

Request

0

bits 0-6 - Parameter Seletor. This selets the entry in the table that you want to get.

bit 7 - If 1, only get parameter revision

1

Set Seletor. Some parameters are in an array, this tells whih array element to set.

Set to zero if the parameter does not have a set seletor.

2

Blok Seletor. Some parameters have two levels of arrays (an array inside of the

array). The Set Seletor is the �rst level array spei�er, this is the seond level. Set to

zero if the parameter does not have a blok seletor.

Response

4.13. THE PEF TABLE AND SNMP TRAPS 71

0

Completion ode. Standard odes, plus:

80h - parameter not supported

1

Parameter revision. Format is:

Bits 0-3 - Oldest revision parameter is bakward ompatible with

Bits 4-7 - Current parameter revision

2-n

Parameter data. This will not be present if bit 7 of byte 0 of the response is set to 1.

The ontents of this depends on the partiular parameter being fethed, see table 4.36

for the parameters.

Table 4.34: Get PEF Con�guration Parameters Command, NetFN

S/E (04h), Cmd 13h

Table 4.35 shows the ommand used to send an aknowledge for a reeived trap. If the \Alert A-

knowledge" bit is set in \Destination Type" entry of the LAN Con�guration Table (Table 4.16) or in the \

\Destination Info" entry of the Serial Con�guration Table (Table 4.17), then the reeiver of the trap must

send this message to stop the resends.

Request

0-1

Sequene Number, from the �eld in the Platform Event Trap (PET) of the trap being

aknowledged. Least signi�ant byte �rst.

2-5

Loal Timestamp, from the �eld in the PET of the trap being aknowledged. Least

signi�ant byte �rst.

6 Event Soure Type, from the �eld in the PET of the trap being aknowledged

7 Sensor Devie, from the �eld in the PET of the trap being aknowledged

8 Sensor Number, from the �eld in the PET of the trap being aknowledged

9-11 Event Data 1-3, from the �eld in the PET of the trap being aknowledged

Response

0 Completion Code

Table 4.35: PET Aknowledge Command, NetFN S/E (04h), Cmd

17h

4.13.2 The PEF Postpone Timer

TBD - write this.

4.13.3 PEF Con�guration Parameters

The PEF Con�guration table has an unusual loking mehanism (although it is usual for IPMI). Parameter

zero is a lok. If you set the value to one, it will only sueed if the value is zero. Thus, to lok the table, you

set the value to one until it sueeds. You then set it to zero when you are done. This loking mehanism

leads to problem if the loker dies while it holds the lok, so you probably need some way to override the

lok if this happens. The lok does not atually keep anyone from hanging the data, it is simply a ommon

mehanism to mutual exlusion. Note also that the lok has a \ommit" mehanism, writing two to the lok

will ommit the ontents if the system supports it. If the system supports rollbak, setting the value to zero

72 CHAPTER 4. IPMI INTERFACES

will rollbak and not ommit the hanges you made. So for orretness, you should write a two when you

are omplete, and if that fails then write a zero.

Table 4.36 has the parameters used to on�gure the event �lter. Unless marked \volatile", all of these

will survive removal of power.

Table 4.36: PEF Con�guration Parameters

Parameter # Desription

Set In Progress

(volatile)

0 Used to indiate that the parameters are being updated. Bits 2-7 are

reserved. Bits 0-1 have the following values:

00b - set omplete. This is the state the system omes up in. This

means that any user is �nished updating the parameters. If roll-

bak is implemented, setting this value will ause any hanges

made sine last setting this value to \set in progress" to be un-

done.

01b - set in progress. A user will set this value to inform others that

it is updating these parameters. This value an only be set if the

urrent value is \set omplete".

10b - ommit write (optional). This will ommit any hanges that

are pending and go to \set omplete" state. Some systems may

not support this, if setting this returns an error you should set

this value to \set omplete" by hand.

PEF Control 1 One byte �eld global ontrol bits for the PEF:

bit 0 - Set to one to enable the PEF.

bit 1 - Set to one to ause event messages to be sent for eah ation

triggered by a �lter. These events are send as the System Event

Sensor (12h), o�set 04h, see table 9.2. Note that these events are

subjet to PEF �ltering, so be areful not to ause an in�nite

event message send.

bit 2 - PEF Startup Delay Enable (optional). When set to one, this

bit enables a PEF startup delay on manual startup of a hassis

and on all system resets. If this bit is supported, the spe says

that the implementation must supply a way for the user to diable

the PEF in ase the �lter entries are ausing an in�nite loop. I

have no idea what that means. If this bit is not implemented, the

spe says that there must always be a startup delay. Parameter

3 of this table sets the time.

bit 3 - PEF Alert Startup Delay Enable (optional). When set to one,

this bit enables a delay between startup time and when alerts are

allowed to be sent. Parameter 4 of this table sets the time.

bits 4-7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS 73

Table 4.36: PEF Con�guration Parameters

Parameter # Desription

PEF Ation Global

Control

2 A one byte �eld for ontrolling whether spei� PEF ations are en-

abled at all. If the bit is set to one, it is enabled. The bits are:

bit 0 - alert

bit 0 - power down

bit 0 - reset

bit 0 - power yle

bit 0 - OEM

bit 0 - diagnosti interrupt

bits 6-7 - reserved

PEF Startup Delay

(optional)

3 A one byte �eld giving the PEF startup delay, in seonds, 10% au-

ray. A zero value means no delay. This goes along with bit 2 of byte

1 of parameter 1 of this table, see that for more details.

PEF Alert Startup

Delay (optional)

4 A one byte �eld giving the PEF Alert startup delay, in seonds, 10%

auray. A zero value means no delay. This goes along with bit 3 of

byte 1 of parameter 1 of this table, see that for more details.

Number of Event Fil-

ters (read only)

5 The number of array entries in the event �lter table, parameter 6 of

this table. The bits are:

bits 0-6 - The number of event �lter entries. A zero here means that

events �lters are not supported.

bit 7 - reserved

Event Filter Table 6 This is a 21 byte �eld giving aess to the event �lter table.

byte 0 bits 0-6 - The set seletor, the array index of whih event

�lter to set. 00h is reserved and not used and does not ount

in the number of event �lters.

bit 7 - reserved

bytes 1-20 - The �lter data for the array element given by byte 1 of

this parameter. See table 4.37 for the ontents of this data.

Event Filter Table

Byte 1

7 This is a 2 byte �eld giving aess to the �rst byte of an event �lter

table entry. This makes it onvenient to set the �rst byte without

having to read-modify-write the whole entry.

byte 0 bits 0-6 - The set seletor, the array index of whih event

�lter to set. 00h is reserved and not used and does not ount

in the number of event �lters.

bit 7 - reserved

byte 1 - Byte 1 of the event �lter table entry. See table 4.37 for the

ontents of this data.

74 CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Con�guration Parameters

Parameter # Desription

Number of Alert Poli-

ies (read only)

7 The number of array entries in the alert poliy table, parameter 9 of

this table. The bits are:

bits 0-6 - The number of event �lter entries. A zero here means that

alert poliies are not supported.

bit 7 - reserved

Alert Poliy Table 8 This is a 4 byte �eld giving aess to the alert poliy table.

byte 0 bits 0-6 - The set seletor, the array index of whih alert

poliy to set. 00h is reserved and not used and does not

ount in the number of event �lters.

bit 7 - reserved

bytes 1-3 - The �lter data for the array element given by byte 1 of

this parameter. See table 4.38 for the ontents of this data.

System GUID 9 A 17 byte �eld telling how to get the system GUID for PET traps.

byte 0 bit 0 - If one, use the value in bytes 1-16 of this �eld as the

GUID in traps. If not set, use the value returned from the

Get System GUID ommand.

bits 1-7 - reserved

bytes 1-16 - The system GUID

Number of Alert

String Keys (read

only)

11 The number of array entries in the alert string keys, parameter 12 of

this table. The bits are:

bits 0-6 - The number of alert string keys. A zero here means that

alert poliies are not supported.

bit 7 - reserved

4.13. THE PEF TABLE AND SNMP TRAPS 75

Table 4.36: PEF Con�guration Parameters

Parameter # Desription

Alert String Keys

(some parts are

volatile)

12 Some ations require alert strings for paging an operator. This key

is used in onjuntion with the alert poliy table (table 4.38) in some

ases. If bit 7 of byte 3 of an alert poliy table entry is set to 1, then

it will use the alert string set �eld from that table and the event �lter

number from the event being proessed to searh this table. If it �nds

a math, it will use the alert string that orresponds with the same

index as the entry in this table.

For instane, if entry 4h of this table has a 3h in byte 1 and a 7h in

byte 2, if event �lter 4 mathes an event and the alert poliy used has

87h in byte 3, then the alert string entry 4h of the alert strings are

used.

byte 0 bits 0-6 - The set seletor, the array index of whih alert

key to set. Entry 0h is volatile and used by the Alert Im-

mediate ommand as desribed in setion 4.13.5. Entries

1h-7h are non-volatile. All other entries are reserved.

bit 7 - reserved

byte 1 bits 0-6 - Event �lter number to math

bit 7 - reserved

byte 2 bits 0-6 - Alert String Set to math

bit 7 - reserved

76 CHAPTER 4. IPMI INTERFACES

Table 4.36: PEF Con�guration Parameters

Parameter # Desription

Alert Strings (some

parts are volatile)

13 Some ations require alert strings for paging an operator. This table

holds the atual alert strings. This table is indexed by the alert poliy

table (table 4.38) either diretly if bit 7 of byte 3 of an alert poliy

table entry is set to 0, or indiretly through parameter 12 of this table

if that bit is one.

The meanings of the values in this table are dependent on the alert

type and hannel.

For dial paging, this string will have a arraige return automatially

appended to the string.

For TAP paging, this string orresonds to 'Field 2', the pager message.

Note that TAP only supports 7-bit ASCII and the BMC will zero the

high bit when doing TAP paging.

byte 0 bits 0-6 - The set seletor, the array index of whih alert

string to set. Entry 0h is volatile and used by the Alert

Immediate ommand as desribed in setion 4.13.5. Entries

1h-7h are non-volatile. All other entries are reserved.

bit 7 - reserved

byte 1 - Blok seletor. The strings may be muh larger than an

be set in a single message. This selets whih blok to write, in

16-byte inrements. So, a 0 here is the �rst 16 bytes, a 1 is the

seond 16 bytes, and so on.

byte 2-n - The bytes to write into the spei� blok If this is less

than 16 bytes, then only the given number of bytes are written.

OEM Parmeters 96+ Parameters 96-127 are allowed for OEM use. All other parameters are

reserved.

The PEF table is read and written as part of the PEF Con�guration table, parameter 6, but the ontents

are doumented separately in table 4.37. When an event omes in, it is ompared against eah �lter in order.

If a math ours on multiple �lters, then the highest priority ation is done and the rest exept for alerts

are ignored. After the operation is ompleted, any alert operations are done by sanning the alert poliy

table in order. The order of the alert poliy table de�nes the priority of the di�erent alerts.

Table 4.37: PEF Table Entry

Byte Field Desription

4.13. THE PEF TABLE AND SNMP TRAPS 77

Table 4.37: PEF Table Entry

Byte Field Desription

0 Filter Con�guration Bits that ontrol the operation of this �lter:

bits 0-4 - reserved

bits 5-6 - �lter type

00b - Software on�gurable �lter. A manging system may on-

�gure all parts of this �lter.

01b - reserved

10b - pre-on�gured �lters. A managing system should not

modify the ontents of this �lter, although it may turn on

and o� the �lter using bit 7 of this �eld.

11b - reserved

1 Event �lter ation These bits set what ation this �lter will do if it mathes. These bits

are enable if set to one.

bit 0 - alert

bit 1 - power o�

bit 2 - reset

bit 3 - power yle

bit 4 - OEM ation

bit 5 - diagnosti interrupt

bits 6-7 - reserved

2 Alert Poliy Number

bits 0-3 - If alert is seleted in byte 1, this hooses the poliy number

to use in the alert poliy table.

bits 4-7 - reserved

3 Event Severity This is the value that will be put into the event severity �eld of the

PET trap. If more than one event �lter mathes, the highest priority

in all event �lters will be used. Valid values are:

00h - unspei�ed

01h - monitor

02h - information

04h - OK (returned to OK ondition)

08h - non-ritial ondition

10h - ritial ondition

20h - non-reoverable ondition

4 Generator ID byte 1 This mathes the slave address or software id in the event. It must be

an exat math. Use FFh to ignore this �eld when omparing events.

5 Generator ID byte 2 This mathes the hannel and LUN in the event. It must be an exat

math. Use FFh to ignore this �eld when omparing events.

78 CHAPTER 4. IPMI INTERFACES

Table 4.37: PEF Table Entry

Byte Field Desription

6 Sensor type This mathes the sensor type �eld in the event. It must be an exat

math. Use FFh to ignore this �eld when omparing events.

7 Sensor Number This mathes the sensor number �eld in the event. It must be an exat

math. Use FFh to ignore this �eld when omparing events.

8 Event Trigger This mathes the event diretion and event type byte (byte 13) in the

event. It must be an exat math. Use FFh to ignore this �eld when

omparing events.

9-10 Event data 1 low nib-

ble values

This �eld is a bitmask speifying whih values in the low 4 bits of the

event data 1 �eld will math. If a bit is set, then the orresponding

value will math for this �lter. For instane, if bits 2 and 7 are set,

then a value of 2 or 7 in the low nibble of event data 1 will ause a

�lter math (if everything else mathes too, of ourse).

byte 9 - bit positions 0-7

byte 10 - bit positions 8-15

11 Event data 1 AND

mask

This bit indiates whih bits in event data 1 are used for omparison.

If a bit in the mask is zero, then the bit is not used for omparison.

if a bit is one, then the orresponding bit in event data 1 is used for

omparison using the next two bytes of the table.

12 Event data 1 ompare

1

This byte tells how the bits in event data 1 are ompared. For every

bit set to one in this byte and one in the AND mask, the orresponding

bit in event data 1 must exatly math the data in the ompare 2 �eld.

For all bits set to zero in this byte and one in the AND mask, if any

of those bits must be set to the same value as the bit in the ompare

2 �eld, it is onsidered a math for that byte.

For instane, if the AND mask is 00001111b, the ompare 1 �eld is

00001100b, and the ompare 2 �eld is 00001010b, then the event data

1 byte mathes this omparison if:

((bit0 == 0) || (bit1 == 1))

&& (bit2 == 0) && (bit3 == 1)

Beause there are zeroes in bits 4-7, those are not used in the mask.

Exat mathes are required in bits 2 and 3 to ompare 2, and one of

bits 0 and 1 must be set the same as ompare 2.

Setting bytes 11-13 to all zero will ause event data 1 to be ignored for

omparison (it will always math).

13 Event data 1 ompare

2

This byte is used to ompare the values of event data 1. See byte 12

for more details on how this works.

14-16 Event data 2 �elds These bytes work the same a bytes 11-13, but apply to event data 2.

See those �elds for details.

4.13. THE PEF TABLE AND SNMP TRAPS 79

Table 4.37: PEF Table Entry

Byte Field Desription

17-19 Event data 3 �elds These bytes work the same a bytes 11-13, but apply to event data 3.

See those �elds for details.

The Alert Poliy table tells the BMC what to do when an event �lter mathes and the alert ation is set.

Every mathing �lter with the alert ation sets that alert poliy to be run. One all the �lters have been

heked, the set alert poliies are heked and exeuted in order of their poliy number. Depending on the

settings in the poliy, the BMC may go to the next alert poliy or stop.

Table 4.38: Alert Poliy Table Entry

Byte Field Desription

0 Poliy Number and

Poliy bits 0-2 - The poliy. Valid values are:

0h - Alway do this alert if hosen, even if other alert poliy

tables tell the BMC to stop.

1h - If an alert to a previous destination was suessful, do not

do this alert. If no alert has been suessful so far, do this

alert. Then go to the next entry in the poliy table.

2h - If an alert to a previous destination was suessful, do

not do this alert. If no alert has been suessful so far, do

this alert. Then stop proessing the poliy table (exept for

entries with a 0h poliy).

3h - If an alert to a previous destination was suessful, do not

do this alert. If no alert has been suessful so far, do this

alert. Then proeed to the next poliy entry that has a

di�erent hannel.

4h - If an alert to a previous destination was suessful, do not

do this alert. If no alert has been suessful so far, do this

alert. Then proeed to the next poliy entry that has a

di�erent destination type.

bit 3 - Entry enable. If set to one, the entry is enabled, if set to zero

it is ignored.

bits 4-7 - The poliy number, the array index of whih poliy table

entry to set.

80 CHAPTER 4. IPMI INTERFACES

Table 4.38: Alert Poliy Table Entry

Byte Field Desription

1 Channel / Destina-

tion bits 0-3 - The destination seletor. For the hosen hannel, this is

the spei� destination in the hannel to use to send the alert. See

the LAN Con�guration Table (table 4.16) or the Serial Con�gu-

ration Table (table 4.17) for information on what the destination

seletors an do.

bits 4-7 - The hannel. This tells the BMC whih hannel to send

the alert over.

2 Alert String Info Some types of alerts need a string assoiated with them, this hooses

the string. The spei� strings are stored in the PEF on�guration

parameters 12 and 13 in table 4.36.

If bit 7 of this byte is one, then the string is dependent on the event �l-

ter number that was mathed for this alert poliy. Bits 0-6 of this byte

are the alert string set. The event �lter number and the alert string set

are looked up in the table in parameter 12 of the PEF on�guration

to hoose the alert string to use. See that parameter for more details

on how this works.

if bit 7 of this byte is zero, then the bits 0-6 of this �eld are the alert

string seletor. The alert string seletor is used as a diret index into

the alert string table in parameter 13 of the PEF on�guration.

4.13.4 OpenIPMI and SNMP Traps

Setting Up A System To Send Traps

Setting up a system to send traps with OpenIPMI an be done two basi ways. The hard way is to set up

eah table individually. This is more work, but is very exible. The easy way just sets up for SNMP traps

but does all the work for you.

Setting Up the PEF Table and LAN Con�guration Table For a system to send traps, you must set

up the PEF table as desribed in setion 4.13.3 and the LAN on�guration table desribed in setion 4.9.1.

However, this is a lot of work.

Setting Up For Traps the Easy Way OpenIPMI provides a way to set up a simple SNMP trap send

from a BMC. The all has an unfortunately large number of parameters beause OpenIPMI annot pik the

various seletors and poliy numbers needed to set up for the trap, beause you may be using them for other

things. The funtion all is:

int ipmi_pet_reate(ipmi_domain_t *domain,

unsigned int onnetion,

unsigned int hannel,

strut in_addr ip_addr,

4.13. THE PEF TABLE AND SNMP TRAPS 81

unsigned har ma_addr[6℄,

unsigned int eft_sel,

unsigned int poliy_num,

unsigned int apt_sel,

unsigned int lan_dest_sel,

ipmi_pet_done_b done,

void *b_data,

ipmi_pet_t **pet);

domain - The domain to set up a trap sender for.

onnetion - Whih spei� onnetion to the domain do you want to on�gure?

hannel - The spei� hannel to on�gure. You will have to know the hannel you want to on�gure.

ip addr - The IP address to tell the BMC to send messages to.

ma addr - The MAC address to tell the BMC to send messages to.

eft sel - the Event Filter seletor to use for this PET destination. Note that this does *not* need to be

unique for di�erent OpenIPMI instanes that are using the same hannel, sine the on�guration will

be exatly the same for all EFT entries using the same hannel, assuming they share the same poliy

number.

poliy num - The poliy number to use for the alert poliy. This should be the same for all users of a

domain.

apt sel - The Alert Poliy seletor to use for this PET destination. Note that as eft_sel, this need not be

unique for eah di�erent OpenIPMI instane on the same hannel.

lan dest sel - The LAN on�guration destination seletor for this PET destination. Unlike eft_sel and

apt_sel, this *must* be unique for eah OpenIPMI instane on the same hannel, as it spei�es the

destination address to use.

done - This funtion will be alled when the PET on�guration is omplete.

b data - Data to pass to the done all.

pet - The reated objet.

This reates an objet that will ontinue to live and periodially hek that the on�guration is orret.

If you wish to destroy this, use the following:

int ipmi_pet_destroy(ipmi_pet_t *pet,

ipmi_pet_done_b done,

void *b_data);

82 CHAPTER 4. IPMI INTERFACES

Handling Inoming Traps

OpenIPMI has some ability to handle SNMP traps. It does not implement its own SNMP stak though, so

it annot do all the work for you. Indeed, di�erent SNMP exist and OpenIPMI would not want to presume

that you would only use one of them. Also, sine the SNMP trap port is �xed, some ooperative mehanism

may be required between di�erent piees of software. You must have your own stak, like NetSNMP[4℄, and

ath the traps with that.

One you have a trap, you must all:

int ipmi_handle_snmp_trap_data(void *sr_addr,

unsigned int sr_addr_len,

int sr_addr_type,

long speifi,

unsigned har *data,

unsigned int data_len);

Where sr_addr is the IP soure address (strut sokaddr_in) and length is the length of the address

struture. Only IP is supported for now, so sr_addr_type must be IPMI_EXTERN_ADDR_IP. The speifi

�eld is the �eld of the same name from the SNMP Protool Data Unit (PDU). The data �eld is a pointer

to the user data from the SNMP PDU, and the length of that data is in data_len.

The data in the trap is not enough information to fully deode the event, so urrently an inoming trap

will only ause an SEL feth on the proper SEL. OpenIPMI will automatially send the PET Aknowledge

ommand desribed in Table 4.35.

Note that SNMP traps an only be reeived on one port, and that port is privileged, so you must run as

root to reeive SNMP traps.

4.13.5 The Alert Immediate Command

4.14 OpenIPMI Addressing

The OpenIPMI driver and library use a ommon addressing sheme. This attempts to normalize the mes-

saging from the user's point of view. The message data will look the same no matter where you send it. The

only di�erene is the message.

The main OpenIPMI address struture is:

strut ipmi_addr

{

int addr_type;

short hannel;

har data[IPMI_MAX_ADDR_SIZE℄;

};

The addr_type and hannel are ommon to all OpenIPMI addresses. You have to look at the addr_type

to determine the type of address being used and ast it to the proper address. The spei� messages are

overlays on this struture.

A system interfae address is used to route the message to the loal management ontroller. It is:

4.14. OPENIPMI ADDRESSING 83

#define IPMI_SYSTEM_INTERFACE_ADDR_TYPE ...

strut ipmi_system_interfae_addr

{

int addr_type;

short hannel;

unsigned har lun;

};

The hannel should be IPMI_BMC_CHANNEL and the lun should generally be zero.

An IPMI address routes messages on the IPMB. The format is:

#define IPMI_IPMB_ADDR_TYPE ...

#define IPMI_IPMB_BROADCAST_ADDR_TYPE ...

strut ipmi_ipmb_addr

{

int addr_type;

short hannel;

unsigned har slave_addr;

unsigned har lun;

};

The hannel should be the IPMB bus hannel number, the slave_address should be the IPMB address

of the destination, and the lun should be the destination LUN. Notie that two address types an be used

with this ommand, a normal IPMB message and a broadast IPMB an be sent with this. Note that if you

send a broadast IPMB, you will reeive a normal IPMB address in the response.

A LAN to system interfae address is:

#define IPMI_LAN_ADDR_TYPE ...

strut ipmi_lan_addr

{

int addr_type;

short hannel;

unsigned har privilege;

unsigned har session_handle;

unsigned har remote_SWID;

unsigned har loal_SWID;

unsigned har lun;

};

This deviates a little from the IPMI spe. In the spe, the SWIDs used are the requester SWID and

responder SWID. For this message, the remote SWID is other end and the loal SWID is this end. This way,

there is no onfusion when sending and reeiving messages, and no speial handling of the SWIDs needs to

be done.

84 CHAPTER 4. IPMI INTERFACES

C h a p t e r 5

The MC

The MC is the \intelligent" devie in an OpenIPMI system. It is a proessor that is always on and handles

management operations in the system. It is the thing that reeives ommands, proesses them, and returns

the results.

An IPMI system will have at least one MC, the BMC. The BMC is the \main" management ontroller;

it handles most of the interfaes into the system.

5.1 OpenIPMI and MCs

Note: This setion deals with OpenIPMI internals. The user does not generally need to know about man-

agement ontrollers, as they are internal to the operation of OpenIPMI. However, they are disussed beause

users writing plugins or �xup ode will need to know about them. Plus, these interfaes are subjet to hange.

5.1.1 Disovering MCs

In OpenIPMI, the MC devies in a system are part of the domain. When the user reates the domain,

OpenIPMI will start sanning for MCs in the system. The user an disover the MCs in a domain in two

ways: iterating or registering allbaks.

Iterating the MCs in a domain simply involves alling the iterator funtion with a allbak funtion:

stati void

handle_m(ipmi_domain_t *domain, ipmi_m_t *m, void *b_data)

{

my_data_t *my_data = b_data;

/* Proess the MC here */

}

void

iterate_ms(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_iterate_ms(domain, handle_m, my_data);

85

86 CHAPTER 5. THE MC

if (rv)

handle_error();

}

This is relatively simple to do, but you will not be able to know immediately when new MCs are added

to the system. To know that, you must register a allbak funtion as follows:

stati void

handle_m(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_m_t *m,

void *b_data)

{

my_data_t *my_data = b_data;

/* Proess the MC here */

}

void

handle_new_domain(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_add_m_updated_handler(domain, handle_m, my_data);

if (rv)

handle_error();

}

You should all the funtion to add an MC updated handler when the domain is reported up (or even

before); that way you will not miss any MCs.

5.1.2 MC Ative

An MC may be referened by another part of they system, but may not be present. For instane, it may be

on a plug-in ard. An MC that is not present is alled \inative", an MC that is present is alled \ative".

OpenIPMI automatially detets whether MCs are ative or inative.

The ipmi_m_is_ative funtion is used to tell if an MC is ative. As wall, allbak handlers an be

registered with ipmi_m_add_ative_handler to know immediately when an MC is set ative or inative.

5.1.3 MC Information

OpenIPMI will extrat information about the MC from the Get Devie ID ommand; you an feth this with

funtions. The funtions are almost all of the form:

int ipmi_m_xxx(ipmi_m_t *m)

The �elds available (replae \xxx" with these in the previous de�nition) are:

provides devie sdrs Returns true if the MC has devie SDRs, false if not.

5.1. OPENIPMI AND MCS 87

devie available Return false if the MC is operating normally, or true if the MC is

updating its �rmware.

hassis support Returns true if the MC supports the hassis ommands, false if not.

bridge support Returns true if the MC support bridge ommands (generally for

ICMB), false if not.

ipmb event generator support Return true if the MC will generate events on the IPMB. Note that

if this is false, it an still generate events and store them on a loal

System Event Log (SEL), like on a BMC.

ipmb event reeiver support Returns true if the MC an reeive events from other MCs on the

IPMB.

fru inventory support If true, the MC support FRU inventory ommands.

sel devie support If true, the MC has an event log on it.

sdr repository support If true, the MC supports a writable SDR repository. This is not a

devie SDR repository.

sensor devie support If true, this MC supports sensor ommands.

devie id The devie id of the MC. This helps identify the apabilities of the

MC; it is used along with the produt and manufaturer IDs to know

the exat apabilities of the devie. It's use is OEM-spei�, though.

devie revision The hardware revision for the MC and assoiated hardware. It's use

is OEM-spei�, though.

major fw revision The major revision of the �rmware running on the MC.

minor fw revision The minor revision of the �rmware running on the MC.

major version The major version of the IPMI spei�ation version supported by the

MC.

minor version The minor version of the IPMI spei�ation version supported by the

MC.

manufaturer id A 24-bit number assigned by the IANA for the manufaturer of the

MC hardware.

produt id A 16-bit number assigned by the manufaturer to identify the spei�

MC hardware.

In addition, the following funtion:

void ipmi_m_aux_fw_revision(ipmi_m_t *m, unsigned har val[℄);

returns the optional 4-byte auxiliary �rmware revision information �eld. The meaning of this �eld is

vendor-spei� and the �eld may not be present (in whih ase all zeros is returned).

5.1.4 MC Reset

OpenIPMI has a funtion to reset an MC. It is:

#define IPMI_MC_RESET_COLD ...

#define IPMI_MC_RESET_WARM ...

int ipmi_m_reset(ipmi_m_t *m,

88 CHAPTER 5. THE MC

int reset_type,

ipmi_m_done_b done,

void *b_data);

Note that this resets the MC, not the main proessor on the board the MC is loated on. There are two

types of reset, old and warm. Not all systems support resetting the MC and the e�ets of the reset are

system-dependent.

5.1.5 Global Event Enables

An MC has a global event enable. If events are disabled, then all events from the MC are disabled. If events

are enabled, then the sending of events depends on more spei� event settings on the sensors. The value is

a true-false, setting it to true enables events. False disables events. The funtions are:

int ipmi_m_get_events_enable(ipmi_m_t *m);

int ipmi_m_set_events_enable(ipmi_m_t *m,

int val,

ipmi_m_done_b done,

void *b_data);

The setting is fethed and held loally, so the \get" funtion is immediate. The \set" funtion requires

sending a message and thus it has a allbak.

C h a p t e r 6

IPMI Commands

IPMI does everything exept events through ommands and responses. A user sends a ommand to an MC,

and the MC returns a response. All ommands have responses. Commands may optionally have some data;

the data depends on the ommand. The same goes for responses, exept that all responses ontain at least

one data byte holding the ompletion ode. Every response has a ompletion ode in the �rst byte.

Every ommand and response has a NetFN and ommand number. A NetFN is a number that desribes a

funtion group. All sensor-related ommands, for instane, have the same NetFN. The ommand number is

the number for the spei� ommand within the NetFN. Responses ontain the same NetFN and ommand

number as the ommand, exept the NetFN has one added to it. So responses to sensor ommand (NetFN

04h) will use NetFN 05h. Table 6.1 shows the NetFN values. All ommands have even NetFNs, and all

responses have odd NetFNs.

Table 6.1: NetFN odes

NetFN Name Desription

00h, 01h Chassis Common hassis ontrol and status funtions.

02h, 03h Bridge Messaging for bridging to another bus, generally ICMB.

04h, 05h Sensor/Event Handling of sensors and events.

06h, 07h Appliation General ontrol and status of a onnetion and basi operations.

This is the \ath all" where things that don't really �t elsewhere

fall, too.

08h, 09h Firmware Used for formware heking and upgrade, generally. The mes-

saging for this is ompletely proprietary and not de�ned by the

spe.

0Ah, 0Bh Storage Non-volatile storage handling, the SDRs and SEL.

0Ch, 0Dh Tranport Con�guration of the LAN and serial interfaes.

0Eh-2Bh Reserved

89

90 CHAPTER 6. IPMI COMMANDS

2Ch, 2Dh Group Exten-

sions

A way for external groups to de�ne their own extensions without

oniting. The �rst byte of the ommand and seond byte of

the response are a �eld that identi�es the entity de�ning the

messages; these bytes are, in e�et, an extension of the NetFN.

The external groups are free to de�ne the message outside those

bounds. Current de�ned external groups are:

00h CompatPCI

01h DMTF Pre-OS Working Group ASF Spei�ation

All other values are reserved.

2Eh, 2Fh OEM/Group Basially more group extensions, exept that the �rst three bytes

(bytes 0-2) of ommands and seond three bytes (bytes 1-3) of

responses are the IANA enterprise number. The owner of the

IANA enterprise number is free to de�ne these values any way

they like.

30h-3Fh OEM OEMs are free to use these messages any way they like.

Every response has a one byte error ode that is always the �rst byte of the message. There are a number

of error ode. Unfortunately, the error responses returned in a response are not bounded per ommand; the

implementor is free to return pretty muh anything it likes as an error response. Some ommands de�ne

expliit error return ode for some situations, but not generally. Table 6.2 shows the error odes in IPMI.

Table 6.2: Error odes

Error Name Desription

00h No error, ommand ompleted normally

01h-7Eh OEM error odes. Implementors may use these error odes for

their own ommands if a standard error ode does not apply.

7Fh reserved

80h-BEh Command-spei� error odes. Some ommands have spei�

errors they return that only apply to that ommand. These are

de�ned by the ommand.

BFh reserved

C0h Node Busy The ommand ould not omplete beause ommand proessing

resoures on the MC are temporarily unavailable.

C1h Invalid Com-

mand

The MC did not support the given NetFN and ommand.

C2h Invalid Com-

mand for LUN

The given ommand was not supported on the LUN it was sent

to.

C3h Timeout A timeout ourred while proessing the ommand.

C4h Out of Spae There was not enough storage spae to perform the given om-

mand.

C5h Reservation In-

valid

This is for ommands that require reservations (like SEL and

SDR ommands). This means the reservation number given was

invalid or the reservation was lost.

C6h Data Trunated The request data was trunated (it is unknown what this means).

91

C7h Command

Length Invalid

The reeived ommand was the wrong length for the ommand.

C8h Command Field

Too Long

A �eld in a ommand was too long for the given ommand.

C9h Parameter Out

of Range

One or more �elds in a ommand were outside the range of allowed

values. Aording to the spe, \This is di�erent from the 'Invalid

data �eld' (CCh) ode in that it indiates that the erroneous

�eld(s) has a ontiguous range of possible values." The meaning

of that enigmati statement is unknown.

CAh Too Many Re-

quested Bytes

A request was made for some data, but the requested number of

bytes was either beyond the end of the data or too long to �t into

the return response.

CBh Invalid Objet The requested sensor, reord, or data was not present. The om-

mand is supported, but the spei� objet asked for does not

exist.

CCh Invalid Data

Field

An invalid data �eld was in the request. See error C9h for more

details.

CDh Command In-

valid for Objet

The spei� sensor, reord, or data does not support the given

ommand.

CEh No Response The ommand response ould not be provided. The meaning of

this is unknown.

CFh Dupliate Re-

quest

A dupliate request was reeived and ignored. The spe says

\This ompletion ode is for devies whih annot return the re-

sponse that was returned for the original instane of the request.

Suh devies should provide separate ommands that allow the

ompletion status of the original request to be determined. An

Event Reeiver does not use this ompletion ode, but returns the

00h ompletion ode in response to (valid) dupliate requests."

The meaning of this statement is unknown. However, in general

IPMI should be stateless beause reponses an be lost and om-

mands retransmitted. Commands that have intermediate state

need to be handled very arefully (and there are none in the

main spe).

D0h SDR Respos-

itory Being

Updated

The SDR repository is urrently in update mode so the given

ommand ould not be exeuted.

D1h Firmware Being

Updated

The given ommand ould not be exeuted beause �rmware on

the system is being updated.

D2h BMC Initializ-

ing

The given ommand ould not be exeuted beause the BMC (or

probably any MC) is urrently initializing.

D3h Destination Un-

available

An MC ould not deliver the ommand to the given destination.

For instane, if you send a \Send Message" ommand to a hannel

that is not ative, it may return this.

92 CHAPTER 6. IPMI COMMANDS

D4h InsuÆient

Privilege

The user does not have suÆient privilege to exeute the om-

mand.

D5h Invalid State The given ommand annot be supported in the present state.

D6h Subfuntion

Disabled

The given ommand annot be exeuted beause the subfuntion

required has been disabled.

D7h-FEh reserved

FFh Unspei�ed Some error ourred, but the true error ould not be determined.

The atual mehanis of sending a message depend on the interfae, see the interfae setions in hapter

4 for the details of sending over spei� interfaes.

6.1 Sending Commands in the OpenIPMI Library

The OpenIPMI library hides most of the details of sending a ommand and handles all the aspets of talking

to sensors, ontrols, and MCs. You should generally not need to send a ommand to an MC. However,

exeptions exist, so the operation is desribed here.

First, you should probably deide if you want a lean interfae to the funtion through a ontrol. A

ontrol provides a lean interfae to a devie and should probably be used if possible. You would then send

the messages from funtions that are part of the ontrol interfae.

To send a message, you an either send it to an address in the domain or to an MC. To send to an

address, you must have or onstrut a valid IPMI address and use:

ipmi_send_ommand_addr(ipmi_domain_t *domain,

ipmi_addr_t *addr,

unsigned int addr_len,

ipmi_msg_t *msg,

ipmi_addr_response_handler_t rsp_handler,

void *rsp_data1,

void *rsp_data2);

To send to an MC, you must have a valid MC. You an usually extrat this from a ontrol or sensor (the

MC the sensor belongs to) or you an iterate the MCs or keep the MC id around. The funtion to send a

message to an MC is:

int ipmi_m_send_ommand(ipmi_m_t *m,

unsigned int lun,

ipmi_msg_t *md,

ipmi_m_response_handler_t rsp_handler,

void *rsp_data);

C h a p t e r 7

SDR Repositories

IPMI systems keep information about their sensors and entities in an SDR repository. The SDR repository

is a set of reord; eah reord holding information about the sensor or entity. An SDR repository may also

hold OEM reords; those are system-spei� and not disussed here.

IPMI systems have two types of SDR repositories. The IPMI spe does not give a name to the �rst type,

but we shall refer to it here as the \main" SDR repository. A system should generally only have one of these.

This repository is writable by the user using standard operations.

Eah MC in an IPMI system may have a devie SDR repository. IPMI does not have standard operations

to write this repository, just to read it. This repository may also hange dynamially. For instane, if some

devie is hot-plugged onto a board, the MC for that board may dynamially add or hange sensors and

entities for the new devie.

The reords in these two types of repositories are the same.

7.1 SDR Reservations

Both SDR repository types support the onept of a reservation.

7.2 The Main SDR Repository

TBD - write this

7.2.1 Modal and Non-Modal SDR Repositories

7.2.2 Commands for Main SDR Repositories

7.3 Devie SDR Repositories

TBD - write this

93

94 CHAPTER 7. SDR REPOSITORIES

7.3.1 Dynami Devie SDR Repositories

7.3.2 Commands for Devie SDR Repositories

7.4 Reords in an SDR Repository

Setion 8.8 on entities and setion 9.7 on sensors desribe the spei� reords in SDR repositories. They all

follow a general format, though; this setion desribes that format.

Eah SDR has three parts: A header, a key, and a body. Note that all multi-byte values in SDRs are

little-endian unless spei�ed otherwise. The header is:

0-1 Reord ID. This is the number used to feth the reord from the SDR repository.

2 IPMI Version. This is the IPMI version the reord is spei�ed under.

3

Reord Type. This tells the spei� type of reord ontained in the SDR; it gives the

format of the data after the header.

4 Reord Size. This is the number of bytes in the SDR, not inluding the header.

Table 7.1: The SDR header

The key and body are dependent on the reord type and are de�ned in the spei� reord de�nitions.

Table 7.2 shows the various reord types supported by IPMI.

To feth an SDR, �rst feth the SDR header. One the size is known the rest of the SDR an be fethed.

7.5 Dealing with SDR Repositories in OpenIPMI

SDRs an be rather diÆult to deal with. OpenIPMI hides most, if not all, of the diÆulty from the user.

It fethes the SDRs, deodes them, reate entities and sensors as neessary, and reports those to the user.

The user of OpenIPMI will not have to know anything about SDRs, in general.

The type used by OpenIPMI to hold an SDR repository is ipmi_sdr_info_t. The type used to hold

individual SDRs is ipmi_sdr_t. The internals of ipmi_sdr_info_t are opaque, you an only use funtions

to manipulate it. The internals of ipmi_sdr_t are not (urrently) opaque, you an aess the internals

diretly.

7.5.1 Getting an SDR Repository

If you need aess to the SDRs for a system, you an get the main SDRs by alling:

ipmi_sdr_t *ipmi_domain_get_main_sdrs(ipmi_domain_t *domain);

You an get the SDRs for an MC with the following:

ipmi_sdr_t *ipmi_m_get_sdrs(ipmi_domain_t *domain);

These are the pre-fethed opies that OpenIPMI holds. You an also feth your own opy of an SDR

repository using the following all to reate it:

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI 95

01h Type 1 sensors are generally used for analog sensors. They an be used for disrete sensors,

too, but most of the �elds are irrelevant for disrete sensors.

02h Type 2 sensors are used for disrete sensors. Multiple similar sensors may be spei� in a

single type 2 reord if the sensor meet ertain riteria.

03h Type 3 sensors are used for sensors that only send events.

08h A type 8 sensor is alled a Entity Assoiation Reord (EAR). These are used to speify

entity ontainment; to speify, for instane that a proessor entity is on a spei� board

entity.

09h A type 9 sensor is alled a Devie Relative Entity Assoiation Reord (DREAR). It is like

a type 8 reord, but an ontain devie-relative entities.

10h A type 16 reord is alled a Generi Devie Loator Reord (GDLR). It is used to give

information about an entity when the entity is not a FRU or MC.

11h A type 17 reord is alled a Field Replaable Unit Devie Loator Reord (FRUDLR). It is

used to give information about a FRU entity in the system that is not a MC.

12h A type 18 reord is alled a Management Controller Devie Loator Reord (MCDLR). It

is used to give information about a MC entity in the system.

13h A type 19 reord is alled a Management Controller Con�rmation Reord. It reord the fat

that a MC has been found in the system. Note that OpenIPMI does not urrently use these.

14h A type 20 reord is alled a BMC Message Channel Info Reord. It is only used in IPMI

version 1.0; it spei�es the hannels available on the system. Newer version of IPMI use

spei� messages to arry this information.

C0h This is used for OEM reords. The format depends on the spei� system type.

Table 7.2: SDR types. All other reord types are reserved

96 CHAPTER 7. SDR REPOSITORIES

int ipmi_sdr_info_allo(ipmi_domain_t *domain,

ipmi_m_t *m,

unsigned int lun,

int sensor,

ipmi_sdr_info_t **new_sdrs);

If you want the main SDRs held on an MC, set the sensor value to false (zero). If you want the devie

SDRs, set the value to true (one). After you alloate an SDR info struture, you an use the following all

to feth it:

typedef void (*ipmi_sdrs_fethed_t)(ipmi_sdr_info_t *sdrs,

int err,

int hanged,

unsigned int ount,

void *b_data);

int ipmi_sdr_feth(ipmi_sdr_info_t *sdrs,

ipmi_sdrs_fethed_t handler,

void *b_data);

If you alloate your own SDR info struture, you should destroy it when you are done with it with the

following all:

typedef void (*ipmi_sdr_destroyed_t)(ipmi_sdr_info_t *sdrs, void *b_data);

int ipmi_sdr_info_destroy(ipmi_sdr_info_t *sdrs,

ipmi_sdr_destroyed_t handler,

void *b_data);

Note that you should not destroy an SDR repository you fethed from the domain or MC. Those are

managed by OpenIPMI; if you destroy them you will ause problems.

Note that an SDR repository from a MC or domain is dynami; it may hange beause OpenIPMI resans

the SDRs to make sure they haven't hanged.

7.5.2 SDR Repository Information

General SDR info is available about the repository one the feth is omplete. The format of the funtions

to get them are all

int ipmi_sdr_get_xxx(ipmi_sdr_info_t *sdr, int *val);

where the xxx is replaed by the item you wish to get. Valid items are:

major version The major IPMI version the SDR repository supports, like 1 for IPMI 1.0

and 1.5, and 2 for IPMI 2.0.

minor version The minor IPMI version the SDR repository supports, like 0 for IPMI 1.0

and 2.0, and 5 for IPMI 1.5.

overow An SDR write operation has failed to do lak of spae.

7.5. DEALING WITH SDR REPOSITORIES IN OPENIPMI 97

update mode The update modes supported. Valid values are:

00b - unspei�ed

01b - Only non-modal updates are supported

10b - Only modal updates are supported

11b - Both modal and non-modal updates are supported

supports delete sdr If true, the repository supports deleting individual SDRs one at a time.

supports partial add sdr If true, the repository supports the partial add ommand.

supports reserve sdr If true, the repository supports using reservations.

supports get sdr

repository alloation

If true, the repository allows alloation information to be fethed with the

Get SDR Repository Alloation Info ommand.

dynami population If true, the IPMI system an dynamially hange the ontents of the SDR

repository. This may only be true for devie SDR repositories. Although

main SDR repositories an dynamially hange, it is not the system that

does this, it is the user.

The following all an be used to tell whether sensors are available on spei� LUNs.

int ipmi_sdr_get_lun_has_sensors(ipmi_sdr_info_t *sdr,

unsigned int lun,

int *val);

7.5.3 Handling a SDR Repository

One you have an SDR repository, you an feth individual SDRs from it by the reord id, type, or index.

To �nd out the number of SDRs in the repository, use:

int ipmi_get_sdr_ount(ipmi_sdr_info_t *sdr,

unsigned int *ount);

Fething the SDRs by index is probably the most useful funtion; it treats the repository as an array and

lets you feth items, starting at zero. The all is:

int ipmi_get_sdr_by_index(ipmi_sdr_info_t *sdr,

int index,

ipmi_sdr_t *return_sdr);

If you are interested in a spei� reord number, you an feth it with:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,

int type,

ipmi_sdr_t *return_sdr);

If you want to �nd the �rst SDR of a given type, use the following all:

int ipmi_get_sdr_by_type(ipmi_sdr_info_t *sdr,

int type,

ipmi_sdr_t *return_sdr);

98 CHAPTER 7. SDR REPOSITORIES

To get all the SDRs, use the following:

int ipmi_get_all_sdrs(ipmi_sdr_info_t *sdr,

int *array_size,

ipmi_sdr_t *array);

Your passed in array will be �lled with the SDR data. The int pointed to by array_size must be set to the

number of available elements in array. It will be modi�ed to be the atual number of SDRs put into the

array. If the array is not big enough to hold all the SDRs, the all will fail and have no e�et.

C h a p t e r 8

Entities

Though you might not know it from a ursory reading of the IPMI spe, entities are an important part of

IPMI. They de�ne what a sensor (and in OpenIPMI, a ontrol) monitors (or ontrols). They are, in essene,

the physial parts of the system. For instane, if a system has a temperature sensor on the proessor and

another temperature sensor on the main board, the temperature sensors will be attahed to the proessor

entity and board entity, respetively. This way, you an tell what the sensor monitors.

Entities are de�ned by two numbers, the entity id and the entity instane. The entity id de�nes the type

of thing, suh as a power supply, proessor, board, or memory. The entity instane de�nes the instane of

the thing. For instane, a system may have 4 DIMMs. Eah of these DIMMs would be the same entity id

(memory), but they would eah have a di�erent instane. From now on these are referred to as (<entity

id>,<entity instane>). For example, entity (3,1) would be the �rst proessor in the system.

IPMI de�nes two types of entities: system-relative and devie-relative. System-relative entities are unique

throughout the entire system (the domain, in OpenIPMI terms). Thus if sensors on di�erent MCs referred

entity (3,1), they would all be referring to exatly the same physial thing. System-relative entity instanes

are de�ned to be less than 96.

Devie-relative entities are unique on the management ontroller that ontrols them. These entity's

instanes are numbered 96-128. These are referred to using their hannel and IPMB address in the form

r(<hannel>,<IPMB>,<entity id>,<entity instane>-96). For instane, if an MC at address C0h had a

sensor on hannel 0 that monitored entity id 3, instane 97, that would be r(0,C0,3,1)

Entities may or may not have spei� information desribing them. Entities that do have spei� infor-

mation desribing them have devie loator reords.

Entity IDs de�ned by IPMI are:

Name desription

0 UNSPECIFIED The entity id is not used.

1 OTHER Something else?

2 UNKOWN It's hard to understand why the entity id wouldn't be

known, but this is de�ned by the spe.

3 PROCESSOR A proessor

4 DISK A disk or disk bay

5 PERIPHERAL A peripheral bay

99

100 CHAPTER 8. ENTITIES

6 SYSTEM MANAGEMENT

MODULE

A separate board for system management

7 SYSTEM BOARD The main system board

8 MEMORY MODULE A memory module (a DIMM, for instane)

9 PROCESSOR MODULE A devie that holds proessors, if they are not mounted

on the system board. This would generally be a soket.

10 POWER SUPPLY The main power supplies for the system use this.

11 ADD IN CARD A plug-in ard in a system, a PCI ard for instane.

12 FRONT PANEL BOARD A front panel display and/or ontrol panel.

13 BACK PANEL BOARD A rear panel display and/or ontrol panel.

14 POWER SYSTEM BOARD A board that power supplies plug in to

15 DRIVE BACKPLANE A board that disk drives plug in to

16 SYSTEM INTERNAL

EXPANSION BOARD

A board that ontains expansion slots. A PCI riser

board, for instane.

17 OTHER SYSTEM BOARD Some other board in the system.

18 PROCESSOR BOARD A separate board that holds one or more proessors.

19 POWER UNIT A logial grouping for a set of power supplies

20 POWER MODULE Used for internal DC-to-DC onverters, like one that

is on a board. Note that you would not use this for

the main power supply in a system, even it it was a

DC-to-DC onverter.

21 POWER MANAGEMENT

BOARD

A board for managing and distributing power in the

system

22 CHASSIS BACK

PANEL BOARD

A rear board in a hassis.

23 SYSTEM CHASSIS The main hassis in the system.

24 SUB CHASSIS A sub-unit of the main hassis.

25 OTHER CHASSIS BOARD Some other board that doesn't �t the given ategories.

26 DISK DRIVE BAY A sub-hassis that holds a set of disk drives.

27 PERIPHERAL BAY A sub-hassis that holds a set of peripherals.

28 DEVICE BAY A sub-hassis that holds a set of devies. The di�er-

ene between a peripheral and a devie is not known.

29 FAN COOLING A fan or other ooling devie.

30 COOLING UNIT A group of fans or other ooling devies.

31 CABLE INTERCONNECT A able routing devie.

32 MEMORY DEVICE A replaeable memory devie, like a DIMM. This

should not be used for individual memory hips, but

for the board that holds the memory hips.

33 SYSTEM MANAGEMENT

SOFTWARE

The meaning of this is unknown.

34 BIOS The BIOS running on the system.

35 OPERATING SYSTEM The operating system running on the system.

36 SYSTEM BUS The main interonnet bus in a system.

8.1. DISCOVERING ENTITIES 101

37 GROUP A generi grouping of entities if no physial thing

groups them but they need to be groups.

38 REMOTE MGMT

COMM DEVICE

A ommuniation devie used for remote management.

39 EXTERNAL

ENVIRONMENT

The environment outside the hassis. For instane,

a temperature sensor outside the hassis that moni-

tored external temperature would use this. Di�erent

instanes may be used to speify di�erent regions out-

side the box.

40 BATTERY A battery

41 PROCESSING BLADE A single-board omputer, generally a board that has

one or more proessors, memory, et. that plugs into

a bakplane.

42 CONNECTIVITY SWITCH A network swith that plugs into a system to provide

onnetivity between independent proessors in a sys-

tem.

43 PROCESSOR MEMORY

MODULE

?

44 IO MODULE ?

45 PROCESSOR IO MODULE ?

46 MGMT CONTROLLER

FIRMWARE

The �rmware running on an MC.

8.1 Disovering Entities

In OpenIPMI, the entities in a system are part of the domain. As OpenIPMI sans SDRs it �nds, it will

reate the entities referened in those SDRs. The user an disover the entities in a domain in two ways:

iterating or registering allbaks.

Iterating the entities in a domain simply involves alling the iterator funtion with a allbak funtion:

stati void

handle_entity(ipmi_domain_t *domain, ipmi_entity_t *entity, void *b_data)

{

my_data_t *my_data = b_data;

/* Proess the entity here */

}

void

iterate_entities(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_iterate_entities(domain, handle_entity, my_data);

if (rv)

handle_error();

102 CHAPTER 8. ENTITIES

}

This is relatively simple to do, but you will not be able to know immediately when new entities are added

to the system. To know that, you must register a allbak funtion as follows:

stati void

handle_entity(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *b_data)

{

my_data_t *my_data = b_data;

/* Proess the entity here */

}

void

handle_new_domain(ipmi_domain_t *domain, my_data_t *my_data)

{

int rv;

rv = ipmi_domain_add_entity_update_handler(domain, handle_entity, my_data);

if (rv)

handle_error();

}

You should all the funtion to add an entity update handler when the domain is reported up (or even

before); that way you will not miss any entities.

8.2 Entity Containment and OpenIPMI

Entities may be ontained inside other entities. For instane, a hassis may ontain a board, and a board

may have a proessor on it. This is expressed in spei� entity SDRs. OpenIPMI represents this by entities

having hildren and parents.

To disover the parents of an entity, they may be iterated. It seems possible for an entity to have more

than one parent; there is no diret prohibition of this in IPMI, although it would be a little wierd. To iterate

the parents, use the following all:

typedef void (*ipmi_entity_iterate_hild_b)(ipmi_entity_t *ent,

ipmi_entity_t *hild,

void *b_data);

void ipmi_entity_iterate_hildren(ipmi_entity_t *ent,

ipmi_entity_iterate_hild_b handler,

void *b_data);

Similarly, an entity may have hildren, but it is ertain that more than one hild is allowed. To iterate

entities hildren, use the following all:

8.3. ENTITY PRESENCE 103

typedef void (*ipmi_entity_iterate_parent_b)(ipmi_entity_t *ent,

ipmi_entity_t *parent,

void *b_data);

void ipmi_entity_iterate_parents(ipmi_entity_t *ent,

ipmi_entity_iterate_parent_b handler,

void *b_data);

To disover if an entity is a hild (has parent entities) or is a parent (has hild entities), you may use the

following alls:

int ipmi_entity_get_is_hild(ipmi_entity_t *ent);

int ipmi_entity_get_is_parent(ipmi_entity_t *ent);

8.3 Entity Presene

An entity identi�ed in an SDR may or may not be present in the system. IPMI spei�es an algorithm

for deteting whether an entity is present. Unfortunately, this algorithm is extremely ompliated. The

algorithm is given in stages:

� If the entity has a presene sensor attahed (sensor type 25h) or a bit in some sensor that is attahed

to it that shows presense (sensor type 21h bit 02h, sensor type 08h bit 00h, or sensor type 29h bit 02h),

that sensor should always be present and will tell if the entity is present. A presene sensor or bit will

override all other entity detetion methods; it diretly tells if the entity is present or not.

� If a FRU devie for the entity is spei�ed and is operational, then the entity is present.

� The entity is present if at least one sensor is available and sanning is enabled on that sensor.

� The entity is present if the entity is a parent entity and at least one of its hildren is present.

� Otherwise the entity is not present.

Entity presene may also a�et whether the sensors attahed to the entity are present. The sensor SDRs

have a ag that spei�es whether the sensor is present even if the entity is not present.

8.3.1 Entity Presene in OpenIPMI

OpenIPMI handles detetion of entity presene for the user. If you have an entity pointer or entity id, you

an diretly query to see if the entity is present using:

int ipmi_entity_is_present(ipmi_entity_t *ent);

int ipmi_entity_id_is_present(ipmi_entity_id_t id, int *present);

If you need to know when an entity beomes present or absent, you may use the following allbak

registration:

typedef int (*ipmi_entity_presene_hange_b)(ipmi_entity_t *entity,

int present,

void *b_data,

104 CHAPTER 8. ENTITIES

ipmi_event_t *event);

int ipmi_entity_add_presene_handler(ipmi_entity_t *ent,

ipmi_entity_presene_hange_b handler,

void *b_data);

int ipmi_entity_remove_presene_handler

(ipmi_entity_t *ent,

ipmi_entity_presene_hange_b handler,

void *b_data);

This is a standard event handler as de�ned in setion 2.2.5 on page 20.

8.4 Entity Types and Info

Entities ome in four di�erent avors:

MC - An MC entity is for a MC.

FRU - This is for �eld-replaeable entities that are not MCs.

Generi - Some other devie on the IPMB bus.

Unknown - This is for entities that do not have an SDR reord to identify them. These entities are generally

only referened in sensor reords or in entity assoiation reords.

The following all returns the entity type:

enum ipmi_dlr_type_e ipmi_entity_get_type(ipmi_entity_t *ent);

Valid entity types are:

IPMI ENTITY UNKNOWN

IPMI ENTITY MC

IPMI ENTITY FRU

IPMI ENTITY GENERIC

There are alls to feth information about entities, but only ertain alls are available for ertain entities.

All these alls have the form:

int ipmi_entity_get_xxx(ipmi_entity_t *ent);

where xxx is the data item. These will not return errors, they will return unde�ned information if they are

alled on an entity that does not support the spei� data item. The data items supported are:

Data Item Desription M F G U

is fru This will be true if the item has FRU information x x x x

entity id This will be the entity id of the entity. x x x x

entity instane This will be the entity instane of the entity. x x x x

devie hannel This is the devie hannel for the entity. It is only useful if

the entity instane is devie-relative. See setion 8 for more

details.

x x x x

8.4. ENTITY TYPES AND INFO 105

devie address This is the IPMB address for the entity. It is only useful if

the entity instane is devie-relative. See setion 8 for more

details.

x x x x

presense sensor

always there

If this is true, then the entity has a presene sensor or a

presene bit sensor and that sensor is always present.

x x x x

hannel The hannel number for the entity. This is di�erent than

devie hannel beause it is the atual value from the SDR,

not the value from the entity info.

x x x

lun The LUN from the SDR. x x x

oem The entity SDRs have an OEM �eld that may be fethed

with this all. The meaning of this is system dependent.

x x x

aess address The IPMB address of the MC the entity is on or is represented

by.

x x

private bus id The FRU information may be on an EEPROM devie on a

private bus. If so,

x x

devie type The type of I

2

C devie. This is really not very important,

but these are de�ned in the IPMI spe.

x x

devie modi�er An extension to the devie type �eld to further re�ne the

devie type.

x x

slave address The IPMB address of the devie on the IPMB. x x

is logial fru Tells if the FRU information on the FRU is aessed through

an MC (value is 1) or is aess diretly on the IPMB bus as

a EEPROM (value is 0).

x

ACPI system power

notify required

If true, ACPI system power state noti�ation is required for

the devie.

x

ACPI devie power

notify required

If true, ACPI devie power syste noti�ation is required by

the devie.

x

ontroller logs init

agent errors

If true, the MC logs initialization errors. x

log init agent errors

aessing

If this is true, then the initialization agent will log any failures

trying to set the event reeiver for the devie.

x

global init Tells the initialization agent whether to initialize the on-

troller's event reeiver. This is a two bit value:

00b - Enable the ontroller's event reeiver.

01b - Disable the ontroller's event reeiver by setting it to

FFh. This is generally to turn of a rogue ontroller or

for debugging.

10b - Do not initialize the ontroller's event reeiver. this

is generally for debugging.

11b - reserved

x

hassis devie The ontroller handles the hassis ommands. x

bridge The ontroller handles bridge ommands. This generally

means it supports ICMB.

x

106 CHAPTER 8. ENTITIES

IPMB event

generator

The ontroller generates events on the IPMB. x

IPMB event reeiver The ontroller an reeive events on the IPMB. x

FRU devie

inventory

The ontroller supports FRU inventory ommands. x

SEL devie The ontroller supports a SEL devie for storing events. x

SDR repository

devie

The ontroller supports a main SDR repository. x

sensor devie The ontroller has sensors, it supports the sensor ommands. x

get address span The number of additional onseutive slave addresses used

by the devie. For instane, if the address is C0h and this

value is zero, then it is only at C0h. If this value was one,

then it would be at C0h and C2h.

x

In addition, a string value for the entity id may be fethed. This is not quite the same as the entity id,

beause OEM ode may set this string to a di�erent value than the default, espeially for OEM entity ids.

The funtion is:

har *ipmi_entity_get_entity_id_string(ipmi_entity_t *ent);

The id (the string name in the SDR) an also be fethed using the following alls:

int ipmi_entity_get_id_length(ipmi_entity_t *ent);

enum ipmi_str_type_e ipmi_entity_get_id_type(ipmi_entity_t *ent);

int ipmi_entity_get_id(ipmi_entity_t *ent, har *id, int length);

See setion A.1 for details on this.

8.5 Sensor and Controls in an Entity

In OpenIPMI, entities ontain sensors and ontrols. If a sensor or ontrol is assoiated with an entity, that

sensor or ontrol will be ontained inside the entity in OpenIPMI.

To �nd the sensors in an entity, you an iterate them using the funtion:

typedef void (*ipmi_entity_iterate_sensor_b)(ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data);

void ipmi_entity_iterate_sensors(ipmi_entity_t *ent,

ipmi_entity_iterate_sensor_b handler,

void *b_data);

The \handler" funtion will be alled with eah sensor in the entity. Controls have a similar funtion:

typedef void (*ipmi_entity_iterate_ontrol_b)(ipmi_entity_t *ent,

ipmi_ontrol_t *ontrol,

void *b_data);

8.5. SENSOR AND CONTROLS IN AN ENTITY 107

void ipmi_entity_iterate_ontrols(ipmi_entity_t *ent,

ipmi_entity_iterate_ontrol_b handler,

void *b_data);

So, for instane, if you wanted to print the name and entity id string of every sensor in an entity, you

might have ode that looks like:

stati void

handle_sensor(ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data)

{

har *name;

int length = ipmi_sensor_get_id_length(sensor);

int alloated = 0;

if (length == 0)

name = "empty name";

else {

name = mallo(length+1);

if (!name) {

/* Handle error */

return;

}

alloated = 1;

length = ipmi_sensor_get_id(sensor, name, length);

}

printf("Sensor %s\n", name);

if (alloated)

free(name);

}

void

print_sensors(ipmi_entity_t *entity)

{

ipmi_entity_iterate_sensors(entity, handle_sensor, NULL);

}

However, you probably want to know about the sensors and ontrols as soon as they are reated or

destroyed. To do this, you an add allbak funtions to the entity to all you whenever a sensor or ontrol

is added to the entity or deleted from the entity. The following funtions allow the user to wath sensors in

a domain:

typedef void (*ipmi_entity_sensor_b)(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data);

108 CHAPTER 8. ENTITIES

int ipmi_entity_add_sensor_update_handler(ipmi_entity_t *ent,

ipmi_entity_sensor_b handler,

void *b_data);

int ipmi_entity_remove_sensor_update_handler(ipmi_entity_t *ent,

ipmi_entity_sensor_b handler,

void *b_data);

Likewise, the following funtion are for ontrols:

typedef void (*ipmi_entity_ontrol_b)(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_ontrol_t *ontrol,

void *b_data);

int ipmi_entity_add_ontrol_update_handler(ipmi_entity_t *ent,

ipmi_entity_ontrol_b handler,

void *b_data);

int ipmi_entity_remove_ontrol_update_handler(ipmi_entity_t *ent,

ipmi_entity_ontrol_b handler,

void *b_data);

The add funtions should generally be alled in the allbak that reports the new entity, that way you will

not miss any ontrols or sensors as they are added. On removal, both the handler and the b data values

must math the values in the add handler, the b data value is not use for a allbak but to �nd the spei�

item to remove.

As an example, the following ode reports the sensor name and whether it was added, removed, or

hanged:

stati void

handle_sensor(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data)

{

har *name;

int length = ipmi_sensor_get_id_length(sensor);

int alloated = 0;

if (length == 0)

name = "empty name";

else {

name = mallo(length+1);

if (!name) {

/* Handle error */

return;

}

alloated = 1;

length = ipmi_sensor_get_id(sensor, name, length);

8.6. ENTITY HOT-SWAP 109

}

printf("Sensor %s\n", name);

if (alloated)

free(name);

}

void

print_sensors(ipmi_entity_t *entity)

{

ipmi_entity_iterate_sensors(entity, handle_sensor, NULL);

}

8.6 Entity Hot-Swap

OpenIPMI supports the notion of an entity being hot-swapped. It supports a omplete state mahine that

allows insertion to be deteted, requests to power on the entity and requests to power o� the entity. These

requests generally ome from the user in the form of a swith or something of that nature. It also supports

a subset of the hot-swap state mahine if all these features are not available.

Unfortunately, IPMI does not have this onept, so this must be added by OEM ode. Several systems

that support hot-swap are available in OpenIPMI, inluding the Motorola MXP (see appendix F on page 175)

and hassis that adhere to the PICMG ATCA standard (see appendix E on page 171).

Not all entities are hot-swappable. If an entity is hot-swappable, the funtion:

int ipmi_entity_hot_swappable(ipmi_entity_t *ent);

will return true.

8.6.1 Hot-Swap State

OpenIPMI supports eight hot-swap states:

IPMI HOT SWAP NOT PRESENT

IPMI HOT SWAP INACTIVE

IPMI HOT SWAP ACTIVATION REQUESTED

IPMI HOT SWAP ACTIVATION IN PROGRESS

IPMI HOT SWAP ACTIVE

IPMI HOT SWAP DEACTIVATION REQUESTED

IPMI HOT SWAP DEACTIVATION IN PROGRESS

IPMI HOT SWAP OUT OF CON

These may be onverted to a string name with the funtion:

har *ipmi_hot_swap_state_name(enum ipmi_hot_swap_states state);

Figure 8.1 on the following page shows a simple hot-swap state mahine for an entity that only supports

presene. In e�et, the entity is either not present or present.

Figure 8.2 on page 111 shows a more omplex hot-swap state mahine. This would be used for an entity

that supported some type of power ontrol (the entity an be present but inative). Upon insertion, the

entity will move from not present to inative. If the entity supports some type of ativation request, it will

110 CHAPTER 8. ENTITIES

Figure 8.1: Simple Hot-Swap state mahine

move from inative to ativation requested when that ours. If it does not support an ativation request, it

will move to either ativation in progress (if the ativation requires some time to our) or diretly to ative

when the entity is ativated. The move from ativation requested to ativation in progress or ative ours

when the entity is ativated.

The entity will move to deativation requested if the entity supports that and the operator requests a

deativation. In ative or deativation requested, the entity will move to deativation in progress (or diretly

to inative if deativation is immediate) upon the entity being deativated. Although it is not shown in the

diagram, the ativation in progress an go to the deativation states just like the ative state; it onfused

the diagram too muh to show this.

Note that any state an go to not present. This is alled a suprise extration; it ours if the operator

does not follow the hot-swap extration proedure and just pulls the board. The state may also go from

any state to out of ommuniation. This ours if the board is present (or the board presene annot be

deteted) and the system looses ommuniation with the entity. If ommuniation is restored, the entity

goes to the urrent state it is in. Some systems may support some manual means to move the entity's state

to not present.

When a hot-swap devie is inserted, it may or may not be automatially ativated. This depends on

the poliies and apabilities of the hassis where the devie is inserted. The devie may be deativated

automatially upon a request if that poliy is supported by the system.

The following funtion will allow the urrent hot-swap state to be fethed:

typedef void (*ipmi_entity_hot_swap_state_b)(ipmi_entity_t *ent,

int err,

enum ipmi_hot_swap_states state,

void *b_data);

int ipmi_entity_get_hot_swap_state(ipmi_entity_t *ent,

ipmi_entity_hot_swap_state_b handler,

void *b_data);

8.6.2 Hot-Swap Events

It is possible to register to reeive hot-swap hanges when the our. The following funtions do the regis-

tration and deregistration of a hot-swap handler:

typedef int (*ipmi_entity_hot_swap_b)(ipmi_entity_t *ent,

enum ipmi_hot_swap_states last_state,

enum ipmi_hot_swap_states urr_state,

8.6. ENTITY HOT-SWAP 111

Figure 8.2: Complex Hot-Swap state mahine

112 CHAPTER 8. ENTITIES

void *b_data,

ipmi_event_t *event);

int ipmi_entity_add_hot_swap_handler(ipmi_entity_t *ent,

ipmi_entity_hot_swap_b handler,

void *b_data);

int ipmi_entity_remove_hot_swap_handler(ipmi_entity_t *ent,

ipmi_entity_hot_swap_b handler,

void *b_data);

This is a standard event handler as desribed in setion 2.2.5 on page 20

8.6.3 Hot-Swap Ativation and Deativation

Devies that have the ability to ontrol power and request power up or removal have some speial handling

that may be required. Note that some systems may only support a subset of these operations, referene the

doumentation for the system for more details.

When a devie is inserted that has these apabilities, there is generally some way to signal that the devie

is ready to be powered up. In ATCA, for instane, the operator will insert the ard and the entity for the

ard will go from not present to inative state. When the operator loses the lok-lath, that signals the

system to go to ativation requested state.

If a devie is in the inative state, the management software using OpenIPMI an use the following

funtion to fore it into ativation requested state:

int ipmi_entity_set_ativation_requested(ipmi_entity_t *ent,

ipmi_entity_b done,

void *b_data);

This an our if an entity has been moved to the inative state by the management software then the entity

needs to be powered up again. If an entity is sitting in the inative state but does not support this, then

this all will return ENOSYS and the entity an be moved diretly to ative state.

To move an entity to ative state (either from inative or ativation requested state), use the following

funtion:

int ipmi_entity_ativate(ipmi_entity_t *ent,

ipmi_entity_b done,

void *b_data);

This will power the entity up and move it to ative state.

Deativation is similar, but not quite the same. The operator diretly working on the devie an request

a removal using some mehanism. In ATCA, for instane, the operator an open the lok lath on the ard

and the ard entity will move from ative to deativation requested state. Note that unlike ativation, there

is no way for system management software to request a move to deativation requested state. It's not really

required, sine it an request that the entity go diretly to inative state.

To move from either ative (or really any state in the ativation proess) or deativation requested state

to inative state, the funtion:

int ipmi_entity_deativate(ipmi_entity_t *ent,

ipmi_entity_b done,

void *b_data);

8.7. FRU DATA 113

is used.

8.6.4 Auto Ativation and Deativation

Some systems allow the system management software to speify a poliy to exeute when a devie is inserted

or a removal is requested. Basially, the time from an ativate request to when an ativation is automatially

started an be spei�ed. The time from a deativate request to when an deativation is automatially started

an be spei�ed. The following funtions an be used to read and update these times:

int ipmi_entity_get_auto_ativate_time(ipmi_entity_t *ent,

ipmi_entity_time_b handler,

void *b_data);

int ipmi_entity_set_auto_ativate_time(ipmi_entity_t *ent,

ipmi_timeout_t auto_at,

ipmi_entity_b done,

void *b_data);

int ipmi_entity_get_auto_deativate_time(ipmi_entity_t *ent,

ipmi_entity_time_b handler,

void *b_data);

int ipmi_entity_set_auto_deativate_time(ipmi_entity_t *ent,

ipmi_timeout_t auto_deat,

ipmi_entity_b done,

void *b_data);

The timeouts are standard OpenIPMI time values, whih are in nanoseonds. These will return ENOSYS

if the operation is not supported. They will return EINVAL if the time is out of range. To disable auto-

ativation and deativiation, the time may be set to IPMI_TIMEOUT_FOREVER. To ause the transitions to

our immediately, set the value to IPMI_TIMEOUT_NOW.

8.7 FRU Data

OpenIPMI supports fething all the FRU data supported by the IPMI spe, as well as SPD data in DRAMs.

It also supports plugins for handling other types of FRU data that an be provided for OEM data. It is

able to feth and modify all the standard data and all the ustom data stored in multi-reords and has a

multireord deoder plugin interfae with the standard multireords implements, along with some ATCA

reord deoders. SPD data (and other data types, unless they provide their own interfaes) an only be

deoded. Standard FRU data spei�ed by the IPMI spe an be deoded and written.

8.7.1 Reading FRU Data

The FRU data interfae has two separate interfaes fething data data from a FRU data objet. One is

a generi interfae that works with all FRU data type, inluding SPD or OEM data. The other is an

IPMI-spei�ed FRU interfae that only works with the FRU data format spei�ed by IPMI.

114 CHAPTER 8. ENTITIES

Generi FRU Data Interfae

The generi FRU interfae represents the FRU data as a tree-strutured hierarhy of data. Eah level of the

tree has a \node". The �elds in a node are indexed by number and may ontain both data elements and

sub-nodes.

Two types of nodes exist. A reord node is a set of named �elds. The \name" of eah �eld will be

returned and the \intval" when the node itself is fethed will be �1. An array node ontains a set of

unnamed elements. The \name" of eah �eld will be returned as NULL and the \intval" will be the number

of elements in the array.

The nodes are refounted. If you are given a node, you must free the node using ipmi_fru_put_node()

when you are done with it.

To feth the root node of a FRU data objet, use the funtion:

int ipmi_fru_get_root_node(ipmi_fru_t *fru,

onst har **name,

ipmi_fru_node_t **node);

This funtion returns the name of the FRU, either \SPD FRU" or \standard FRU" or some other OEM

name and the atual root node. If either of these is NULL, it will be ignored. The root node is always a

reord node.

To feth individual �elds from a reord, use:

int ipmi_fru_node_get_field(ipmi_fru_node_t *node,

unsigned int index,

onst har **name,

enum ipmi_fru_data_type_e *dtype,

int *intval,

time_t *time,

double *floatval,

har **data,

unsigned int *data_len,

ipmi_fru_node_t **sub_node);

The index is a ontiguous range from zero that holds every �eld. So you an iterate through the indexes

from 0 until it returns EINVAL to �nd all the �elds. If a �eld is not present in the FRU data, this will return

ENOSYS. Note that later �elds may still be present.

The name returns the string name for the index. Note that the indexes may hange between release, so

don't rely on absolute numbers. The names will remain the same, so you an rely on those.

The dtype �eld will be set to the data type. The following values are returned:

IPMI FRU DATA INT sets intval

IPMI FRU DATA TIME sets time

IPMI FRU DATA ASCII sets data and data_len

IPMI FRU DATA BINARY sets data and data_len

IPMI FRU DATA UNICODE sets data and data_len

8.7. FRU DATA 115

IPMI FRU DATA BOOLEAN sets intval

IPMI FRU DATA FLOAT sets floatval

IPMI FRU DATA SUB NODE sets sub_node. intval will be -1 if it is not an array, or the array length if it is

an array.

Note that if data is returned in data, you must free the data when you are done with ipmi_fru_data_free().

Any of the return values may be passed NULL to ignore the data.

Printing all the FRU data or searhing for a data item by name an easily be aomplished using reursion.

IPMI-spei� FRU Data Interfae

The generi interfae should be used for appliations that only read the FRU data. For appliations that also

write the data, another interfae is available that allows individual data items to be spei�ally addressed

and modi�ed and the data areas of the FRU data to be modi�ed, if they need to be resized, reated, or

deleted.

IPMI FRU Data Organization FRU data is organized into areas, and the areas are organized into

�elds. The areas are:

internal use

hassis info

board info

produt info

multi reord

An area may or may not be present. An area, if present, may have required �elds and \ustom" �elds.

The required �elds an be fethed by name, the ustom �elds are fethed by index number. Note that you

don't need to know anything about areas if you are just fething data from the FRU, but you need to know

about them to modify FRU data.

There are a very large number of FRU variables and they are fairly well de�ned in the IPMI FRU

doument; see that doument and the ipmiif.h inlude �le for details on the FRU data.

Fething FRU Data from a FRU Some �elds are integers, some are time values, and some are strings.

Eah type has its own feth type. The integer and time values only return the one value that is returned.

The string funtions have a \type" funtion, a \len" funtion, and a funtion to atually get the strings.

For instane:

int ipmi_fru_get_hassis_info_part_number_len(ipmi_entity_t *entity,

unsigned int *length);

int ipmi_fru_get_hassis_info_part_number_type(ipmi_entity_t *entity,

enum ipmi_str_type_e *type);

int ipmi_fru_get_hassis_info_part_number(ipmi_entity_t *entity,

har *str,

unsigned int *strlen);

116 CHAPTER 8. ENTITIES

The \len" funtion returns the length of the string. The \type" funtion returns the type of string per

standard OpenIPMI string handling. See setion A.1 on page 161 for more details. The last funtion returns

the atual string. The integer that strlen points to must be set to the length of the str array. Upon return,

the integer that strlen points to will ontain the atual length. If there is not enough spae for the whole

string, the beginning of the string that �lls the array will be opied in. All these funtions return an error;

the only urrent return is ENOSYS if the parameter is not present.

You may also feth fru data (exept for multi-reords) through a single general funtion. It is a neessarily

omplex interfae. The funtion is:

int ipmi_fru_get(ipmi_fru_t *fru,

int index,

har **name,

int *num,

enum ipmi_fru_data_type_e *dtype,

int *intval,

time_t *time,

har **data,

unsigned int *data_len);

The index is a ontiguous range from zero that holds every FRU data item. So you an iterate through the

indexes from 0 until it returns EINVAL to �nd all the names.

The name returns the string name for the index. Note that the indexes may hange between release, so

don't rely on absolute numbers. The names will remain the same, so you an rely on those.

The number is a pointer to an integer with the number of the item to get within the �eld. Some �elds

(ustom reords) have multiple items in them. The �rst item will be zero, and the integer here will be

updated to referene the next item. When the last item is reahed, the �eld will be updated to -1. For �elds

that don't have multiple items, this will not modify the value num points to, so you an use that to detet

if indexes are used for the item.

The dtype �eld will be set to the data type. If it is an integer value, then intval will be set to whatever

the value is. If it is a time value, then the time �eld will be �lled in. If it is not, then a blok of data will be

alloated to hold the �eld and plaed into data, the length of the data will be in data_len. You must free

the data when you are done with ipmi_fru_data_free().

This funtion Returns EINVAL if the index is out of range, ENOSYS if the partiular index is not supported

(the name will still be set), or E2BIG if the num is too big (again, the name will be set).

Any of the return values may be passed NULL to ignore the data.

Writing FRU Data to a FRU OpenIPMI supports writing FRU data. This is a very dangerous oper-

ations and should not be done by general ode. There are no loks on the FRU data, so multiple writers

an easily orrupt the data. But for doing FRU data updates, OpenIPMI an be used to feth, modify, and

write the FRU data assuming proper are is taken.

To write to the FRU, you must �rst feth it by alloating it. If the FRU data urrently in the fru is

orrupt, you will get errors, but as long as the data length of the FRU is non-zero you an still modify it

and write it bak out.

After the FRU has been fethed, you may then modify the ontents. Remember that eah �eld of a FRU

is in an area. To inrease the size of a �eld or add a new �eld, it's area must have enough spae.

You may hange the size of an area by inreasing or dereasing its length. You may also add a new area,

but it must be one of the supported types. You must, however, make sure there is enough empty spae to

8.7. FRU DATA 117

after the area. OpenIPMI will not rearrange the areas to make spae, you have to do that yourself. So you

may have to hange the o�set of an area (and other areas) to make spae. The following funtions are for

working with areas:

int ipmi_fru_add_area(ipmi_fru_t *fru,

unsigned int area,

unsigned int offset,

unsigned int length);

int ipmi_fru_delete_area(ipmi_fru_t *fru, int area);

int ipmi_fru_area_get_offset(ipmi_fru_t *fru,

unsigned int area,

unsigned int *offset);

int ipmi_fru_area_get_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int *length);

int ipmi_fru_area_set_offset(ipmi_fru_t *fru,

unsigned int area,

unsigned int offset);

int ipmi_fru_area_set_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int length);

int ipmi_fru_area_get_used_length(ipmi_fru_t *fru,

unsigned int area,

unsigned int *used_length);

The used_length variable tells how muh of the length of the FRU is atually used. Note that area o�sets

and length must be multiples of 8.

To hange the value of a �eld, you will use funtions of the form:

int ipmi_fru_set_hassis_info_type(ipmi_entity_t *entity,

unsigned har type);

int ipmi_entity_set_hassis_info_part_number(ipmi_entity_t *entity,

enum ipmi_str_type_e *type);

har *str,

unsigned int strlen);

int ipmi_fru_set_hassis_info_ustom(ipmi_fru_t *fru,

unsigned int num,

enum ipmi_str_type_e type,

har *str,

unsigned int len);

These set the �elds to the given values. If you set a required �eld to a NULL string, it will lear the value of

the string. If you set a multi-reord or ustom string to a NULL string, it will delete the reord at the given

number.

Like the ipmi_fru_get funtion, the following funtions allow setting FRU variables by index:

int ipmi_fru_set_int_val(ipmi_fru_t *fru,

int index,

118 CHAPTER 8. ENTITIES

int num,

int val);

int ipmi_fru_set_time_val(ipmi_fru_t *fru,

int index,

int num,

time_t time);

int ipmi_fru_set_data_val(ipmi_fru_t *fru,

int index,

int num,

enum ipmi_fru_data_type_e dtype,

har *data,

unsigned int len);

The num �eld is ignored if the partiular index does not support more than one �eld (is not a ustom �eld).

When adding, if the num �eld is a �eld that already exists, it will be replaed or updated. If num is beyond

the last element of the partiular item, a new item will be added onto the end, it will not be added at the

spei� index.

To write the FRU data bak out after you have modi�ed it, use the following funtion:

int ipmi_fru_write(ipmi_fru_t *fru, ipmi_fru_fethed_b done, void *b_data);

8.8 Entity SDRs

TBD - write this

C h a p t e r 9

Sensors

Sensors, of ourse, are probably the most interesting part of IPMI. Really, everything else is there so the

sensors may be known and monitored. Unfortunately, sensors are also the most ompliated part of IPMI.

OpenIPMI is really unable to hide a lot of this omplexity, it is passed on to the user, so expet to have to

do some reading and understanding.

IPMI de�nes two basi di�erent types of sensors. Threshold sensors monitor \analog" things like tem-

perature, voltage, or fan speed. Disrete sensors monitor events or states, like entity presene, software

initialization progress, or if external power is applied to the system. Table 9.1 desribes the basi types of

sensors.

Table 9.1: Event/Reading Type Codes

Value # Desription

9.1 Sensor Events

Both threshold and disrete sensors may generate events. This is optional, the SDR for the sensor desribes

the sensor's event support.

Some sensors support eah individual bit or state being enabled or disabled. Others may only support

events for the whole sensor being enabled or disabled. Still others may only support a global enable for the

entire MC.

9.2 Rearm

\Rearm" means setting the sensor so it will go o� again.

TBD - write this.

9.3 Threshold Sensors

Threshold sensors report their readings in values from 0-255. OpenIPMI makes every e�ort to onvert

this to a oating-point value for you to use. IPMI de�nes standard ways to onvert values using various

119

120 CHAPTER 9. SENSORS

formulas. OpenIPMI implements all these and provides ways for OEM funtions to plug in to provide their

own onverters. If you have a sensor that annot be represented using the standard mehanisms, you need

to get the OEM algorithms for this and implement them in an OEM plug-in for the sensor.

9.3.1 Threshold Sensor Events

You may have events on a threshold sensor by speifying values (alled thresholds) where you want the sensor

to report an event. Then you an enable the events for the spei� thresholds. Not all sensors support all

thresholds, some annot have their events enabled and others annot have them disabled. The apabilities

of a sensor may all be queried by the user to determine what it an do. When the value of the sensor goes

outside the threshold an event may be generated. An event may be generated when the value goes bak into

the threshold.

Events for threshold sensors are mind-bogglingly ompliated. Eah threshold has four di�erent possible

events that an be supported. Only two of them make sense to support for any given threshold, thankfully.

And a sensor an have six di�erent thresholds.

IPMI supports events on going below (going low) the threshold and going above the threshold (going

high). For eah of those, it supports an assertion and deassertion event. Most sensors are either a lower

bound (and would thus support an eventgoing below the threshold) or an upper bound (and would thus

support an event going above the threshold). Figure 9.1 on the faing page shows an upper and lower

threshold sensor. When the value of an upper threshold sensor goes above the threshold, that is an assertion

going high. When it goes bak below the threshold, that is a deassertion going high. On a lower threshold,

going below the threshold is a assertion going low. When the value goes bak above the threshold, it is an

deassertion going low.

Eah sensor may have six di�erent thresholds:

upper non-reoverable

upper ritial

upper non-ritial

lower non-ritial

lower ritial

lower non-reoverable

The meanings of these are not de�ned by IPMI, but the meanings are pretty obvious. You may ask, though,

why there are both upper and lower thresholds and separate going high and going low events. A going low

event is kind of silly on an upper threshold, for instane. The reasoning is not in the spe, but it may be that

there are sensors where the \middle" of the range is not ok. So for instane, it may be ok if the temperature

is above 100C or below 5C, but the range between those values is not ok. This is extremely unlikely, but

this type of struture allows it.

9.3.2 Hysteresis

Threshold sensors may have hysteresis, meaning that when the threshold goes on above or below the spei�ed

value, the transition point where the threshold goes o� is somewhat below or above the given value. For

instane, if you want a fan speed sensor to go o� when it goes below 150 RPM, if the fan is hanging right

around 150 RPM, the sensor may be onstantly sending you events as it goes slightly above and slightly

below 150 RPM, whih is bad beause it an overload the system management software. The hysteresis for

the fan might be set at 10 rpm, whih means that if the speed goes below 150 RPM, then it must go above

160 RPM for the threshold to be disabled. Hysteresis may be settable or may be �xed for the sensor.

9.3. THRESHOLD SENSORS 121

Figure 9.1: Examples of thresholds

122 CHAPTER 9. SENSORS

Figure 9.2 on page 125 shows an example of going high and going low thresholds with hysteresis. Notie

that the deassertion events don't get triggered right at the threshold, but as some point beyond the threshold.

There is only one pair of hysteresis values for a sensor. That pair is used for all thresholds in the sensor.

One of the members of the pair is a positive threshold, meaning that is is applied to thresholds that go over

a spei� value. The value must go that muh below the threshold before the threshold goes bak in range.

The other member is a negative threshold, meaning that it is applied to thresholds that go below a given

value. The value must go that muh above the threshold before the threshold goes bak in range.

9.4 Disrete Sensors

Disrete sensors report their readings in a 16-bit bitmask, eah bit generally representing a disrete state.

For instane, onsider the slot/onnetor sensor. Bit 0 tells if there is a fault. Bit 2 tells if a devie is present

in the slot. Bit 5 tells if power is o� on the slot. Eah bit tells a ompletely independent state and they may

eah be zero or one independently.

You enable events on the sensor by speifying whih bits you want to generate events. Like threshold

sensors, these events may or may not be user-ontrollable. The apabilities of the sensor may be fethed by

the user.

Table 9.2: Sensor Types and Codes

Parameter # Desription

9.5 IPMI Commands Dealing with Sensors

TBD - write this

9.6 Using Sensors in OpenIPMI

As mentioned before, IPMI sensors are very ompliated. OpenIPMI attempts to hide as muh of this

omplexity as it an, but it an only do so muh.

So starting at the beginning, the �rst thing you need to know about a sensor is its type. You feth that

with the funtion:

int ipmi_sensor_get_event_reading_type(ipmi_sensor_t *sensor);

This returns a value from the following table. The names in this table are shortened, all these begin with

IPMI EVENT READING TYPE . The values are:

THRESHOLD The sensor monitors an analog value. All threshold sensors have this

value.

DISCRETE USAGE These are DMI-based usage states. Valid o�sets are:

00h - transition to idle

01h - transition to ative

02h - transition to busy

9.6. USING SENSORS IN OPENIPMI 123

DISCRETE STATE Monitors the value of a state. Valid values are:

00h - state deasserted

01h - state asserted

DISCRETE PREDICTIVE

FAILURE

This is used to know if an entity is about to fail, but is still operations.

Valid values are:

00h - preditive failure deasserted

01h - preditive failure asserted

DISCRETE LIMIT

EXCEEDED

This is used to tell if a limit has been exeeded. Valid values are:

00h - limit not exeeded

01h - limit exeeded

DISCRETE

PERFORMANCE MET

This is used to tell if system performane is meeting expetations.

Valid values are:

00h - performane met

01h - performane not met

DISCRETE SEVERITY This is used to know if an entity is in trouble or other state information.

Valid values are:

00h - transition to ok

01h - transition to non-ritial from ok.

02h - transition to ritial from less ritial.

03h - transition to non-reoverable from less ritial.

04h - transition to non-ritial from more ritial.

05h - transition to ritial from non-reoverable.

06h - transition to non-reoverable.

1

07h - monitor

08h - informational

The atual meaning of these is not de�ned by the spe.

DISCRETE DEVICE

PRESENCE

This is a presene sensor to know when an entity is present or not.

Note that OpenIPMI uses this for entity presene if it is available.

Valid values are:

00h - entity not present

01h - entity present

DISCRETE DEVICE

ENABLE

This tells if a devie is enabled. Valid values are:

00h - devie disabled

01h - devie enabled

1

This state seems rather silly and is probably not used.

124 CHAPTER 9. SENSORS

DISCRETE

AVAILABILITY

This tells the urrent availability state of the devie. Valid values are:

00h - transition to running

01h - transition to in test

02h - transition to power o�

03h - transition to on line

04h - transition to o� line

05h - transition to o� duty

06h - transition to degraded

07h - transition to power save

08h - install error

DISCRETE

REDUNDANCY

This shows the redundany state of an entity. Valid values are:

00h - Fully redundant, the entity has full redundany.

01h - Redundany lost, this is reported if redundany has been lost

at all.

02h - Redundane degraded, the system is still redundant but is miss-

ing some resoures (like the system has four fans and only two

are running).

03h - Transition from fully redundant to non-redundant: suÆient

resoure. The entity has lost redundany but has suÆient re-

soures to ontinue normal operation.

04h - Transition from non-redundant:suÆient resoures to non-

redundant:insuÆient resoure. The entity has lost enough re-

soures to ontinue normal operation.

05h - Transition from fully redundant to non-redundant: suÆient

resoure. The entity has lost redundany but has suÆient re-

soures to ontinue normal operation.

06h - Non-redundant:insuÆient resoures. entity has lost redun-

dany and lost enough resoures to ontinue normal operation.

07h - Transition from redundant to redundany degraded. The unit

has lost some redundany but is still redundant.

08h - Transition from redundany lost to redundany degraded. The

entity had lost redundany and has regained some redundany,

but is not fully redundant.

DISCRETE ACPI POWER The urrent ACPI power state of the system. Valid values are:

00h - D0 power state

01h - D1 power state

02h - D2 power state

03h - D3 power state

SENSOR SPECIFIC This setting means that the o�sets in the sensor are dependent on the

sensor type. This is only for disrete sensors.

Note that for some operations, threshold sensors and disrete sensor have di�erent funtions, and some

9.6. USING SENSORS IN OPENIPMI 125

Figure 9.2: Examples of hysteresis

126 CHAPTER 9. SENSORS

other funtions work a little di�erently.

To know the type of sensor, the funtion:

int ipmi_sensor_get_sensor_type(ipmi_sensor_t *sensor);

returns the type. The returns values for this are integer de�nes that start with IPMI SENSOR TYPE and

have the spei� values de�ned in the following table. Note that disrete sensors in this list have de�ne bit

settings; those settings are also de�ned in this list.

TEMPERATURE

VOLTAGE

CURRENT

FAN

PHYSICAL SECURITY The hassis was opened or aessed.

00h - General hassis intrusion

01h - Drive bay intrusion

02h - I/O ard area intrusion

03h - Proessor area intrusion

04h - LAN able is unplugged

05h - Unauthorized dok/undok

06h - Fan area intrusion (inluding unauthorized hot-plugs of fans).

PLATFORM SECURITY

00h - The spe says \Seure Mode (Front Panel Lokout) Violation

attempt". The meaning of this is unknown.

01h - User pre-boot password failure.

02h - Setup pre-boot password failure.

03h - Network pre-boot password failure.

04h - Other pre-boot password failure.

05h - Out-of-band pre-boot password failure.

PROCESSOR Various proessor failures. Most of these are very Intel proessor en-

tri, you may need to referene the proessor manual for the meaning

of the failure.

00h - IERR

01h - Thermal Trip

02h - FRB1/BIST failure

03h - FRB2/Hang in POST failure, if the failure is believed to be

due to a proessor failure.

04h - FRB3/Proessor Startup/Initialization failure (CPU didn't

start).

05h - Con�guration Error

06h - SMBIOS \Unorretable CPU-omplex error"

07h - Proessor presene deteted

08h - Proessor disabled

09h - Terminator presene deteted

9.6. USING SENSORS IN OPENIPMI 127

POWER SUPPLY

00h - Presene deteted

01h - Failure deteted

02h - Preditive failure. This probably means that the power supply

is still working but may fail soon.

03h - AC lost

04h - AC lost or out-of-range

05h - AC present but out of range

POWER UNIT

00h - Power o�

01h - Power yle

02h - 240VA power down

03h - Interlok power down

04h - AC lost

05h - Soft power ontrol failure (unit did not response to request)

06h - Failure deteted

07h - Preditive failure. This probably means that the power unit is

still working but may fail soon.

COOLING DEVICE

OTHER UNITS

BASED SENSOR

The sensor is a threshold sensor, but not one spei�ed diretly by the

spe. The units an be fethed with the alls to get the units.

MEMORY

00h - Corretable memory error

01h - Unorretable memory error

02h - Parity error

03h - Memory srub failed, probably stuk bit

04h - Memory devie disabled

05h - Reahed log limit for orretable memory errors

DRIVE SLOT

POWER MEMORY

RESIZE

SYSTEM FIRMWARE

PROGRESS

Information about the system �rmware (BIOS). In an event, the event

data 2 may give further information about the error. See setion 11.2

for more info.

00h - System �rmware error (power-on-self-test error)

01h - System �rmware hang

02h - System �rmware progress

128 CHAPTER 9. SENSORS

EVENT LOGGING

DISABLED 00h - Corretable memory error logging disabled

01h - Event logging has been disabled for the sensor spei�ed in

the event information. In an event, event data provides more

information about the event, see setion 11.2 for more info.

02h - Log area leared

03h - All event logging disabled

WATCHDOG 1 This is for IPMI version 0.9 and old 1.0 only. Later 1.0 and newer

spes use the wathdog 2 sensor type.

00h - BIOS wathdog reset

01h - OS wathdog reset

02h - OS wathdog shutdown

03h - OS wathdog power down

04h - OS wathdog power yle

05h - OS wathdog NMI or diagnosti interrupt

06h - OS wathdog expired, status only

07h - OS wathdog pre-timeout interrupt, not NMI

SYSTEM EVENT

00h - System reon�gured

01h - OEM system boot event

02h - Undetermined system hardware failure

03h - Entry added to the auxilliary log. In an event, event data

provides more information about the event, see setion 11.2 for

more info.

04h - PEF ation. In an event, event data provides more information

about the event, see setion 11.2 for more info.

CRITICAL INTERRUPT

00h - Front panel NMI/Diagnosti interrupt

01h - Bus timeout

02h - I/O hannel hek NMI

03h - Software NMI

04h - PCI PERR

05h - PCI SERR

06h - EISA fail safe timeout

07h - Bus orretable error

08h - Bus unorretable error

09h - Fatal NMI (port 61h, bit 7)

9.6. USING SENSORS IN OPENIPMI 129

BUTTON

00h - Power button pressed

01h - Sleep button pressed

02h - Reset button pressed

MODULE BOARD

MICROCONTROLLER

COPROCESSOR

ADD IN CARD

CHASSIS

CHIP SET

OTHER FRU

CABLE INTERCONNECT

TERMINATOR

SYSTEM BOOT

INITIATED 00h - Power up

01h - Hard reset

02h - Warm reset

03h - User requested PXE boot

04h - Automati boot to diagnosti

BOOT ERROR

00h - No bootable media

01h - Non-bootable disk in drive

02h - PXE server not found

03h - Invalid boot setor

04h - Timeout waiting for user seletion of boot soure

OS BOOT

00h - A: boot ompleted

00h - C: boot ompleted

00h - PXE boot ompleted

00h - Diagnosti boot ompleted

00h - CDROM boot ompleted

00h - ROM boot ompleted

00h - Boot ompleted, boot devie not spei�ed

OS CRITICAL STOP

00h - Stop during OS load or initialization

01h - Stop during OS operation

130 CHAPTER 9. SENSORS

SLOT CONNECTOR Note that ready for installation, ready for removal, and power states

an transition together. In an event, event data provides more infor-

mation about the event, see setion 11.2 for more info.

00h - Fault status

01h - Identify status

02h - Devie installed (inludes do events)

03h - Ready for devie installation. This generally means that the

power is o�.

04h - Ready for devie removal.

05h - Power is o�

06h - Removal request. This generally means that the user has as-

serted some mehanism that requests removal.

07h - Interlok. This is generally some mehanial devie that dis-

ables power to the slot. Assertion means that the disable is a-

tive.

08h - Slot is disabled.

SYSTEM ACPI

POWER STATE 00h - S0/G0 \Working"

01h - S1 \Sleeping, system h/w and proessor ontext maintained"

02h - S2 \Sleeping, proessor ontext lost"

03h - S3 \Sleeping, system h/w and proessor ontext lost, memory

maintained"

04h - S4 \non-volatile sleep or suspend to disk"

05h - S5/G2 \soft o�"

06h - S4/S5 soft-o�, partiular S4/S5 state annot be determined.

07h - G3 \Mehanial o�"

08h - Sleeping in an S1, S2, or S3 state, partiular state annot be

determined.

09h - G1 sleeping, S1-S4 state annot be determined

0Ah - S5 state entered by override

0Bh - Legay on state

0Ch - Legay o� state

0Eh - Unknown

WATCHDOG 2 This is for newer IPMI 1.0 systems and later spes. In an event, event

data provides more information about the event, see setion 11.2 for

more info.

00h - Timer expired, status only, no ation

01h - Hard reset

02h - Power down

03h - Power yle

08h - Timer interrupts.

9.6. USING SENSORS IN OPENIPMI 131

PLATFORM ALERT Used for monitoring the platform management �rmware, status an be

fethed and events generated on platform management ations.

00h - Page sent

01h - LAN alert sent

02h - Event trap sent per IPMI PET spei�ation

03h - Event trap sent using OEM format

ENTITY PRESENCE This is the sensor used to tell if an entity is present or not. This applied

to the entity the sensor is attahed to.

00h - Entity is present

01h - Entity is absent

02h - Entity is present but disabled

MONITOR ASIC IC

LAN

00h - LAN heartbeat lost

01h - LAN heartbeat present

MANAGEMENT

SUBSYSTEM HEALTH 00h - Sensor aess degraded or unavailable

01h - Controller aess degraded or unavailable

02h - Management ontroller o�ine

03h - Management ontroller unavailable

BATTERY

00h - Battery is low

01h - Battery failed

02h - Battery is present.

Strings are available from the sensor that desribe the sensor type and event reading type. Note that

these may be set to valid values by OEM ode even if the values are OEM, so these an be very useful.

har *ipmi_sensor_get_sensor_type_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_event_reading_type_string(ipmi_sensor_t *sensor);

As well as the strings, the spei� reading information from the above table is also available, supply the

sensor type and o�set and a string is returned. The funtion is:

har *ipmi_sensor_reading_name_string(ipmi_sensor_t *sensor, int offset);

9.6.1 General Information About Sensors in OpenIPMI

The following setion applies to all sensor types.

132 CHAPTER 9. SENSORS

Sensor Entity Information

Every sensor is assoiated with a spei� entity, these alls let you feth the entity information. The following

alls return the numeri entity id and instane:

int ipmi_sensor_get_entity_id(ipmi_sensor_t *sensor);

int ipmi_sensor_get_entity_instane(ipmi_sensor_t *sensor);

Generally, though, that is note what you want. You want the atual entity objet, whih may be fethed

with the following:

ipmi_entity_t *ipmi_sensor_get_entity(ipmi_sensor_t *sensor);

Note that the entity is refounted when the sensor is laimed, so the entity will exist while you have a valid

referene to a sensor it ontains.

Sensor Name

The SDR ontains a string giving a name for the sensor. This is useful for printing out sensor information.

The funtions to get this are:

int ipmi_sensor_get_id_length(ipmi_sensor_t *sensor);

enum ipmi_str_type_e ipmi_sensor_get_id_type(ipmi_sensor_t *sensor);

int ipmi_sensor_get_id(ipmi_sensor_t *sensor, har *id, int length);

See appendix A.1 for more information about these strings.

The funtion

int ipmi_sensor_get_name(ipmi_sensor_t *sensor, har *name, int length);

returns a fully quali�ed name for the sensor with the entity name prepended. The name array is �lled with

the name, up to the length given. This is useful for printing string names for the sensor.

Sensor Event Support in OpenIPMI

Sensors may support event enables in di�erent ways. The following funtion returns what type of event

enable is supported:

int ipmi_sensor_get_event_support(ipmi_sensor_t *sensor);

The return values are all prepended with IPMI EVENT SUPPORT , values are:

PER STATE Eah individual state or threshold may individually have its events

turned o� and on. This means that the individual thresholds and

states may be individually enabled.

ENTIRE SENSOR The entire sensor may have events enabled and disabled using the

events enabled setting when setting the event enables. Setion 9.6.1

desribes this setting.

GLOBAL ENABLE Events may only be enabled and disabled for the whole managment

ontroller. Events are disabled by setting the event reeiver to 00h, or

enabled by setting them to the proper event reeiver. See setion 5.1.5

for more details.

NONE The sensor does not support events.

9.6. USING SENSORS IN OPENIPMI 133

Note that the more general event enables work and override the more spei� ones, so if, for instane, a

sensor supports per-state event enables, it will also support the entire sensor and global enables. The entire

sensor enable being o� will override all per-state enables. The global enable will turn o� all events from a

management ontroller no matter what other settings are present.

To reeive events from a sensor, an event handler must be registered. An event handler may also be

dynamially removed. The following funtions do this for disrete sensors:

typedef int (*ipmi_sensor_disrete_event_b)(

ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

int offset,

int severity,

int prev_severity,

void *b_data,

ipmi_event_t *event);

int ipmi_sensor_add_disrete_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_disrete_event_b handler,

void *b_data);

int ipmi_sensor_remove_disrete_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_disrete_event_b handler,

void *b_data);

The following funtions do this for threshold sensors:

typedef int (*ipmi_sensor_threshold_event_b)(

ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e high_low,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double value,

void *b_data,

ipmi_event_t *event);

int ipmi_sensor_add_threshold_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_threshold_event_b handler,

void *b_data);

int ipmi_sensor_remove_threshold_event_handler(

ipmi_sensor_t *sensor,

ipmi_sensor_threshold_event_b handler,

void *b_data);

This funtion should generally be registered in the entity allbak that reports the sensor being added, so

that no events will be missed. This is a standard event handler as de�ned in setion 2.2.5 on page 20.

134 CHAPTER 9. SENSORS

Sensor/Entity Existane Interation

Some sensors are present even if the entity they are attahed to is not present. The following will return

true if the entity should be ignore if the entity is not present. It will return false if the sensor is present even

when the entity is not present.

int ipmi_sensor_get_ignore_if_no_entity(ipmi_sensor_t *sensor);

Sensor States

When reading the value of a sensor or handling an even, a state data struture is generally available in a

read-only data struture. This tells the state of the various thresholds or bits in the sensor. This is an

opaque data struture, you do not have aess to any of the ontents. The data struture is de�ned as:

typedef strut ipmi_states_s ipmi_states_t;

To keep your own opy of a states data struture, you may alloate and opy one using the following

funtions:

unsigned int ipmi_states_size(void);

void ipmi_opy_states(ipmi_states_t *dest, ipmi_states_t *sr);

This allows you to �nd the size and opy the information in one of these strutures. For example, to make

your own opy, do something like:

my_states = mallo(ipmi_states_size());

if (!my_states)

handle_error()

else

ipmi_opy_states(my_states, states);

Information about the whole sensor is available using the following funtions:

int ipmi_is_event_messages_enabled(ipmi_states_t *states);

int ipmi_is_sensor_sanning_enabled(ipmi_states_t *states);

int ipmi_is_initial_update_in_progress(ipmi_states_t *states);

If event messages are enabled, then the sensor may generate events. If sanning is enabled, then the sensor is

\turned on" and working. If initial update is in progress, the information from the sensor is not valid sine

the sensor is still trying to get a valid reading.

Sensor Event State Information

The event state struture is an opaque struture that is used to ontrol the event settings of a sensor, if

it supports at least individual sensor event ontrol. This is muh like the state data struture de�ned in

setion 9.6.1, but it is used to ontrol event settings instead of just get the urrent state. The data struture

is de�ned as:

typedef strut ipmi_event_state_s ipmi_event_state_t;

9.6. USING SENSORS IN OPENIPMI 135

It is an opaque data struture, so you annot diretly aess the ontents or diretly delare one.

To reate or keep your own opy of an event state data struture, you may alloate and opy one using

the following funtions:

unsigned int ipmi_event_state_size(void);

void ipmi_opy_event_state(ipmi_event_state_t *dest, ipmi_event_state_t *sr);

This allows you to �nd the size and opy the information in one of these strutures. For example, to make

your own opy, do something like:

my_states = mallo(ipmi_event_state_size());

if (!my_states)

handle_error()

else

ipmi_opy_event_state(my_states, states);

If you want to reate one, alloate it as above and initialize it with

void ipmi_event_state_init(ipmi_event_state_t *events);

This lears all settings. The following funtions are then available to set and get global items in the event

state:

void ipmi_event_state_set_events_enabled(ipmi_event_state_t *events, int val);

int ipmi_event_state_get_events_enabled(ipmi_event_state_t *events);

void ipmi_event_state_set_sanning_enabled(ipmi_event_state_t *events,int val);

int ipmi_event_state_get_sanning_enabled(ipmi_event_state_t *events);

void ipmi_event_state_set_busy(ipmi_event_state_t *events, int val);

int ipmi_event_state_get_busy(ipmi_event_state_t *events);

If events are enabled, then the sensor an generate events. This ats as an o� swith for the whole sensor.

If events are enabled, and if per-state event enables are supported, then the individual state settings ontrol

whih events are generated. Sanning means wathing for events; if sanning is o� then the sensor, in e�et,

is turned o� and will not report valid reading or generate events. If busy is true on a return from a query,

then the sensor is urrently in busy with some operation and annot be read.

See setion 9.6.3 for disrete sensors and setion 9.6.2 on page 138 for threshold events for the details on

setting the individual event enables.

Note that one you have reated an event state, you have to send it to the sensor. Just reating and

setting the values doesn't do anything diretly to the sensor; it must be sent. To send them, use one of the

following:

int ipmi_sensor_set_event_enables(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_b done,

void *b_data);

int ipmi_sensor_enable_events(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_b done,

void *b_data);

136 CHAPTER 9. SENSORS

int ipmi_sensor_disable_events(ipmi_sensor_t *sensor,

ipmi_event_state_t *states,

ipmi_sensor_done_b done,

void *b_data);

The \set" funtion will set the states to exatly what is set in the event state struture. The \enable"

funtion will only enable the states that are set in the event state struture. The \disable" funtion will

disable the events that are set in the event state struture. Note that the disable does not disable the events

that are not set, it really disables the events that are set. All of these funtions will set the event enable

and sanning enable to the values in the event state struture.

To query the urrent event state settings, use the following funtion:

typedef void (*ipmi_sensor_event_enables_b)(ipmi_sensor_t *sensor,

int err,

ipmi_event_state_t *states,

void *b_data);

int ipmi_sensor_get_event_enables(ipmi_sensor_t *sensor,

ipmi_event_enables_get_b done,

void *b_data);

Appendex I on page 191 ontains a program that demonstrates how to use many of the funtions desribed

in this setion.

Rearm in OpenIPMI

TBD - write this.

int ipmi_sensor_get_supports_auto_rearm(ipmi_sensor_t *sensor);

int ipmi_sensor_rearm(ipmi_sensor_t *sensor,

int global_enable,

ipmi_event_state_t *state,

ipmi_sensor_done_b done,

void *b_data);

Initialization

When a sensor is stored in the main SDR repository of a system, the BMC may initialize ertain aspets

of the sensor at power up. The following feth if these aspets are initialized at power up. Note that \pu"

means \Power Up" in the following names.

int ipmi_sensor_get_sensor_init_sanning(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_events(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_thresholds(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_hysteresis(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_type(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_pu_events(ipmi_sensor_t *sensor);

int ipmi_sensor_get_sensor_init_pu_sanning(ipmi_sensor_t *sensor);

9.6. USING SENSORS IN OPENIPMI 137

9.6.2 Threshold Sensors in OpenIPMI

As mentioned before, threshold sensors monitor analog values. This means that they have a lot of information

about how to onvert the values from the raw readings (the 0-255 value returned from the sensor) into useful

readings, what thresholds are supported, hysteresis settings, and a plethora of other settings. Lots of things

an be set up for threshold sensors.

Threshold Sensor Readings in OpenIPMI

The reading of a threshold sensor is done with the following:

typedef void (*ipmi_sensor_reading_b)(ipmi_sensor_t *sensor,

int err,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double val,

ipmi_states_t *states,

void *b_data);

int ipmi_sensor_get_reading(ipmi_sensor_t *sensor,

ipmi_reading_done_b done,

void *b_data);

Assuming there was no error, the value present �eld will be set to one of the following:

IPMI NO VALUES PRESENT - Neither the raw or the onverted values are present. Only the states

are valid. This will be the ase for thresholds sensors that annot have their value read.

IPMI RAW VALUE PRESENT - Only the raw value is present. This will be the ase if there was no

onversion algorithm available for the sensor.

IPMI BOTH VALUES PRESENT - Both the raw and onverted values are present.

The urrent states of the various thresholds (whether they are out of range or note) is returned in the

states parameter. To know if a sensor sets a threshold state setting when the value is read, use the following

funtion:

int ipmi_sensor_threshold_reading_supported(ipmi_sensor_t *sensor,

enum ipmi_thresh_e thresh,

int *val);

This may not mean that the threshold will generate events (although it will almost ertainly mean that, the

spe is not lear on this). It is only de�ned to mean that the threshold is returned in the reading.

For threshold sensors, the funtion:

int ipmi_is_threshold_out_of_range(ipmi_states_t *states,

enum ipmi_thresh_e thresh);

will return true if the given threshold is out of range and false if not.

138 CHAPTER 9. SENSORS

Threshold Sensor Events in OpenIPMI

Setion 9.6.1 on page 132 shows the general support for events for all sensor types. Threshold sensors have

their own speial routines for handling the thresholds.

Thresholds in a sensor may be settable or �xed and may or may not be able to be read. The funtion

int ipmi_sensor_get_threshold_aess(ipmi_sensor_t *sensor);

returns the event threshold aess support of the sensor, return values are

IPMI THRESHOLD ACCESS SUPPORT NONE - The sensor does not support thresholds.

IPMI THRESHOLD ACCESS SUPPORT READABLE - The sensor supports thresholds and their

values may be read with ipmi thresholds get, but annot be written.

IPMI THRESHOLD ACCESS SUPPORT SETTABLE - The sensor supports thresholds and they

may be read and written.

IPMI THRESHOLD ACCESS SUPPORT FIXED - The sensor supports thresholds and they are

�xed and may not be read or hanged. ipmi get default sensor thresholds should return the �xed

values of this sensor.

In addition to this, individual thresholds may be readable or settable individually. To �nd this, the

following funtions will return true if a spei� threshold is readable or settable, and false if not:

int ipmi_sensor_threshold_settable(ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

int *val);

int ipmi_sensor_threshold_readable(ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

int *val);

The spei� threshold values in the enumeration are:

IPMI LOWER NON CRITICAL

IPMI LOWER CRITICAL

IPMI LOWER NON RECOVERABLE

IPMI UPPER NON CRITICAL

IPMI UPPER CRITICAL

IPMI UPPER NON RECOVERABLE

The funtion

har *ipmi_get_threshold_string(enum ipmi_thresh_e val);

onverts the value to a string.

To atually get and set the thresholds for a sensor, a threshold data struture is used. This data struture

is opaque.

To reate or keep your own opy of a threshold data struture, you may alloate and opy one using the

following funtions:

unsigned int ipmi_threshold_size(void);

void ipmi_opy thresholds(ipmi_thresholds_t *dest, ipmi_thresholds_t *sr);

9.6. USING SENSORS IN OPENIPMI 139

This allows you to �nd the size and opy the information in one of these strutures. For example, to make

your own opy, do something like:

my_th = mallo(ipmi_thresholds_size());

if (!my_th)

handle_error()

else

ipmi_opy_thresholds(my_th, th);

If you want to reate one, alloate it as above and initialize it with

void ipmi_thresholds_init(ipmi_thresholds_t *th);

This lears all settings. The following funtions are then available to set the various threshold values:

int ipmi_threshold_set(ipmi_thresholds_t *th,

ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

double value);

int ipmi_threshold_get(ipmi_thresholds_t *th,

enum ipmi_thresh_e threshold,

double *value);

These get and set the values in the data struture. This does not a�et the atual sensor until you send the

thresholds to the sensor.

To send a set of thresholds to a sensor, use the following funtion:

int ipmi_sensor_set_thresholds(ipmi_sensor_t *sensor,

ipmi_thresholds_t *thresholds,

ipmi_sensor_done_b done,

void *b_data);

To get the urrent threshold settings of a sensor, use:

typedef void (*ipmi_sensor_thresholds_b)(ipmi_sensor_t *sensor,

int err,

ipmi_thresholds_t *th,

void *b_data);

int ipmi_sensor_get_thresholds(ipmi_sensor_t *sensor,

ipmi_thresh_get_b done,

void *b_data);

To �nd out whih thresholds support events, the following an be used to tell if a spei� thresholds

support a spei� event:

int ipmi_sensor_threshold_event_supported(

ipmi_sensor_t *sensor,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir,

int *val);

140 CHAPTER 9. SENSORS

The value dir parameter spei�es if the \going low" or \going high" events are being queried. Value for

this are:

IPMI GOING LOW

IPMI GOING HIGH

The dir parameter spei�es if the \assertion" or \deassertion" events are being queried. Value for this are:

IPMI ASSERTION

IPMI DEASSERTION

Using these, all the thresholds and diretions may be iterated through to �nd out what the sensor supports.

The funtions

har *ipmi_get_value_dir_string(enum ipmi_event_value_dir_e val);

har *ipmi_get_event_dir_string(enum ipmi_event_dir_e val);

onverts the value dir and dir values to strings.

To atually enable or disable individual events for a sensor, an event state struture must be reated.

An event state struture is passed in when the event state of a sensor is queried. To set or lear individual

events in one of these strutures, use the following:

void ipmi_threshold_event_lear(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

void ipmi_threshold_event_set(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

To see if a spei� event is set, use:

int ipmi_is_threshold_event_set(ipmi_event_state_t *events,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e value_dir,

enum ipmi_event_dir_e dir);

Threshold Sensor Units in OpenIPMI

In IPMI, the SDR gives quite a bit of information about what the onverted value means. The units are

spei�ed, unit modi�ers and rates, and whether the measurement is a perentage.

Unit ome in three types, the normal unit, the rate unit (whih give a \per time" modi�ers) and a

modi�er unit (whih gives whether the measurement has a modi�er unit, and whether it is a division or a

multipliation.

The units on a sensor are spei�ed as a base unit, and optional modi�er unit and how that is used, and

a rate unit. The modi�er unit is spei�ed in the same type as a base unit. A boolean speifying whether

the value is a perentage is also available.

This may sound somewhat ompliated, but it is not as bad as it sounds. In most ases only the base

unit is used, the modi�er unit use is none (thus the modi�er is turned o�), the rate unit is none, and it is

not a perentage. But you an use all of these. For instane, if a sensor measures perent of newton�meters

per seond, that would use all of these. The base unit would be newtons, the modi�er unit use would be

9.6. USING SENSORS IN OPENIPMI 141

multiply, the modi�er unit would be meters, the rate unit would be per seond, and the perentage would

be true.

The following funtions return these units for a sensor:

enum ipmi_unit_type_e ipmi_sensor_get_base_unit(ipmi_sensor_t *sensor);

enum ipmi_unit_type_e ipmi_sensor_get_modifier_unit(ipmi_sensor_t *sensor);

enum ipmi_rate_unit_e ipmi_sensor_get_rate_unit(ipmi_sensor_t *sensor);

enum ipmi_modifier_unit_use_e ipmi_sensor_get_modifier_unit_use(

ipmi_sensor_t *sensor);

int ipmi_sensor_get_perentage(ipmi_sensor_t *sensor);

The following return string representations for the units:

har *ipmi_sensor_get_rate_unit_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_base_unit_string(ipmi_sensor_t *sensor);

har *ipmi_sensor_get_modifier_unit_string(ipmi_sensor_t *sensor);

Note that for OEM values, OEM ode may set the strings even though the unit enumerations return an

invalid value. So use the strings if you an.

As a quik example, the following ode will print out a value with all the various units attahed:

har *perent = "";

har *base;

har *mod_use = "";

har *modifier = "";

har *rate;

base = ipmi_sensor_get_base_unit_string(sensor);

if (ipmi_sensor_get_perentage(sensor))

perent = "%";

swith (ipmi_sensor_get_modifier_unit_use(sensor)) {

ase IPMI_MODIFIER_UNIT_NONE:

break;

ase IPMI_MODIFIER_UNIT_BASE_DIV_MOD:

mod_use = "/";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

ase IPMI_MODIFIER_UNIT_BASE_MULT_MOD:

mod_use = "*";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

}

rate = ipmi_sensor_get_rate_unit_string(sensor);

printf(" value: %lf%s %s%s%s%s\n", val, perent,

base, mod_use, modifier, rate);

The modi�er units uses in OpenIPMI are:

142 CHAPTER 9. SENSORS

IPMI MODIFIER UNIT NONE

IPMI MODIFIER UNIT BASE DIV MOD

IPMI MODIFIER UNIT BASE MULT MOD

The rate units are:

IPMI RATE UNIT NONE

IPMI RATE UNIT PER US

IPMI RATE UNIT PER MS

IPMI RATE UNIT PER SEC

IPMI RATE UNIT MIN

IPMI RATE UNIT HOUR

IPMI RATE UNIT DAY

The normal units are:

IPMI UNIT TYPE UNSPECIFIED

IPMI UNIT TYPE DEGREES C

IPMI UNIT TYPE DEGREES F

IPMI UNIT TYPE DEGREES K

IPMI UNIT TYPE VOLTS

IPMI UNIT TYPE AMPS

IPMI UNIT TYPE WATTS

IPMI UNIT TYPE JOULES

IPMI UNIT TYPE COULOMBS

IPMI UNIT TYPE VA

IPMI UNIT TYPE NITS

IPMI UNIT TYPE LUMENS

IPMI UNIT TYPE LUX

IPMI UNIT TYPE CANDELA

IPMI UNIT TYPE KPA

IPMI UNIT TYPE PSI

IPMI UNIT TYPE NEWTONS

IPMI UNIT TYPE CFM

IPMI UNIT TYPE RPM

IPMI UNIT TYPE HZ

IPMI UNIT TYPE USECONDS

IPMI UNIT TYPE MSECONDS

IPMI UNIT TYPE SECONDS

IPMI UNIT TYPE MINUTE

IPMI UNIT TYPE HOUR

IPMI UNIT TYPE DAY

IPMI UNIT TYPE WEEK

IPMI UNIT TYPE MIL

IPMI UNIT TYPE INCHES

IPMI UNIT TYPE FEET

IPMI UNIT TYPE CUBIC INCHS

IPMI UNIT TYPE CUBIC FEET

IPMI UNIT TYPE MILLIMETERS

IPMI UNIT TYPE CENTIMETERS

9.6. USING SENSORS IN OPENIPMI 143

IPMI UNIT TYPE METERS

IPMI UNIT TYPE CUBIC CENTIMETERS

IPMI UNIT TYPE CUBIC METERS

IPMI UNIT TYPE LITERS

IPMI UNIT TYPE FL OZ

IPMI UNIT TYPE RADIANS

IPMI UNIT TYPE SERADIANS

IPMI UNIT TYPE REVOLUTIONS

IPMI UNIT TYPE CYCLES

IPMI UNIT TYPE GRAVITIES

IPMI UNIT TYPE OUNCES

IPMI UNIT TYPE POUNDS

IPMI UNIT TYPE FOOT POUNDS

IPMI UNIT TYPE OUNCE INCHES

IPMI UNIT TYPE GAUSS

IPMI UNIT TYPE GILBERTS

IPMI UNIT TYPE HENRIES

IPMI UNIT TYPE MHENRIES

IPMI UNIT TYPE FARADS

IPMI UNIT TYPE UFARADS

IPMI UNIT TYPE OHMS

IPMI UNIT TYPE SIEMENS

IPMI UNIT TYPE MOLES

IPMI UNIT TYPE BECQUERELS

IPMI UNIT TYPE PPM

IPMI UNIT TYPE reserved1

IPMI UNIT TYPE DECIBELS

IPMI UNIT TYPE DbA

IPMI UNIT TYPE DbC

IPMI UNIT TYPE GRAYS

IPMI UNIT TYPE SIEVERTS

IPMI UNIT TYPE COLOR TEMP DEG K

IPMI UNIT TYPE BITS

IPMI UNIT TYPE KBITS

IPMI UNIT TYPE MBITS

IPMI UNIT TYPE GBITS

IPMI UNIT TYPE BYTES

IPMI UNIT TYPE KBYTES

IPMI UNIT TYPE MBYTES

IPMI UNIT TYPE GBYTES

IPMI UNIT TYPE WORDS

IPMI UNIT TYPE DWORDS

IPMI UNIT TYPE QWORDS

IPMI UNIT TYPE LINES

IPMI UNIT TYPE HITS

IPMI UNIT TYPE MISSES

144 CHAPTER 9. SENSORS

IPMI UNIT TYPE RETRIES

IPMI UNIT TYPE RESETS

IPMI UNIT TYPE OVERRUNS

IPMI UNIT TYPE UNDERRUNS

IPMI UNIT TYPE COLLISIONS

IPMI UNIT TYPE PACKETS

IPMI UNIT TYPE MESSAGES

IPMI UNIT TYPE CHARACTERS

IPMI UNIT TYPE ERRORS

IPMI UNIT TYPE CORRECTABLE ERRORS

IPMI UNIT TYPE UNCORRECTABLE ERRORS

IPMI UNIT TYPE FATAL ERRORS

IPMI UNIT TYPE GRAMS

The meanings of these values are not de�ned by the spe, but should be fairly obvious.

Threshold Sensor Hysteresis in OpenIPMI

OpenIPMI allows hysteresis to be fethed form a sensor and written to a sensor. Unfortunately, OpenIPMI

does not have a very good way to represent the atual hysteresis value. The trouble is that hysteresis is not

set per-threshold; it only has one hysteresis value that is applied to all thresholds for a sensor. This means

that you annot set a oating-point o�set for hysteresis beause the same oating-point hysteresis value may

result in a di�erent raw hysteresis value for eah sensor

2

. This is one of the rare situations where IPMI ould

have been a bit more exible (usually it is too exible). Beause of this situation, the hysteresis value is set

as a raw value.

A separate positive and negative hysteresis an exist for a sensor. The positive value is for the \going

higher" thresholds, it is the amount that must be subtrated from the threshold where the threshold will go

bak in range. The negative value is for the \going lower" thresholds, it is the amount that must be added

to the threshold where the threshold will go bak in range.

To know what type of hysteresis a sensor supports, use:

int ipmi_sensor_get_hysteresis_support(ipmi_sensor_t *sensor);

This returns one of the following values:

IPMI HYSTERESIS SUPPORT NONE - The sensor does not support hysteresis.

IPMI HYSTERESIS SUPPORT READABLE - The sensor has hysteresis, but the value annot be

set. It an be read.

IPMI HYSTERESIS SUPPORT SETTABLE - The sensor has hysteresis and the value an be both

set and read.

IPMI HYSTERESIS SUPPORT FIXED - The sensor has hysteresis but the value annot be read or

set. If the default hysteresis values are non-zero, then they are the �xed hysteresis for the sensor.

Otherwise the values are unknown.

The default hystersis an be read using:

2

This is due to the fat that some sensors are non-linear.

9.6. USING SENSORS IN OPENIPMI 145

int ipmi_sensor_get_positive_going_threshold_hysteresis(ipmi_sensor_t *sensor);

int ipmi_sensor_get_negative_going_threshold_hysteresis(ipmi_sensor_t *sensor);

To feth and set the urrent threshold values for a sensor (assuming it support these operations), use:

typedef void (*ipmi_sensor__hysteresis_b)(ipmi_sensor_t *sensor,

int err,

unsigned int positive_hysteresis,

unsigned int negative_hysteresis,

void *b_data);

int ipmi_sensor_get_hysteresis(ipmi_sensor_t *sensor,

ipmi_hysteresis_get_b done,

void *b_data);

int ipmi_sensor_set_hysteresis(ipmi_sensor_t *sensor,

unsigned int positive_hysteresis,

unsigned int negative_hysteresis,

ipmi_sensor_done_b done,

void *b_data);

Threshold Sensor Reading Information in OpenIPMI

In addition to all this, IPMI gives some more information about the readings. The following allow the user

to get the auray and tolerane of the readings from the sensor:

int ipmi_sensor_get_tolerane(ipmi_sensor_t *sensor,

int val,

double *tolerane);

int ipmi_sensor_get_auray(ipmi_sensor_t *sensor, int val, double *auray);

The sensor also may have de�ned ranges and nominal readings. If a value of this type is spei�ed, then

the speified funtions below will return true and the spei� value will be available:

int ipmi_sensor_get_normal_min_speified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_normal_min(ipmi_sensor_t *sensor, double *normal_min);

int ipmi_sensor_get_normal_max_speified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_normal_max(ipmi_sensor_t *sensor, double *normal_max);

int ipmi_sensor_get_nominal_reading_speified(ipmi_sensor_t *sensor);

int ipmi_sensor_get_nominal_reading(ipmi_sensor_t *sensor,

double *nominal_reading);

The normal min and max give the standard operating range of a sensor. The nominal reading is the \normal"

value the sensor should read.

The sensor may also have absolute minimum and maximum values. These an be fethed with the

following funtions:

int ipmi_sensor_get_sensor_max(ipmi_sensor_t *sensor, double *sensor_max);

int ipmi_sensor_get_sensor_min(ipmi_sensor_t *sensor, double *sensor_min);

146 CHAPTER 9. SENSORS

9.6.3 Disrete Sensors in OpenIPMI

The value of a disrete sensor is its states, the value of its bits. Eah bit is a single independent states; the

bits are not used together to represent multi-bit values.

Disrete Sensor Readings in OpenIPMI

To read the value of a disrete sensor, use the following:

typedef void (*ipmi_sensor_states_b)(ipmi_sensor_t *sensor,

int err,

ipmi_states_t *states,

void *b_data);

int ipmi_sensor_get_states(ipmi_sensor_t *sensor,

ipmi_states_read_b done,

void *b_data);

The values are returned in the states objet. To know if a spei� state will be set in the states struture

for a sensor, use the funtion:

int ipmi_disrete_event_readable(ipmi_sensor_t *sensor,

int event,

int *val);

This will set val to if the bit for the given sensor will support being read.

One you know if the bit is supported, the funtion:

int ipmi_is_state_set(ipmi_states_t *states,

int state_num);

will return true if the given state (bit) is set and false if it is not set.

Disrete Sensor Events in OpenIPMI

To know if a spei� bit an ause an event to be sent by the sensor, use the following funtion:

int ipmi_sensor_disrete_event_supported(ipmi_sensor_t *sensor,

int offset,

enum ipmi_event_dir_e dir,

int *val);

The val will be set to whether the event is supported or not.

To atually enable or disable individual events for a sensor, an event state struture must be reated.

An event state struture is passed in when the event state of a sensor is queried. To set or lear individual

events in one of these strutures, use the following:

void ipmi_disrete_event_lear(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

void ipmi_disrete_event_set(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

9.7. SENSOR SDRS 147

To see if a spei� event is set, use:

int ipmi_is_disrete_event_set(ipmi_event_state_t *events,

int event_offset,

enum ipmi_event_dir_e dir);

9.7 Sensor SDRs

TBD - write this

148 CHAPTER 9. SENSORS

C h a p t e r 1 0

Controls and Misellany

10.1 Controls

Standard IPMI has no provision for an output devie besides a few simple funtions like reset and power.

However, many systems have OEM extensions that allow ontrol of lights, display panels, relays, and a lot

of other things. OpenIPMI adds the onept of a \ontrol", whih is an output devie.

Eah ontrol has a spei� type, that is fethed with:

int ipmi_ontrol_get_type(ipmi_ontrol_t *ontrol);

It returns one of the following values:

IPMI CONTROL LIGHT - A light of some time, like an LED or a lamp.

IPMI CONTROL RELAY - A relay output

IPMI CONTROL DISPLAY - A 2-D text display

IPMI CONTROL ALARM - Some type of audible or visible warning devie

IPMI CONTROL RESET - A reset line to reset something. This type allows the value to be set as

either on or o�.

IPMI CONTROL POWER - Control of the power of something.

IPMI CONTROL FAN SPEED - Control of the fan speed.

IPMI CONTROL IDENTIFIER - A general identi�er for the entity in question. This is things like a

serial number, a board type, or things of that nature. These may or may not be writable.

IPMI CONTROL ONE SHOT RESET - A reset line, but setting the value to one does a reset and

release of reset, you annot hold the devie in reset with one of these.

IPMI CONTROL OUTPUT - A general output devie like a digital output.

IPMI CONTROL ONE SHOT OUTPUT - A general one-shot output devie.

149

150 CHAPTER 10. CONTROLS AND MISCELLANY

The funtion:

har *ipmi_ontrol_get_type_string(ipmi_ontrol_t *ontrol);

returns a string representation of the ontrol type for the ontrol.

Some ontrols may have multiple objets that annot be independently ontrolled. For example, if a

message is sent to set the value of three LEDs and it has one byte for eah LED and no way to set \only

set this one", then there is no generally and guaranteed way to independently ontrol eah LED. In these

ases, OpenIPMI represents these as a ontrol with multiple values. When setting, all the values must be

spei�ed. When reading, all the values are returned. To get the number of values for a ontrol, use the

following funtion:

int ipmi_ontrol_get_num_vals(ipmi_ontrol_t *ontrol);

Control Entity Information

Every ontrol is assoiated with a spei� entity, these alls let you feth the entity information. The following

alls return the numeri entity id and instane:

int ipmi_ontrol_get_entity_id(ipmi_ontrol_t *ontrol);

int ipmi_ontrol_get_entity_instane(ipmi_ontrol_t *ontrol);

Generally, though, that is note what you want. You want the atual entity objet, whih may be fethed

with the following:

ipmi_entity_t *ipmi_ontrol_get_entity(ipmi_ontrol_t *ontrol);

Note that the entity is refounted when the ontrol is laimed, so the entity will exist while you have a valid

referene to a ontrol it ontains.

10.1.1 Control Name

Controls are given a name by the OEM ode that reates them. This is useful for printing out ontrol

information. The funtions to get this are:

int ipmi_ontrol_get_id_length(ipmi_ontrol_t *ontrol);

enum ipmi_str_type_e ipmi_ontrol_get_id_type(ipmi_ontrol_t *ontrol);

int ipmi_ontrol_get_id(ipmi_ontrol_t *ontrol, har *id, int length);

See appendix A.1 for more information about these strings.

The funtion

int ipmi_ontrol_get_name(ipmi_ontrol_t *ontrol, har *name, int length);

returns a fully quali�ed name for the ontrol with the entity name prepended. The name array is �lled with

the name, up to the length given. This is useful for printing string names for the ontrol.

10.1. CONTROLS 151

10.1.2 Controls and Events

Controls may support events, muh like sensors. The funtion:

int ipmi_ontrol_has_events(ipmi_ontrol_t *ontrol);

tells if a ontrol supports events.

To register/unregister for ontrol events, use the funtions:

typedef int (*ipmi_ontrol_val_event_b)(ipmi_ontrol_t *ontrol,

int *valid_vals,

int *vals,

void *b_data,

ipmi_event_t *event);

int ipmi_ontrol_add_val_event_handler(ipmi_ontrol_t *ontrol,

ipmi_ontrol_val_event_b handler,

void *b_data);

int ipmi_ontrol_remove_val_event_handler(ipmi_ontrol_t *ontrol,

ipmi_ontrol_val_event_b handler,

void *b_data);

In the allbak, not all values may be present. The valid_vals parameter is an array of booleans telling if

spei� values are present. If an item in that array is true, then the orresponding value in the vals array

is a valid value. This is a standard event handler as de�ned in setion 2.2.5 on page 20.

10.1.3 Basi Type Controls

This setion desribes the more \normal" ontrols, that generally have a single value that is a binary or some

type of diret setting. These take an integer value per ontrol for their setting. These ontrol types are:

relay

alarm

reset

power

fan speed

one-shot reset

output

one-shot output

To set the value of one of these ontrols, use the following:

int ipmi_ontrol_set_val(ipmi_ontrol_t *ontrol,

int *val,

ipmi_ontrol_op_b handler,

void *b_data);

152 CHAPTER 10. CONTROLS AND MISCELLANY

Pass in an array of integers for the values, the length of whih should be the number of values the ontrol

supports. To get the value of a ontrol, use:

typedef void (*ipmi_ontrol_val_b)(ipmi_ontrol_t *ontrol,

int err,

int *val,

void *b_data);

int ipmi_ontrol_get_val(ipmi_ontrol_t *ontrol,

ipmi_ontrol_val_b handler,

void *b_data);

The val returns is an array of integers, the length is the number of values the ontrol supports.

10.1.4 Light

Lights ome in two avors. Some lights have absolute ontrol of the olor, on time, and o� time. OpenIPMI

all these \setting" lights. Other lights have �xed funtions; they have a few settings that have �xed olor

and on/o� values. OpenIPMI alles these \transition" lights. Both types are fully supported.

To know if a light ontrol is a setting or transition light, the following funtion returns true for a setting

light and false for a transition light:

int ipmi_ontrol_light_set_with_setting(ipmi_ontrol_t *ontrol);

Lights an be di�erent olors, and the interfae allows the supported olors to be hek and set. The

supported olors are:

IPMI CONTROL COLOR BLACK

IPMI CONTROL COLOR WHITE

IPMI CONTROL COLOR RED

IPMI CONTROL COLOR GREEN

IPMI CONTROL COLOR BLUE

IPMI CONTROL COLOR YELLOW

IPMI CONTROL COLOR ORANGE

Setting Light

Setting lights are managed with an abstrat data struture:

typedef strut ipmi_light_setting_s ipmi_light_setting_t;

This is a standard OpenIPMI opaque data struture. Like most other data strutures of this type, this does

not diretly modify the light, this is used to transmit the settings to a light and to reeive the settings from

a light. To alloate/free these, use the following:

ipmi_light_setting_t *ipmi_allo_light_settings(unsigned int ount);

void ipmi_free_light_settings(ipmi_light_setting_t *settings);

A funtion is also available to dupliate these objets:

ipmi_light_setting_t *ipmi_light_settings_dup(ipmi_light_setting_t *settings);

10.1. CONTROLS 153

Eah light setting has the settings for all lights for the ontrol. If you alloate a light setting, you must

pass in the number of lights the ontrol manages. You an also feth this from the setting using:

unsigned int ipmi_light_setting_get_ount(ipmi_light_setting_t *setting);

Setting type lights have the onept of \loal ontrol". When a light is in loal ontrol, the light is

managed by the system it runs on. If loal ontrol is turned o�, then the light an be diretly managed.

For instane, the system may have an LED that when under loal ontrol displays disk ativity. However,

it may be possible for the management system to take over that LED and use it for another purpose. Loal

ontrol is set and modi�ed in a setting using the funtions:

int ipmi_light_setting_in_loal_ontrol(ipmi_light_setting_t *setting,

int num,

int *l);

int ipmi_light_setting_set_loal_ontrol(ipmi_light_setting_t *setting,

int num,

int l);

The num parameter is the light number to set (whih of the lights the ontrol managers). The l parameter

is the loal ontrol ontrol setting. These return error values if the parameters are out of range. If loal

ontrol is not supported, this is generally ignored.

To know if a light supports a spei� olor, the funtion:

int ipmi_ontrol_light_is_olor_supported(ipmi_ontrol_t *ontrol,

unsigned int olor);

To set the olor in a setting and extrat the olor from a setting, use:

int ipmi_light_setting_get_olor(ipmi_light_setting_t *setting, int num,

int *olor);

int ipmi_light_setting_set_olor(ipmi_light_setting_t *setting, int num,

int olor);

These types of lights also support on and o� times. The on and o� times are diretly set, so the user has

diret ontrol of this. Note that on and o� times may be approximate. To set or get the on and o� times in

a setting, use:

int ipmi_light_setting_get_on_time(ipmi_light_setting_t *setting, int num,

int *time);

int ipmi_light_setting_set_on_time(ipmi_light_setting_t *setting, int num,

int time);

int ipmi_light_setting_get_off_time(ipmi_light_setting_t *setting, int num,

int *time);

int ipmi_light_setting_set_off_time(ipmi_light_setting_t *setting, int num,

int time);

The times are spei�ed in milliseonds.

To feth the urrent settings of a light ontrol, use:

154 CHAPTER 10. CONTROLS AND MISCELLANY

typedef void (*ipmi_light_settings_b)(ipmi_ontrol_t *ontrol,

int err,

ipmi_light_setting_t *settings,

void *b_data);

int ipmi_ontrol_get_light(ipmi_ontrol_t *ontrol,

ipmi_light_settings_b handler,

void *b_data);

One you reeive the settings, use the get funtions to get the data you want from it. Note that the settings

parameter is freed by the system; if you want to keep the settings around you should dupliate them.

To set the settings of a light ontrol, �rst reate and on�gure a light setting objet, then pass it to:

int ipmi_ontrol_set_light(ipmi_ontrol_t *ontrol,

ipmi_light_setting_t *settings,

ipmi_ontrol_op_b handler,

void *b_data);

Transition Light

For a transition light ontrol, eah ontrol has one or more lights. Eah light is an lightable devie, but all

the lights in a ontrol are hanged together. To get the number of lights supported by a ontrol, use:

int ipmi_ontrol_get_num_vals(ipmi_ontrol_t *ontrol);

Eah light has a number of values that it may be set to. The value is what is passed to set_ontrol.

See setion 10.1.3 on page 151 for details on how to use set_ontrol. To �nd the number of values for a

light, use

int ipmi_ontrol_get_num_light_values(ipmi_ontrol_t *ontrol, light);

Eah value of a light has a number of transitions that it may go through. Eah transition has a olor and

a time when that olors runs.

This all sounds ompliated, but it is really fairly simple. Suppose a ontrol has two lights. Say light 0

is a red led. Light 0 has 4 values: o�, 100ms on and 900ms o�, 900ms on and 100ms o�, and always on.

For value 0, it will have one transition and the olor will be blak (time is irrelevant with one transition).

For value 1, it will have two transitions, the �rst has a olor of blak and a time of 900 and the seond has

a olor of red and a time of 100. Likewise, value 2 has two transitions, the �rst is blak with a time of 100

and the seond is red with a value of 900. Value 4 has one transition with a red olor.

To get the number of transitions in a value, all the funtion:

int ipmi_ontrol_get_num_light_transitions(ipmi_ontrol_t *ontrol,

unsigned int light,

unsigned int value);

For eah transition, use the following funtions to feth the olor and time for that transition:

int ipmi_ontrol_get_light_olor(ipmi_ontrol_t *ontrol,

unsigned int light,

unsigned int value,

10.2. WATCHDOG TIMER 155

unsigned int transition);

int ipmi_ontrol_get_light_olor_time(ipmi_ontrol_t *ontrol,

unsigned int light,

unsigned int value,

unsigned int transition);

10.1.5 Display

The funtion of a display is TBD until the author of OpenIPMI gets a system that supports one :-).

10.1.6 Identi�er

An identi�er ontrol holds some type of information about the system, the spei� type of something, a

serial number or other identi�er, or things of that nature. They are represented as an array of bytes.

To �nd the maximum number of bytes a ontrol may be set to or will return, use the funtion:

unsigned int ipmi_ontrol_identifier_get_max_length(ipmi_ontrol_t *ontrol);

To set and get the value of a ontrol, use:

typedef void (*ipmi_ontrol_identifier_val_b)(ipmi_ontrol_t *ontrol,

int err,

unsigned har *val,

int length,

void *b_data);

int ipmi_ontrol_identifier_get_val(ipmi_ontrol_t *ontrol,

ipmi_ontrol_identifier_val_b handler,

void *b_data);

int ipmi_ontrol_identifier_set_val(ipmi_ontrol_t *ontrol,

unsigned har *val,

int length,

ipmi_ontrol_op_b handler,

void *b_data);

10.1.7 Chassis Controls

The IPMI standard supports two basi ontrols if the system supports hassis ontrol. OpenIPMI automat-

ially detets these and reates ontrols for them. The ontrols reated are reated on the hassis entity id

(id 23.1) and are named:

reset A one-shot reset that an reset the proessor in the hassis.

power A binary power ontrol that an turn on and turn o� power to a hassis.

10.2 Wathdog Timer

TBD - determine if we really need wathdog timer support, write it and doument it if so. Currently the

OpenIPMI library does not support the wathdog timer, but the Linux IPMI driver does support it through

the standard wathdog timer interfae.

156 CHAPTER 10. CONTROLS AND MISCELLANY

10.3 Diret I

2

C Aess

C h a p t e r 1 1

Events

OpenIPMI automatially sets the event reeiver.

11.1 Event Format

11.2 Event Data Information for Spei� Events

SYSTEM

FIRMWARE

PROGRESS

00h

-

01h Uses the same values as o�set 00h.

02h

-

EVENT LOGGING

DISABLED

01h

-

SYSTEM EVENT 03h

-

04h

-

SLOT CONNECTOR all

-

WATCHDOG 2 all

-

157

158 CHAPTER 11. EVENTS

11.3 MC Event Enables

Note there is a setion in the MC hapter about this.

11.4 Coordinating Multiple Users of an SEL

If multiple things are managing an SEL, suh as two instanes of a redundant LAN appliation, you generally

want both appliations to be able to see all events. This means that they must oordinate deletion of logs

from the SEL. Generally, you want an appliation to be able to pull events from the SEL, store them in some

other non-volatile storage, and then delete the events from the SEL.

If two appliations are doing this, you an have eah appliation wait for twie at least twie the SEL

polling time and delete the event. This give all appliations a hane to polls the SEL and pull out the

events. OpenIPMI will orretly handle situations where another system has deleted an event from the SEL.

It is also possible to send the events between the systems and use the timestamps and event numbers to

detet redundant opies. This is obviously more omplex, but overs situations where one system may have

been down for a time and needs opies of events it may have missed.

C h a p t e r 1 2

Other OpenIPMI Conerns

12.1 When Operations Happen

As mentioned before, OpenIPMI has a very dynami view of the domain. It also reports things as it �nds

them, but the work on those things is not neessarily \done". OpenIPMI has no onept of anything being

\done"; it views a domain as a dynami entity that an hange over time.

In some ases, though, it may be useful to know when ertain operations omplete. The following all

will tell you when the main SDR repository has been read. You an all it after you reate the domain but

before the domain has �nished initialization; you an register your own handler here:

int

ipmi_domain_set_main_SDRs_read_handler(ipmi_domain_t *domain,

ipmi_domain_b handler,

void *b_data)

Likewise, when a MC is reported the SDRs and events have not yet been read. To register handlers for

those, use:

int ipmi_m_set_sdrs_first_read_handler(ipmi_m_t *m,

ipmi_m_ptr_b handler,

void *b_data);

int ipmi_m_set_sels_first_read_handler(ipmi_m_t *m,

ipmi_m_ptr_b handler,

void *b_data);

Note that you should almost ertainly not use these, unless you absolutely have to. In general, your

software should handle the dynami nature of an IPMI system dynamially.

159

160 CHAPTER 12. OTHER OPENIPMI CONCERNS

A p p e n d i x A

Speial IPMI Formats

A.1 IPMI strings

IPMI uses a speial format for storing strings. It allows data to be stored in four di�erent formats. The �rst

byte desribes the type and length; the format is:

bits 0-4 - The number of bytes following this byte. Note that this is not the number of haraters in the

string, it is the number of bytes following. The value of 11111b is reserved.

bit 5 - reserved

bits 6-7 - The string type. Valid values are:

00h - Uniode

01h - BCD plus

02h - 6-bit ASCII, paked

03h - 8-bit ASCII and Latin 1. In this ase, a length of one is reserved. The length may be zero, or

it may be from 2 to 30, but may not be 1.

The values and paking are de�ned in the IPMI spe.

TBD - add harater values and paking information

A.1.1 OpenIPMI and IPMI strings

OpenIPMI does most of the work of deoding the IPMI strings. Generally, to feth a string, three funtions

are supported that generally look something like:

int ipmi_xxx_get_id_length(ipmi_xxx_t *obj);

enum ipmi_str_type_e ipmi_xxx_get_id_type(ipmi_xxx_t *obj);

int ipmi_xxx_get_id(ipmi_xxx_t *obj, har *id, int length);

Fething the type allows you to tell what it is. The type may be one of:

IPMI ASCII STR - The value is in normal ASCII and Latin 1

IPMI UNICODE STR - The value is uniode enoded.

IPMI BINARY STR - The value is raw binary data.

161

162 APPENDIX A. SPECIAL IPMI FORMATS

Then you an get the length to know how long the value will be. Then feth the atual id with the get id

all; it will store the value in the id passed in. The get id all will return the number of bytes opied into

into the id string. The size of the id string should be passed in to the \length" �eld. The number of bytes

atually opied will be returned by the all. If the number of bytes is more than the length of the id �eld,

then only \length" bytes are �lled in.

A p p e n d i x B

The Perl Interfae

OpenIPMI has interfae ode that let's Perl programs use OpenIPMI. The interfae works muh like the C

interfae. Some things are simpli�ed, but in general it is very similar.

The interfae uses objet-oriented programming in Perl, so you must know how to do that in Perl. It's

pretty simple, really, but it's somewhat strange if you already know another OO programming language.

As an example, to reate a domain onnetion and read all the events, you might use the following ode:

#!/usr/bin/perl

get_events

#

A sample perl program to get IPMI events from an BMC

#

Author: MontaVista Software, In.

Corey Minyard <minyard�mvista.om>

soure�mvista.om

#

Copyright 2004 MontaVista Software In.

#

This program is free software; you an redistribute it and/or

modify it under the terms of the GNU Lesser General Publi Liense

as published by the Free Software Foundation; either version 2 of

the Liense, or (at your option) any later version.

#

#

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

163

164 APPENDIX B. THE PERL INTERFACE

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#

You should have reeived a opy of the GNU Lesser General Publi

Liense along with this program; if not, write to the Free

Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.

#

use OpenIPMI;

{

pakage MC_Nameget;

sub new {

my $a = shift;

my $b = \$a;

return bless $b;

}

sub m_b {

my $self = shift;

my $m = shift;

$$self = $m->get_name();

}

pakage Eventh;

sub new {

my $obj = { };

return bless \$obj;

}

sub event_b {

my $self = shift;

my $domain = shift;

my $event = shift;

my $mid;

my $name;

my $val;

my �data;

my $dataref;

$mid = $event->get_m_id();

$name = MC_Nameget::new("");

165

$mid->to_m($name);

$dataref = $event->get_data();

�data = �$dataref;

print ("Got event: $$name ", $event->get_reord_id(),

" ", $event->get_type(), " ", $event->get_timestamp(), "\n");

print " Data: ";

while (defined ($val = shift �data)) {

printf " %2.2x", $val;

}

print "\n";

}

pakage Conh;

sub new {

my $obj = { };

$obj->{first_time} = 1;

return bless \$obj;

}

sub onn_hange_b {

my $self = shift;

my $domain = shift;

my $err = shift;

my $onn_num = shift;

my $port_num = shift;

my $still_onneted = shift;

if ($err && !$still_onneted) {

print "Error starting up onnetion: $err\n";

exit 1;

} elsif ($$self->{first_time}) {

my $event_handler = Eventh::new();

Register an event handler on the first time.

$$self->{first_time} = 0;

$rv = $domain->add_event_handler($event_handler);

if ($rv) {

print "Error adding event handler, losing\n";

$domain->lose();

exit(1);

}

}

}

pakage Uph;

166 APPENDIX B. THE PERL INTERFACE

sub new {

my $obj = { };

return bless \$obj;

}

sub domain_lose_done_b {

exit 0;

}

sub domain_up_b {

my $self = shift;

my $domain = shift;

Domain is up, the SEL has been read.

print "Domain ", $domain->get_name(), " is finished oming up!\n";

$domain->lose($self);

}

}

OpenIPMI::init();

$onh = Conh::new();

$uph = Uph::new();

Only get the SEL from the loal BMC, don't do anything else.

�args = ("-noall", "-sel", "smi", "0");

$domain_id = OpenIPMI::open_domain("test1", \�args, $onh, $uph);

while (1) {

OpenIPMI::wait_io(1000);

}

Unfortunately, the doumentation for the Perl interfae is in the �le swig/OpenIPMI.i along with the

soures. It will hopefully be here in the future.

A p p e n d i x C

Comparison with SNMP

167

168 APPENDIX C. COMPARISON WITH SNMP

A p p e n d i x D

Comparison with HPI

OpenIPMI and HPI over muh of the same funtionality. Many of the onepts are similar. OpenIPMI was

designed so that HPI ould be implemented on top of it, so they are not neessarily ompeting tehnologies.

The only thing that HPI provides that OpenIPMI doesn't is a wathdog interfae. Sine that's really

more a funtion of the OS and not something useful for remote systems, OpenIPMI didn't implement this

and left that to the OS.

OpenIPMI provides aess to the on�guration information for LAN interfaes, hannel management,

and user management. HPI doesn't provide this. Indeed it ouldn't beause that type of thing is too hard

to abstrat and too spei� to IPMI. So even if you use HPI, you will need something like OpenIPMI to

manage the IPMI-spei� things in your system.

Both HPI and OpenIPMI have the onept of a domain, entity, sensor, and ontrol. For the most part,

they are the same. In theory the domain onept of HPI is more general than OpenIPMI's. In pratie they

are usually the same. Entities do not di�er in onept, but they are �rst-lass objets in OpenIPMI. In HPI

they are a set of numbers that identify a \path", but don't have atual data assoiated with them and you

annot perform operations on them.

HPI adds a \resoure" objet that OpenIPMI doesn't really have. An RDR many of the things that

entities do in OpenIPMI. For instane, hot-swap is on entities in OpenIPMI, but is on RDRs in HPI. In

e�et, HPI split the onept of an IPMI entity into two things, one for identifying the things sensors and

ontrols are attahed to, and one for the inventory data, hot-swap ontrol, and some other things. This split

is arti�al from IPMI's point of view; it makes no suh distintion.

The biggest oneptual di�erene between OpenIPMI and HPI is that OpenIPMI is event-driven as

desribed in setion 2.2.1 on page 10. This means that it is possible to reate omplex and live systems with

OpenIPMI without using threads or low-level polling. This is not possible with HPI. Event-driven system

are somewhat strange to use if you haven't used them before, though.

HPI is a standard. It an be used with non-IPMI systems. These things ount for a lot.

169

170 APPENDIX D. COMPARISON WITH HPI

A p p e n d i x E

ATCA

ATCA is a standard spei�ed by PICMG for highly available hardware. These are bus systems where a

number of ards are plugged into a bakplane. The bakplane has redundant IPMB management busses and

an have redundant BMCs. In ATCA, the BMC is alled the \Shelf Manager" (this is not quite orret, but

lose enough for this disussion). The individual management ontrollers on a board are alled \IPMCs."

Something that onnets to the Shelf Managers is alled a \System Manager."

The OpenIPMI library will auto-detet an ATCA system and on�gure itself properly.

Unlike the IPMI spe, the ATCA spe is fairly well written and easy to understand. Reading it is highly

reommended if you are programming on an ATCA system.

OpenIPMI maps the ATCA system into a fairly standard IPMI on�guration. This is relatively transpar-

ent beause ATCA was designed to work with the IPMI spe and IPMI-spei�ed operations are used when

possible. The entire shelf is represented as entity 23.1. Eah of the boards will appear as ontained inside

entity 23.1.

E.1 Management Redundany in ATCA

In general the redundany in ATCA is done by the ATCA system itself and is mostly invisible to the System

Manager. Though there are multiple IPMB busses, it looks like one exept for reporting of errors. And the

Shelf Managers will make the system look like one IP address even if one Shelf Manager fails.

ECN002 of the ATCA spe added the apability to supply all the management IP addresses on an ATCA

system. OpenIPMI will automatially detet this apability and reate a port for eah IP address. This

port's info will show ATCA aux as the interfae type. The port annot be ativated, but reporting of the

port's state tells you if the port is up or down. Note that ports an hange dynamially; if a port hange

omes in with an ENOENT error, that port has been deleted. You should hek the port information eah

time the port hanges, as the ports may be reordered or reon�gured.

E.2 Hot Swap in ATCA

The full standard OpenIPMI hot-swap state mahine is implemented for ATCA systems and is fully operation.

171

172 APPENDIX E. ATCA

E.3 ATCA FRU Data

OpenIPMI has deoders to deode all the standard ATCA FRU data. It uses the standard interfae as

de�ned in setion 8.7.1 on page 114. OpenIPMI will feth the ATCA FRU data for its own internal use, but

the ATCA FRU data is not fethed in a way that is visible to the user beause it does not appear in the

standard loations for IPMI FRUs. The ATCA spe de�nes how the user an �nd the FRU data; one the

loation is found the data an be fethed using ipmi_fru_allo().

E.4 Speial ATCA Sensors

All hot-swappable ATCA entities have their own hot-swap sensor. OpenIPMI will detet this sensor auto-

matially and set it up properly. It will report this sensor to the user, but the user must not modify the

on�guration of the sensor or it may mess up the hot-swap state mahine. Use the hot-swap state mahine

instead of this sensor.

ATCA spei�ed other sensors, but the OpenIPMI ATCA ode does not use these internally.

E.5 Speial ATCA Shelf Controls

OpenIPMI will reate one ontrol for ECN002 and later versions. It is a single ontrol with all the power

feeds de�ned in the power map. The urrent value of eah feed is in the ontrol. It is named \power feeds"

and is attahed to the shelf entity (23.1).

E.6 Speial ATCA IPMC Controls

ATCA spei�es a standard way to ontrol LEDs on the board, and it has a de�ned reset operation.

The LED ontrols appear as standard OpenIPMI light ontrols that use setting ontrols, see the se-

tion 10.1.4 on page 152 for more information on how to ontrol these. The �rst LED is always the blue

hot-swap LED and is named \blue led". The other LEDs are labeled \led 1", \led 2", et.

The reset ontrol is named \old reset" and an be used to reset the main proessor on the board. If

your board is ATCA ECN002 ompliant, it will have a way to detet additional ontrols:

warm reset

graeful reboot

diagnosti interrupt

The operation of these is board-dependent.

Note that even though you ould diretly ontrol the power on an ATCA board, you should not. Use the

hot-swap state mahine.

In addition, an address ontrol named \address' is reated for eah IPMC that has the address info: site

type, site number, hardware address, ipmb address, in that order.

E.7. CHASSIS CONTROLS AND ATCA 173

E.7 Chassis Controls and ATCA

The Shelf Manager is supposed to have the standard hassis ontrols spei�ed by IPMI for power and reset.

Be very areful using these. They a�et the entire shelf. So if you turn o� the power with the hassis power

ontrol, it will turn of every board in the shelf.

E.8 AMC

AMC was designed to work transparently with the ATCA spe. The IPMC that manages the AMC modules

will represent the AMC modules to the shelf and system manager transparently, so in general the user doesn't

have to do anything speial. The AMCs will appear as hot-swap apable entities ontained within their host

board's entity.

It may be neessary to diretly ommuniate with the AMC modules. From an OpenIPMI driver on-

netion, you must send the message using an ipmi_ipmb_addr with hannel 7 and the slave address set to

the IPMB address of the AMC module. This works transparently in the driver.

1

Communiating diretly to the AMC over a LAN interfae is more omplex. You must format a send

message ommand yourself, but only the last level of the send message. You would format a omplete send

message ommand to hannel 7 and the IPMB address of the AMC module. You then send this message

using an ipmi_ipmb_addr, with the hannel set to 0 and using the IPMB address of the IPMC as the slave

address. You must use message traking. Then the OpenIPMI library will format the message properly to

get it to the IPMC. Your send message ommand will then be proessed by the IPMC and the message will

be routed to the AMC. The IPMC takes are of handling the response and returning it to you through the

shelf manager. This is rather omplex, but should be a seldom-used operation. And if anyone wants to make

it simpler, pathes are always appreiated.

1

Note that some systems do not orretly implement this due to a misunderstanding in the AMC spe. The AMC spe talks

about using message traking to route messages from the IPMB to the AMCs. It does not talk about using message traking

going from the system interfaes to the AMCs. The IPMI spe is quite lear that only untraked messages are used from the

system interfae. If you annot talk to your AMC board from the IPMI driver, it may be that the board does not properly

handle untraked messages.

174 APPENDIX E. ATCA

A p p e n d i x F

Motorola MXP

175

176 APPENDIX F. MOTOROLA MXP

A p p e n d i x G

Intel Servers

Many Intel server systems have an alarm panel and a relay output that an be monitored and ontrolled

through IPMI. This will appear under entity 12.1 (Alarm Panel) and will be named \alarm". It takes an

8-bit setting. The meanings of the bits are:

7 Reserved, always write 1

6 LED olors, 1 = amber (default), 0 = red. Note that the olors were added in some

later �rmware versions, not in all, and the olors may not a�et all LEDs.

5 Minor Relay bit, 0 = on, 1=o�. This is a read only bit and should always be written

1.

4 Major Relay bit, 0 = on, 1=o�. This is a read only bit and should always be written

1.

3 Minor LED bit, 0 = on, 1=o�

2 Major LED bit, 0 = on, 1=o�

1 Critial LED bit, 0 = on, 1=o�

0 Power LED bit, 0 = on, 1=o�

177

178 APPENDIX G. INTEL SERVERS

A p p e n d i x H

Sample Program Showing Basi

Operations

The following program shows basi setup, registration, and registering to handle new entitys, sensors, and

ontrols as they are reated. Some basi information is dumped.

/*

* test1.

*

* OpenIPMI test ode

*

* Author: Intel Corporation

* Jeff Zheng <Jeff.Zheng�Intel.om>

*

* This program is free software; you an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi Liense

* as published by the Free Software Foundation; either version 2 of

* the Liense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* You should have reeived a opy of the GNU Lesser General Publi

179

180 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

* Liense along with this program; if not, write to the Free

* Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#inlude <stdio.h>

#inlude <stdlib.h>

#inlude <string.h>

#inlude <sys/types.h>

#inlude <sys/stat.h>

#inlude <fntl.h>

#inlude <unistd.h>

#inlude <netdb.h>

#inlude <type.h>

#inlude <time.h>

#inlude <OpenIPMI/ipmiif.h>

#inlude <OpenIPMI/ipmi_smi.h>

#inlude <OpenIPMI/ipmi_err.h>

#inlude <OpenIPMI/ipmi_auth.h>

#inlude <OpenIPMI/ipmi_lan.h>

#inlude <OpenIPMI/ipmi_posix.h>

#inlude <OpenIPMI/ipmi_fru.h>

/* This sample appliation demostrates a very simple method to use

OpenIPMI. It just searh all sensors in the system. From this

appliation, you an find that there is only 4 lines ode in main()

funtion if you use the SMI-only interfae, and several simple

allbak funtions in all ases. */

stati onst har *progname;

stati void on_usage(onst har *name, onst har *help, void *b_data)

{

printf("\n%s%s", name, help);

}

stati void

usage(void)

{

printf("Usage:\n");

printf(" %s <on_parms>\n", progname);

printf(" Where <on_parms> is one of:");

ipmi_parse_args_iter_help(on_usage, NULL);

}

stati int

181

sensor_threshold_event_handler(ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

enum ipmi_thresh_e threshold,

enum ipmi_event_value_dir_e high_low,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double value,

void *b_data,

ipmi_event_t *event)

{

ipmi_entity_t *ent = ipmi_sensor_get_entity(sensor);

int id, instane;

har name[33℄;

id = ipmi_entity_get_entity_id(ent);

instane = ipmi_entity_get_entity_instane(ent);

ipmi_sensor_get_id(sensor, name, 32);

printf("Event from sensor %d.%d.%s: %s %s %s\n",

id, instane, name,

ipmi_get_threshold_string(threshold),

ipmi_get_value_dir_string(high_low),

ipmi_get_event_dir_string(dir));

if (value_present == IPMI_BOTH_VALUES_PRESENT) {

printf(" value is %f (%2.2x)\n", value, raw_value);

} else if (value_present == IPMI_RAW_VALUE_PRESENT) {

printf(" raw value is 0x%x\n", raw_value);

}

if (event)

printf("Due to event 0x%4.4x\n", ipmi_event_get_reord_id(event));

/* This passes the event on to the main event handler, whih does

not exist in this program. */

return IPMI_EVENT_NOT_HANDLED;

}

stati int

sensor_disrete_event_handler(ipmi_sensor_t *sensor,

enum ipmi_event_dir_e dir,

int offset,

int severity,

int prev_severity,

void *b_data,

ipmi_event_t *event)

{

ipmi_entity_t *ent = ipmi_sensor_get_entity(sensor);

182 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

int id, instane;

har name[33℄;

id = ipmi_entity_get_entity_id(ent);

instane = ipmi_entity_get_entity_instane(ent);

ipmi_sensor_get_id(sensor, name, 32);

printf("Event from sensor %d.%d.%s: %d %s\n",

id, instane, name,

offset,

ipmi_get_event_dir_string(dir));

if (severity != -1)

printf(" severity is %d\n", severity);

if (prev_severity != -1)

printf(" prev severity is %d\n", prev_severity);

if (event)

printf("Due to event 0x%4.4x\n", ipmi_event_get_reord_id(event));

/* This passes the event on to the main event handler, whih does

not exist in this program. */

return IPMI_EVENT_NOT_HANDLED;

}

/* Whenever the status of a sensor hanges, the funtion is alled

We display the information of the sensor if we find a new sensor

*/

stati void

sensor_hange(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data)

{

int id, instane;

har name[33℄;

int rv;

id = ipmi_entity_get_entity_id(ent);

instane = ipmi_entity_get_entity_instane(ent);

ipmi_sensor_get_id(sensor, name, 32);

if (op == IPMI_ADDED) {

printf("Sensor added: %d.%d.%s\n", id, instane, name);

if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

rv = ipmi_sensor_add_threshold_event_handler

(sensor,

183

sensor_threshold_event_handler,

NULL);

else

rv = ipmi_sensor_add_disrete_event_handler

(sensor,

sensor_disrete_event_handler,

NULL);

if (rv)

printf("Unable to add the sensor event handler: %x\n", rv);

}

}

stati int

traverse_fru_node_tree(int indent, ipmi_fru_node_t *node)

{

onst har *name;

unsigned int i, j;

enum ipmi_fru_data_type_e dtype;

int intval, rv;

time_t time;

double floatval;

har *data;

unsigned int data_len;

ipmi_fru_node_t *sub_node;

for (i=0; ; i++) {

data = NULL;

rv = ipmi_fru_node_get_field(node, i, &name, &dtype, &intval, &time,

&floatval, &data, &data_len, &sub_node);

if (rv == EINVAL)

break;

else if (rv)

ontinue;

if (name)

printf("%*s%s: ", indent, "", name);

else

printf("%*s[%d℄: ", indent, "", i);

swith (dtype) {

ase IPMI_FRU_DATA_INT:

printf("(integer) %d\n", intval);

break;

ase IPMI_FRU_DATA_TIME:

printf("(integer) %ld\n", (long) time);

184 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

break;

ase IPMI_FRU_DATA_BINARY:

printf("(binary)");

for (j=0; j<data_len; j++)

printf(" %2.2x", data[j℄);

printf("\n");

break;

ase IPMI_FRU_DATA_UNICODE:

printf("(uniode)");

for (j=0; j<data_len; j++)

printf(" %2.2x", data[j℄);

printf("\n");

break;

ase IPMI_FRU_DATA_ASCII:

printf("(asii) \"%s\"\n", data);

break;

ase IPMI_FRU_DATA_BOOLEAN:

printf("(boolean) \"%s\"\n", intval ? "true" : "false");

break;

ase IPMI_FRU_DATA_FLOAT:

printf("(float) %f\n", floatval);

break;

ase IPMI_FRU_DATA_SUB_NODE:

if (intval == -1)

printf("(reord)\n");

else

printf("(array) %d\n", intval);

traverse_fru_node_tree(indent+2, sub_node);

break;

default:

printf("(unknown)");

break;

}

if (data)

ipmi_fru_data_free(data);

}

ipmi_fru_put_node(node);

185

return 0;

}

stati void

fru_hange(enum ipmi_update_e op,

ipmi_entity_t *entity,

void *b_data)

{

int id, instane;

int rv;

ipmi_fru_t *fru = ipmi_entity_get_fru(entity);

onst har *type;

ipmi_fru_node_t *node;

if (op == IPMI_ADDED) {

id = ipmi_entity_get_entity_id(entity);

instane = ipmi_entity_get_entity_instane(entity);

printf("FRU added for: %d.%d\n", id, instane);

if (!fru)

return;

rv = ipmi_fru_get_root_node(fru, &type, &node);

if (rv)

return;

printf("FRU type: %s", type);

traverse_fru_node_tree(2, node);

}

}

/* Whenever the status of an entity hanges, the funtion is alled

When a new entity is reated, we searh all sensors that belong

to the entity */

stati void

entity_hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *b_data)

{

int rv;

int id, instane;

id = ipmi_entity_get_entity_id(entity);

instane = ipmi_entity_get_entity_instane(entity);

186 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

if (op == IPMI_ADDED) {

printf("Entity added: %d.%d\n", id, instane);

/* Register allbak so that when the status of a

sensor hanges, sensor_hange is alled */

rv = ipmi_entity_add_sensor_update_handler(entity,

sensor_hange,

entity);

if (rv) {

printf("ipmi_entity_set_sensor_update_handler: 0x%x", rv);

exit(1);

}

rv = ipmi_entity_add_fru_update_handler(entity,

fru_hange,

NULL);

if (rv) {

printf("ipmi_entity_set_fru_update_handler: 0x%x", rv);

exit(1);

}

}

}

/* After we have established onnetion to domain, this funtion get alled

At this time, we an do whatever things we want to do. Herr we want to

searh all entities in the system */

void

setup_done(ipmi_domain_t *domain,

int err,

unsigned int onn_num,

unsigned int port_num,

int still_onneted,

void *user_data)

{

int rv;

/* Register a allbak funtin entity_hange. When a new entities

is reated, entity_hange is alled */

rv = ipmi_domain_add_entity_update_handler(domain, entity_hange, domain);

if (rv) {

printf("ipmi_domain_add_entity_update_handler return error: %d\n", rv);

return;

}

}

stati os_handler_t *os_hnd;

187

stati void

my_vlog(os_handler_t *handler,

onst har *format,

enum ipmi_log_type_e log_type,

va_list ap)

{

int do_nl = 1;

swith(log_type)

{

ase IPMI_LOG_INFO:

printf("INFO: ");

break;

ase IPMI_LOG_WARNING:

printf("WARN: ");

break;

ase IPMI_LOG_SEVERE:

printf("SEVR: ");

break;

ase IPMI_LOG_FATAL:

printf("FATL: ");

break;

ase IPMI_LOG_ERR_INFO:

printf("EINF: ");

break;

ase IPMI_LOG_DEBUG_START:

do_nl = 0;

/* FALLTHROUGH */

ase IPMI_LOG_DEBUG:

printf("DEBG: ");

break;

ase IPMI_LOG_DEBUG_CONT:

do_nl = 0;

/* FALLTHROUGH */

ase IPMI_LOG_DEBUG_END:

break;

}

vprintf(format, ap);

188 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

if (do_nl)

printf("\n");

}

int

main(int arg, har *argv[℄)

{

int rv;

int urr_arg = 1;

ipmi_args_t *args;

ipmi_on_t *on;

progname = argv[0℄;

/* OS handler alloated first. */

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_on: Unable to alloate os handler\n");

exit(1);

}

/* Override the default log handler (just to show how). */

os_hnd->set_log_handler(os_hnd, my_vlog);

/* Initialize the OpenIPMI library. Do a double one to look for

init/shutdown bugs. */

rv = ipmi_init(os_hnd);

if (rv) {

fprintf(stderr, "Error in ipmi initialization %d: %s\n",

urr_arg, strerror(rv));

exit(1);

}

ipmi_shutdown();

rv = ipmi_init(os_hnd);

if (rv) {

fprintf(stderr, "Error in ipmi initialization(2) %d: %s\n",

urr_arg, strerror(rv));

exit(1);

}

#if 0

/* If all you need is an SMI onnetion, this is all the ode you

need. */

/* Establish onnetions to domain through system interfae. This

funtion onnet domain, seletor and OS handler together.

189

When there is response message from domain, the status of file

desriptor in seletor is hanged and predefined allbak is

alled. After the onnetion is established, setup_done will be

alled. */

rv = ipmi_smi_setup_on(0, os_hnd, NULL, &on);

if (rv) {

printf("ipmi_smi_setup_on: %s", strerror(rv));

exit(1);

}

#endif

#if 1

rv = ipmi_parse_args2(&urr_arg, arg, argv, &args);

if (rv) {

fprintf(stderr, "Error parsing ommand arguments, argument %d: %s\n",

urr_arg, strerror(rv));

usage();

exit(1);

}

rv = ipmi_args_setup_on(args, os_hnd, NULL, &on);

if (rv) {

fprintf(stderr, "ipmi_ip_setup_on: %s", strerror(rv));

exit(1);

}

#endif

rv = ipmi_open_domain("", &on, 1, setup_done, NULL, NULL, NULL,

NULL, 0, NULL);

if (rv) {

fprintf(stderr, "ipmi_init_domain: %s\n", strerror(rv));

exit(1);

}

/* This is the main loop of the event-driven program.

Try <CTRL-C> to exit the program */

#if 1

/* We run the selet loop here, this shows how you an use

sel_selet. You ould add your own proessing in this loop. */

while (1) {

os_hnd->perform_one_op(os_hnd, NULL);

}

#else

/* Let the seletor ode run the selet loop. */

os_hnd->operation_loop(os_hnd);

#endif

190 APPENDIX H. SAMPLE PROGRAM SHOWING BASIC OPERATIONS

/* Tehnially, we an't get here, but this is an example. */

os_hnd->free_os_handler(os_hnd);

}

A p p e n d i x I

Sample Program Showing Event

Setup

The following program show how to set up events. For every sensor that is deteted, it will turn on all events

that the sensor supports.

/*

* test1.

*

* OpenIPMI test ode showing event setup

*

* Author: Corey Minyard <minyard�am.org>

*

* This program is free software; you an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi Liense

* as published by the Free Software Foundation; either version 2 of

* the Liense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* You should have reeived a opy of the GNU Lesser General Publi

* Liense along with this program; if not, write to the Free

191

192 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

* Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#inlude <stdio.h>

#inlude <stdlib.h>

#inlude <string.h>

#inlude <sys/types.h>

#inlude <sys/stat.h>

#inlude <fntl.h>

#inlude <unistd.h>

#inlude <netdb.h>

#inlude <type.h>

#inlude <time.h>

#inlude <OpenIPMI/ipmiif.h>

#inlude <OpenIPMI/ipmi_smi.h>

#inlude <OpenIPMI/ipmi_err.h>

#inlude <OpenIPMI/ipmi_auth.h>

#inlude <OpenIPMI/ipmi_lan.h>

#inlude <OpenIPMI/ipmi_posix.h>

/* This sample appliation demostrates some general handling of sensors,

like reading values, setting up events, and things of that nature.

It also demonstrates some good oding praties like refounting

strutures. */

stati onst har *progname;

#define MAX_SENSOR_NAME_SIZE 128

typedef strut sdata_s

{

unsigned int refount;

ipmi_sensor_id_t sensor_id;

har name[MAX_SENSOR_NAME_SIZE℄;

ipmi_event_state_t *es;

ipmi_thresholds_t *th;

int state_sup;

int thresh_sup;

strut sdata_s *next, *prev;

} sdata_t;

stati sdata_t *sdata_list = NULL;

stati sdata_t *

193

allo_sdata(ipmi_sensor_t *sensor)

{

sdata_t *sdata;

sdata = mallo(sizeof(*sdata));

if (!sdata)

return NULL;

sdata->es = mallo(ipmi_event_state_size());

if (!sdata->es) {

free(sdata);

return NULL;

}

ipmi_event_state_init(sdata->es);

sdata->th = mallo(ipmi_thresholds_size());

if (!sdata->th) {

free(sdata->es);

free(sdata);

return NULL;

}

ipmi_thresholds_init(sdata->th);

sdata->refount = 1;

sdata->sensor_id = ipmi_sensor_onvert_to_id(sensor);

ipmi_sensor_get_name(sensor, sdata->name, sizeof(sdata->name));

sdata->next = sdata_list;

sdata->prev = NULL;

sdata_list = sdata;

return sdata;

}

stati sdata_t *

find_sdata(ipmi_sensor_t *sensor)

{

ipmi_sensor_id_t id = ipmi_sensor_onvert_to_id(sensor);

sdata_t *link;

link = sdata_list;

while (link) {

if (ipmi_mp_sensor_id(id, link->sensor_id) == 0)

return link;

link = link->next;

194 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

}

return NULL;

}

stati void

use_sdata(sdata_t *sdata)

{

sdata->refount++;

}

stati void

release_sdata(sdata_t *sdata)

{

sdata->refount--;

if (sdata->refount == 0) {

/* Remove it from the list. */

if (sdata->next)

sdata->next->prev = sdata->prev;

if (sdata->prev)

sdata->prev->next = sdata->next;

else

sdata_list = sdata->next;

free(sdata->es);

free(sdata->th);

free(sdata);

}

}

stati void on_usage(onst har *name, onst har *help, void *b_data)

{

printf("\n%s%s", name, help);

}

stati void

usage(void)

{

printf("Usage:\n");

printf(" %s <on_parms>\n", progname);

printf(" Where <on_parms> is one of:");

ipmi_parse_args_iter_help(on_usage, NULL);

}

stati void

got_thresh_reading(ipmi_sensor_t *sensor,

195

int err,

enum ipmi_value_present_e value_present,

unsigned int raw_value,

double val,

ipmi_states_t *states,

void *b_data)

{

sdata_t *sdata = b_data;

enum ipmi_thresh_e thresh;

if (err) {

printf("Error 0x%x getting disrete states for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Got threshold reading for sensor %s\n", sdata->name);

if (ipmi_is_event_messages_enabled(states))

printf(" event messages enabled\n");

if (ipmi_is_sensor_sanning_enabled(states))

printf(" sensor sanning enabled\n");

if (ipmi_is_initial_update_in_progress(states))

printf(" initial update in progress\n");

swith (value_present)

{

ase IPMI_NO_VALUES_PRESENT:

printf(" no value present\n");

break;

ase IPMI_BOTH_VALUES_PRESENT:

{

onst har *perent = "";

onst har *base;

onst har *mod_use = "";

onst har *modifier = "";

onst har *rate;

base = ipmi_sensor_get_base_unit_string(sensor);

if (ipmi_sensor_get_perentage(sensor))

perent = "%";

swith (ipmi_sensor_get_modifier_unit_use(sensor)) {

ase IPMI_MODIFIER_UNIT_NONE:

break;

ase IPMI_MODIFIER_UNIT_BASE_DIV_MOD:

mod_use = "/";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

196 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

break;

ase IPMI_MODIFIER_UNIT_BASE_MULT_MOD:

mod_use = "*";

modifier = ipmi_sensor_get_modifier_unit_string(sensor);

break;

}

rate = ipmi_sensor_get_rate_unit_string(sensor);

printf(" value: %lf%s %s%s%s%s\n", val, perent,

base, mod_use, modifier, rate);

}

/* FALLTHROUGH */

ase IPMI_RAW_VALUE_PRESENT:

printf(" raw value: 0x%2.2x\n", raw_value);

}

if (sdata->thresh_sup == IPMI_THRESHOLD_ACCESS_SUPPORT_NONE)

goto out;

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

thresh++)

{

int val, rv;

rv = ipmi_sensor_threshold_reading_supported(sensor, thresh, &val);

if (rv || !val)

ontinue;

if (ipmi_is_threshold_out_of_range(states, thresh))

printf(" Threshold %s is out of range\n",

ipmi_get_threshold_string(thresh));

else

printf(" Threshold %s is in range\n",

ipmi_get_threshold_string(thresh));

}

out:

release_sdata(sdata);

}

stati void

got_disrete_states(ipmi_sensor_t *sensor,

int err,

ipmi_states_t *states,

void *b_data)

197

{

sdata_t *sdata = b_data;

int i;

if (err) {

printf("Error 0x%x getting disrete states for sensor %s\n",

err, sdata->name);

goto out;

}

if (err) {

printf("Error 0x%x getting disrete states for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Got state reading for sensor %s\n", sdata->name);

if (ipmi_is_event_messages_enabled(states))

printf(" event messages enabled\n");

if (ipmi_is_sensor_sanning_enabled(states))

printf(" sensor sanning enabled\n");

if (ipmi_is_initial_update_in_progress(states))

printf(" initial update in progress\n");

for (i=0; i<15; i++) {

int val, rv;

rv = ipmi_sensor_disrete_event_readable(sensor, i, &val);

if (rv || !val)

ontinue;

printf(" state %d value is %d\n", i, ipmi_is_state_set(states, i));

}

out:

release_sdata(sdata);

}

stati void

event_set_done(ipmi_sensor_t *sensor,

int err,

void *b_data)

{

sdata_t *sdata = b_data;

if (err) {

198 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf("Error 0x%x setting events for sensor %s\n", err, sdata->name);

goto out;

}

printf("Events set for sensor %s\n", sdata->name);

out:

release_sdata(sdata);

}

stati void

got_events(ipmi_sensor_t *sensor,

int err,

ipmi_event_state_t *states,

void *b_data)

{

sdata_t *sdata = b_data;

int rv;

if (err) {

printf("Error 0x%x getting events for sensor %s\n", err, sdata->name);

goto out_err;

}

/* Turn on the general events for a sensor, sine this at

least supports per-sensor enables. */

ipmi_event_state_set_events_enabled(sdata->es, 1);

ipmi_event_state_set_sanning_enabled(sdata->es, 1);

printf("Sensor %s event settings:\n", sdata->name);

if (sdata->state_sup != IPMI_EVENT_SUPPORT_PER_STATE) {

/* No per-state sensors, just do the global enable. */

} else if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

{

/* Chek eah event, print out the urrent state, and turn it

on in the events to set if it is available. */

enum ipmi_event_value_dir_e value_dir;

enum ipmi_event_dir_e dir;

enum ipmi_thresh_e thresh;

int val;

for (value_dir=IPMI_GOING_LOW; value_dir<=IPMI_GOING_HIGH; value_dir++)

{

for (dir=IPMI_ASSERTION; dir<=IPMI_DEASSERTION; dir++) {

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

199

thresh++)

{

har *v;

rv = ipmi_sensor_threshold_event_supported

(sensor, thresh, value_dir, dir, &val);

if (rv || !val)

ontinue;

if (ipmi_is_threshold_event_set(states, thresh,

value_dir, dir))

v = "";

else

v = " not";

printf(" %s %s %s was%s enabled\n",

ipmi_get_threshold_string(thresh),

ipmi_get_value_dir_string(value_dir),

ipmi_get_event_dir_string(dir),

v);

ipmi_threshold_event_set(sdata->es, thresh,

value_dir, dir);

}

}

}

} else {

/* Chek eah event, print out the urrent state, and turn it

on in the events to set if it is available. */

enum ipmi_event_dir_e dir;

int i;

for (dir=IPMI_ASSERTION; dir<=IPMI_DEASSERTION; dir++) {

for (i=0; i<15; i++) {

har *v;

int val;

rv = ipmi_sensor_disrete_event_supported

(sensor, i, dir, &val);

if (rv || !val)

ontinue;

if (ipmi_is_disrete_event_set(states, i, dir))

v = "";

else

v = " not";

200 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf(" bit %d %s was%s enabled\n",

i,

ipmi_get_event_dir_string(dir),

v);

ipmi_disrete_event_set(sdata->es, i, dir);

}

}

}

rv = ipmi_sensor_set_event_enables(sensor, sdata->es,

event_set_done, sdata);

if (rv) {

printf("Error 0x%x enabling events for sensor %s\n", err, sdata->name);

goto out_err;

}

return;

out_err:

release_sdata(sdata);

}

stati void

thresholds_set(ipmi_sensor_t *sensor, int err, void *b_data)

{

sdata_t *sdata = b_data;

if (err) {

printf("Error 0x%x setting thresholds for sensor %s\n",

err, sdata->name);

goto out;

}

printf("Thresholds set for sensor %s\n", sdata->name);

out:

release_sdata(sdata);

}

stati void

got_thresholds(ipmi_sensor_t *sensor,

int err,

ipmi_thresholds_t *th,

void *b_data)

201

{

sdata_t *sdata = b_data;

enum ipmi_thresh_e thresh;

int rv;

if (err) {

printf("Error 0x%x getting events for sensor %s\n", err, sdata->name);

goto out_err;

}

printf("Sensor %s threshold settings:\n", sdata->name);

for (thresh=IPMI_LOWER_NON_CRITICAL;

thresh<=IPMI_UPPER_NON_RECOVERABLE;

thresh++)

{

int val;

double dval;

rv = ipmi_sensor_threshold_readable(sensor, thresh, &val);

if (rv || !val)

/* Threshold not available. */

ontinue;

rv = ipmi_threshold_get(th, thresh, &dval);

if (rv) {

printf(" threshold %s ould not be fethed due to error 0x%x\n",

ipmi_get_threshold_string(thresh), rv);

} else {

printf(" threshold %s is %lf\n",

ipmi_get_threshold_string(thresh), dval);

}

}

rv = ipmi_get_default_sensor_thresholds(sensor, sdata->th);

if (rv) {

printf("Error 0x%x getting def thresholds for sensor %s\n",

rv, sdata->name);

goto out_err;

}

rv = ipmi_sensor_set_thresholds(sensor, sdata->th, thresholds_set, sdata);

if (rv) {

printf("Error 0x%x setting thresholds for sensor %s\n",

rv, sdata->name);

goto out_err;

}

202 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

return;

out_err:

release_sdata(sdata);

}

/* Whenever the status of a sensor hanges, the funtion is alled

We display the information of the sensor if we find a new sensor */

stati void

sensor_hange(enum ipmi_update_e op,

ipmi_entity_t *ent,

ipmi_sensor_t *sensor,

void *b_data)

{

sdata_t *sdata;

int rv;

if (op == IPMI_ADDED) {

sdata = allo_sdata(sensor);

if (!sdata) {

printf("Unable to alloate sensor name memory\n");

return;

}

printf("Sensor added: %s\n", sdata->name);

/* Get the urrent reading. */

if (ipmi_sensor_get_event_reading_type(sensor)

== IPMI_EVENT_READING_TYPE_THRESHOLD)

{

use_sdata(sdata);

rv = ipmi_sensor_get_reading(sensor, got_thresh_reading, sdata);

if (rv) {

printf("ipmi_reading_get returned error 0x%x for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

} else {

use_sdata(sdata);

rv = ipmi_sensor_get_states(sensor, got_disrete_states, sdata);

if (rv) {

printf("ipmi_states_get returned error 0x%x for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

203

}

/* Set up events. */

sdata->state_sup = ipmi_sensor_get_event_support(sensor);

swith (sdata->state_sup)

{

ase IPMI_EVENT_SUPPORT_NONE:

ase IPMI_EVENT_SUPPORT_GLOBAL_ENABLE:

/* No events to set up. */

printf("Sensor %s has no event support\n", sdata->name);

goto get_thresh;

}

use_sdata(sdata);

rv = ipmi_sensor_get_event_enables(sensor, got_events, sdata);

if (rv) {

printf("ipmi_sensor_events_enable_get returned error 0x%x"

" for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

get_thresh:

/* Handle the threshold settings. */

if (ipmi_sensor_get_event_reading_type(sensor)

!= IPMI_EVENT_READING_TYPE_THRESHOLD)

/* Thresholds only for threshold sensors (duh) */

goto out;

sdata->thresh_sup = ipmi_sensor_get_threshold_aess(sensor);

swith (sdata->thresh_sup)

{

ase IPMI_THRESHOLD_ACCESS_SUPPORT_NONE:

printf("Sensor %s has no threshold support\n", sdata->name);

goto out;

ase IPMI_THRESHOLD_ACCESS_SUPPORT_FIXED:

printf("Sensor %s has fixed threshold support\n", sdata->name);

goto out;

}

use_sdata(sdata);

rv = ipmi_sensor_get_thresholds(sensor, got_thresholds, sdata);

if (rv) {

204 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

printf("ipmi_thresholds_get returned error 0x%x"

" for sensor %s\n",

rv, sdata->name);

release_sdata(sdata);

}

} else if (op == IPMI_DELETED) {

sdata = find_sdata(sensor);

if (!sdata) {

har name[120℄;

ipmi_sensor_get_name(sensor, name, sizeof(name));

printf("sensor %s was deleted but not found in the sensor db\n",

name);

goto out;

}

printf("sensor %s was deleted\n", sdata->name);

release_sdata(sdata);

}

out:

return;

}

/* Whenever the status of an entity hanges, the funtion is alled

When a new entity is reated, we searh all sensors that belong

to the entity */

stati void

entity_hange(enum ipmi_update_e op,

ipmi_domain_t *domain,

ipmi_entity_t *entity,

void *b_data)

{

int rv;

har name[50℄;

ipmi_entity_get_name(entity, name, sizeof(name));

if (op == IPMI_ADDED) {

printf("Entity added: %s\n", name);

/* Register allbak so that when the status of a

sensor hanges, sensor_hange is alled */

rv = ipmi_entity_add_sensor_update_handler(entity,

sensor_hange,

NULL);

if (rv) {

printf("ipmi_entity_set_sensor_update_handler: 0x%x", rv);

205

exit(1);

}

}

}

/* After we have established onnetion to domain, this funtion get alled

At this time, we an do whatever things we want to do. Herr we want to

searh all entities in the system */

void

setup_done(ipmi_domain_t *domain,

int err,

unsigned int onn_num,

unsigned int port_num,

int still_onneted,

void *user_data)

{

int rv;

/* Register a allbak funtin entity_hange. When a new entities

is reated, entity_hange is alled */

rv = ipmi_domain_add_entity_update_handler(domain, entity_hange, domain);

if (rv) {

printf("ipmi_domain_add_entity_update_handler return error: %d\n", rv);

return;

}

}

stati os_handler_t *os_hnd;

int

main(int arg, har *argv[℄)

{

int rv;

int urr_arg = 1;

ipmi_args_t *args;

ipmi_on_t *on;

progname = argv[0℄;

/* OS handler alloated first. */

os_hnd = ipmi_posix_setup_os_handler();

if (!os_hnd) {

printf("ipmi_smi_setup_on: Unable to alloate os handler\n");

exit(1);

}

206 APPENDIX I. SAMPLE PROGRAM SHOWING EVENT SETUP

/* Use the default log handler. */

/* Initialize the OpenIPMI library. */

ipmi_init(os_hnd);

rv = ipmi_parse_args2(&urr_arg, arg, argv, &args);

if (rv) {

fprintf(stderr, "Error parsing ommand arguments, argument %d: %s\n",

urr_arg, strerror(rv));

usage();

exit(1);

}

rv = ipmi_args_setup_on(args, os_hnd, NULL, &on);

if (rv) {

fprintf(stderr, "ipmi_ip_setup_on: %s", strerror(rv));

exit(1);

}

rv = ipmi_open_domain("", &on, 1, setup_done, NULL, NULL, NULL,

NULL, 0, NULL);

if (rv) {

fprintf(stderr, "ipmi_init_domain: %s\n", strerror(rv));

exit(1);

}

/* This is the main loop of the event-driven program.

Try <CTRL-C> to exit the program */

/* Let the seletor ode run the selet loop. */

os_hnd->operation_loop(os_hnd);

/* Tehnially, we an't get here, but this is an example. */

os_hnd->free_os_handler(os_hnd);

return 0;

}

A p p e n d i x J

Command Reeiver Program

#inlude <sys/types.h>

#inlude <sys/stat.h>

#inlude <fntl.h>

#inlude <errno.h>

#inlude <sys/selet.h>

#inlude <sys/iotl.h>

#inlude <linux/ipmi.h>

#inlude <stdio.h>

#define MY_NETFN 0x32

#define MY_CMD 0x01

int

main(int arg, har *argv)

{

int fd;

int rv;

int i;

strut ipmi_mdspe mdspe;

unsigned har data[IPMI_MAX_MSG_LENGTH℄;

strut ipmi_addr addr;

strut ipmi_rev rev;

strut ipmi_req req;

fd_set rset;

int ount;

int got_one;

fd = open("/dev/ipmi0", O_RDWR);

if (fd == -1) {

fd = open("/dev/ipmidev/0", O_RDWR);

if (fd == -1) {

207

208 APPENDIX J. COMMAND RECEIVER PROGRAM

perror("open");

exit(1);

}

}

/* Register to get the ommand */

mdspe.netfn = MY_NETFN;

mdspe.md = MY_CMD;

rv = iotl(fd, IPMICTL_REGISTER_FOR_CMD, &mdspe);

if (rv == -1) {

perror("iotl register_for_md");

exit(1);

}

ount = 0;

got_one = 0;

while (ount || !got_one) {

/* Wait for a message. */

FD_ZERO(&rset);

FD_SET(fd, &rset);

rv = selet(fd+1, &rset, NULL, NULL, NULL);

if (rv == -1) {

if (errno == EINTR)

ontinue;

perror("selet");

exit(1);

}

/* Get the message. */

rev.msg.data = data;

rev.msg.data_len = sizeof(data);

rev.addr = (unsigned har *) &addr;

rev.addr_len = sizeof(addr);

rv = iotl(fd, IPMICTL_RECEIVE_MSG_TRUNC, &rev);

if (rv == -1) {

perror("iotl rev_msg_trun");

exit(1);

}

if ((rev.rev_type == IPMI_CMD_RECV_TYPE)

&& (rev.msg.netfn == MY_NETFN)

&& (rev.msg.md == MY_CMD))

{

/* We got a ommand, send a response. */

data[0℄ = 0; /* No error */

for (i=1; i<10; i++)

209

data[i℄ = i;

req.addr = (void *) rev.addr;

req.addr_len = rev.addr_len;

req.msgid = rev.msgid;

req.msg.netfn = rev.msg.netfn | 1; /* Make it a response */

req.msg.md = rev.msg.md;

req.msg.data = data;

req.msg.data_len = 10;

rv = iotl(fd, IPMICTL_SEND_COMMAND, &req);

if (rv == -1) {

perror("iotl send_md");

exit(1);

}

ount++;

got_one = 1;

}

else if ((rev.rev_type == IPMI_RESPONSE_RESPONSE_TYPE)

&& (rev.msg.netfn == MY_NETFN | 1)

&& (rev.msg.md == MY_CMD))

{

/* We got a response to our response send, done. */

ount--;

}

else

{

printf("Got wrong msg type %d, netfn %x, md %x\n",

rev.rev_type, rev.msg.netfn, rev.msg.md);

}

}

/* Remove our ommand registration. */

rv = iotl(fd, IPMICTL_UNREGISTER_FOR_CMD, &mdspe);

if (rv == -1) {

perror("iotl unregister_for_md");

exit(1);

}

exit(0);

}

210 APPENDIX J. COMMAND RECEIVER PROGRAM

A p p e n d i x K

Connetion Handling Interfae

(ipmi onn.h)

/*

* ipmi_onn.h

*

* MontaVista IPMI interfae, definition for a low-level onnetion (like a

* LAN interfae, or system management interfae, et.).

*

* Author: MontaVista Software, In.

* Corey Minyard <minyard�mvista.om>

* soure�mvista.om

*

* Copyright 2002,2003 MontaVista Software In.

*

* This program is free software; you an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi Liense

* as published by the Free Software Foundation; either version 2 of

* the Liense, or (at your option) any later version.

*

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

211

212 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

*

* You should have reeived a opy of the GNU Lesser General Publi

* Liense along with this program; if not, write to the Free

* Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#ifndef _IPMI_CONN_H

#define _IPMI_CONN_H

#inlude <OpenIPMI/ipmi_types.h>

#inlude <OpenIPMI/ipmi_addr.h>

#inlude <OpenIPMI/os_handler.h>

#ifdef __plusplus

extern "C" {

#endif

/* Called when an IPMI response to a ommand omes in from the BMC. */

typedef int (*ipmi_ll_rsp_handler_t)(ipmi_on_t *ipmi,

ipmi_msgi_t *rspi);

/* Called when an IPMI event omes in from the BMC. Note that the

event may be NULL, meaning that an event ame in but did not have

enough information to build a full event message. So this is just

an indiation that there is a new event in the event log. Note that

if an event is delivered here, it's mid might be invalid, so that

may need to be established here. */

typedef void (*ipmi_ll_evt_handler_t)(ipmi_on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

ipmi_event_t *event,

void *b_data);

/* Called when an inoming ommand is reeived by the IPMI ode. */

typedef void (*ipmi_ll_md_handler_t)(ipmi_on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *md,

long sequene,

void *md_data,

void *data2,

void *data3);

/* Called when a low-level onnetion has failed or ome up. If err

is zero, the onnetion has ome up after being failed. if err is

non-zero, it's an error number to report why the failure ourred.

213

Sine some onnetions support multiple ports into the system, this

is used to report partial failures as well as full failures.

port_num will be the port number that has failed (if err is

nonzero) or has just ome up (if err is zero). What port_num that

means depends on the onnetion type. any_port_up will be true if

the system still has onnetivity through other ports. */

typedef void (*ipmi_ll_on_hanged_b)(ipmi_on_t *ipmi,

int err,

unsigned int port_num,

int any_port_up,

void *b_data);

/* Used when fething the IPMB address of the onnetion. The ative

parm tells if the interfae is ative or not, this allbak is also

used to inform the upper layer when the onnetion beomes ative

or inative. Note that there an be one IPMB address per hannel,

so this allows an array of IPMBs to be passed, one per hannel.

Set the IPMB to 0 if unknown. */

typedef void (*ipmi_ll_ipmb_addr_b)(ipmi_on_t *ipmi,

int err,

onst unsigned har ipmb_addr[℄,

unsigned int num_ipmb_addr,

int ative,

unsigned int haks,

void *b_data);

/* Used to handle knowing when the onnetion shutdown is omplete. */

typedef void (*ipmi_ll_on_losed_b)(ipmi_on_t *ipmi, void *b_data);

/* Statistis interfaes. */

typedef strut ipmi_ll_stat_info_s ipmi_ll_stat_info_t;

typedef void (*ipmi_ll_on_add_stat_b)(ipmi_ll_stat_info_t *info,

void *stat,

int ount);

typedef int (*ipmi_ll_on_register_stat_b)(ipmi_ll_stat_info_t *info,

onst har *name,

onst har *instane,

void **stat);

typedef void (*ipmi_ll_on_unregister_stat_b)(ipmi_ll_stat_info_t *info,

void *stat);

ipmi_ll_stat_info_t *ipmi_ll_on_allo_stat_info(void);

void ipmi_ll_on_free_stat_info(ipmi_ll_stat_info_t *info);

void ipmi_ll_on_stat_info_set_adder(ipmi_ll_stat_info_t *info,

ipmi_ll_on_add_stat_b adder);

void ipmi_ll_on_stat_info_set_register(ipmi_ll_stat_info_t *info,

ipmi_ll_on_register_stat_b reg);

214 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

void ipmi_ll_on_stat_info_set_unregister(ipmi_ll_stat_info_t *info,

ipmi_ll_on_unregister_stat_b ureg);

void ipmi_ll_on_stat_all_adder(ipmi_ll_stat_info_t *info,

void *stat,

int ount);

int ipmi_ll_on_stat_all_register(ipmi_ll_stat_info_t *info,

onst har *name,

onst har *instane,

void **stat);

void ipmi_ll_on_stat_all_unregister(ipmi_ll_stat_info_t *info,

void *stat);

void ipmi_ll_on_stat_set_user_data(ipmi_ll_stat_info_t *info,

void *data);

void *ipmi_ll_on_stat_get_user_data(ipmi_ll_stat_info_t *info);

/* Set this bit in the haks if, even though the onnetion is to a

devie not at 0x20, the first part of a LAN ommand should always

use 0x20. */

#define IPMI_CONN_HACK_20_AS_MAIN_ADDR 0x00000001

/* Some systems (inorretly, aording to the spe) use only the

bottom 4 bits or ROLE(m) for authentiation in the RAKP3 message.

The spe says to use all 8 bits, but enabling this hak makes

OpenIPMI only use the bottom 4 bits. */

#define IPMI_CONN_HACK_RAKP3_WRONG_ROLEM 0x00000002

/* The spe is vague (perhaps wrong), but the default for RMCP+ seems

to be to use K(1) as the integrity key. That is thus the default

of OpenIPMI, but this hak lets you use SIK as it says in one part

of the spe. */

#define IPMI_CONN_HACK_RMCPP_INTEG_SIK 0x00000004

/*

* Used to pass speial options for sending messages.

*/

typedef strut ipmi_on_option_s

{

int option;

union {

long ival;

void *pval;

};

} ipmi_on_option_t;

/* Used to mark the end of the option list. Must always be the last

option. */

215

#define IPMI_CON_OPTION_LIST_END 0

/* Enable/disable authentiation on the message (set by ival).

Default is enabled. */

#define IPMI_CON_MSG_OPTION_AUTH 1

/* Enable/disable onfidentiality (enryption) on the message (set by

ival). Default is enabled. */

#define IPMI_CON_MSG_OPTION_CONF 2

/* The ommand has side effets. Handle this ommand

speially to avoid side effets. Primarily used for reserve

ommands, where on a slow link a ommand may be retransmitted

but the previous response is reeived. If not implemented,

this is ignored.*/

#define IPMI_CON_MSG_OPTION_SIDE_EFFECTS 3

/* The data struture representing a onnetion. The low-level handler

fills this out then alls ipmi_init_on() with the onnetion. */

strut ipmi_on_s

{

/* If this is zero, the domain handling ode will not attempt to

san the system interfae address of the onnetion. If 1, it

will. Generally, if the system interfae will respond on a

IPMB address, you should set this to zero. If it does not

respond on an IPMB, you should set this to one if it is a

management ontroller. */

int san_sysaddr;

/* The low-level handler should provide one of these for doing os-type

things (loks, random numbers, et.) */

os_handler_t *os_hnd;

/* This data an be fethed by the user and used for anything they

like. */

void *user_data;

/* Connetion-speifi data for the underlying onnetion. */

void *on_data;

/* If OEM ode want to attah some data, it an to it here. */

void *oem_data;

void (*oem_data_leanup)(ipmi_on_t *ipmi);

/* This allows the onnetion to tell the upper layer that broadasting

216 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

will not work on this interfae. */

int broadast_broken;

/* Calls for the interfae. These should all return standard

"errno" errors if they fail. */

/* Start proessing on a onnetion. Note that the handler *must*

be alled with the global read lok not held, beause the

handler must write lok the global lok in order to add the MC

to the global list. This will report suess/failure with the

on_hanged_handler, so set that up first. */

int (*start_on)(ipmi_on_t *ipmi);

/* Add a allbak to all when the onnetion goes down or up. */

int (*add_on_hange_handler)(ipmi_on_t *ipmi,

ipmi_ll_on_hanged_b handler,

void *b_data);

int (*remove_on_hange_handler)(ipmi_on_t *ipmi,

ipmi_ll_on_hanged_b handler,

void *b_data);

/* If OEM ode disovers that an IPMB address has hanged, it an

use this to hange it. The haks are the same as the ones in

the IPMB address handler. */

void (*set_ipmb_addr)(ipmi_on_t *ipmi,

onst unsigned har ipmb_addr[℄,

unsigned int num_ipmb_addr,

int ative,

unsigned int haks);

/* Add a handler that will be alled when the IPMB address hanges. */

int (*add_ipmb_addr_handler)(ipmi_on_t *ipmi,

ipmi_ll_ipmb_addr_b handler,

void *b_data);

int (*remove_ipmb_addr_handler)(ipmi_on_t *ipmi,

ipmi_ll_ipmb_addr_b handler,

void *b_data);

/* This all gets the IPMB address of the onnetion. It may be

NULL if the onnetion does not support this. This all may be

set or overridden by the OEM ode. This is primarily for use

by the onnetion ode itself, the OEM ode for the BMC

onneted to should set this. If it is not set, the IPMB

address is assumed to be 0x20. This *should* send a message to

the devie, beause onnetion ode will assume that and use it

to hek for devie funtion. This should also hek if the

217

devie is ative. If this is non-null, it will be alled

periodially. */

int (*get_ipmb_addr)(ipmi_on_t *ipmi,

ipmi_ll_ipmb_addr_b handler,

void *b_data);

/* Change the state of the onnetion to be ative or inative.

This may be NULL if the onnetion does not support this. The

interfae ode may set this, the OEM ode should override this

if neessary. */

int (*set_ative_state)(ipmi_on_t *ipmi,

int is_ative,

ipmi_ll_ipmb_addr_b handler,

void *b_data);

/* Send an IPMI ommand (in "msg" on the "ipmi" onnetion to the

given "addr". When the response omes in or the message times

out, rsp_handler will be alled with the following four data

items. Note that the lower layer MUST guarantee that the

reponse handler is alled, even if it fails or the message is

dropped. */

int (*send_ommand)(ipmi_on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler,

ipmi_msgi_t *rspi);

/* Register to reeive IPMI events from the interfae. */

int (*add_event_handler)(ipmi_on_t *ipmi,

ipmi_ll_evt_handler_t handler,

void *b_data);

/* Remove an event handler. */

int (*remove_event_handler)(ipmi_on_t *ipmi,

ipmi_ll_evt_handler_t handler,

void *b_data);

/* Send a response message. This is not supported on all

interfaes, primarily only on system management interfaes. If

not supported, this should return ENOSYS. */

int (*send_response)(ipmi_on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

long sequene);

218 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

/* Register to reeive inoming ommands. This is not supported

on all interfaes, primarily only on system management

interfaes. If not supported, this should return ENOSYS. */

int (*register_for_ommand)(ipmi_on_t *ipmi,

unsigned har netfn,

unsigned har md,

ipmi_ll_md_handler_t handler,

void *md_data,

void *data2,

void *data3);

/* Deregister a ommand registration. This is not supported on

all interfaes, primarily only on system management interfaes.

If not supported, this should return ENOSYS. */

int (*deregister_for_ommand)(ipmi_on_t *ipmi,

unsigned har netfn,

unsigned har md);

/* Close an IPMI onnetion. */

int (*lose_onnetion)(ipmi_on_t *ipmi);

/* This is set by OEM ode to handle ertain onditions when a

send message fails. It is urrently only used by the IPMI LAN

ode, if a send messages response is an error, this will be

alled first. If this funtion returns true, then the IPMI LAN

ode will not do anything with the message. */

int (*handle_send_rsp_err)(ipmi_on_t *on, ipmi_msg_t *msg);

/* Name the onnetion ode an use for logging and instane names

for statistis. Must be dynamially alloated with

ipmi_mem_allo(). The onnetion ode will free this. May be

NULL. */

har *name;

/* The onnetion ode may put a string here to identify

itself. */

har *on_type;

/* The privilege level of the onnetion */

unsigned int priv_level;

/* Close an IPMI onnetion and report that it is losed. */

int (*lose_onnetion_done)(ipmi_on_t *ipmi,

ipmi_ll_on_losed_b handler,

void *b_data);

219

/* Haks reported by OEM ode. This should be set by the lower

layer or by the user interfae ode. */

unsigned int haks;

/* The IPMB address as reported by the lower layer. */

unsigned har ipmb_addr[MAX_IPMI_USED_CHANNELS℄;

/* Handle an asyn event for the onnetion reported by something

else. */

void (*handle_asyn_event)(ipmi_on_t *on,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg);

/* Used by the onnetion attribute ode. Don't do anything with

this yourself!. The thing that reates this onnetion should

all ipmi_on_attr_init() when the onnetion is reated and

ipmi_on_attr_leanup() when the onnetion is destroyed. */

void *attr;

/* Old statistis interfaes. Do not use these, they don't work

any more. */

int (*register_stat)(void *user_data, har *name,

har *instane, void **stat);

void (*add_stat)(void *user_data, void *stat, int value);

void (*finished_with_stat)(void *user_data, void *stat);

/* Return the arguments or the onnetion. */

ipmi_args_t *(*get_startup_args)(ipmi_on_t *on);

/* Inrement the useount of the onnetion; for eah use, the

onnetion must be losed. This may be NULL if the onnetion

type does not support being reused. */

void (*use_onnetion)(ipmi_on_t *on);

/* Like send_ommand, but with options. options may be NULL if

none. If options are passed in, they must be terminated with

the proper option. This field may be NULL if the onnetion

does not support options. */

int (*send_ommand_option)(ipmi_on_t *ipmi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

onst ipmi_on_option_t *options,

ipmi_ll_rsp_handler_t rsp_handler,

220 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

ipmi_msgi_t *rspi);

/* Returns the number of ports on the onnetion (one more than

the max_port that an be reported by ipmi_ll_on_hanged_b().

If NULL, assume 1. */

unsigned int (*get_num_ports)(ipmi_on_t *ipmi);

/* New statistis interfae. */

int (*register_stat_handler)(ipmi_on_t *ipmi,

ipmi_ll_stat_info_t *info);

int (*unregister_stat_handler)(ipmi_on_t *ipmi,

ipmi_ll_stat_info_t *info);

/* Get a string about the port. This may be NULL, and the format

varies with the partiular interfae. The length if the "info"

string is passed in info_len, the number of haraters that

would have been used is returned in info_len, even if it was

not long enough to hold it. */

int (*get_port_info)(ipmi_on_t *ipmi, unsigned int port,

har *info, int *info_len);

};

#define IPMI_CONN_NAME() (->name ? ->name : "")

/* Initialization ode for the initialization the onnetion ode. */

int _ipmi_onn_init(os_handler_t *os_hnd);

void _ipmi_onn_shutdown(void);

/* Address types for external addresses. */

#define IPMI_EXTERN_ADDR_IP 1

/* Handle a trap from an external SNMP soure. It returns 1 if the

event was handled an zero if it was not. */

int ipmi_handle_snmp_trap_data(onst void *sr_addr,

unsigned int sr_addr_len,

int sr_addr_type,

long speifi,

onst unsigned har *data,

unsigned int data_len);

/* These alls deal with OEM-type handlers for onnetions. Certain

onnetions an be deteted with speial means (beyond just the

manufaturer and produt id) and this allows handlers for these

types of onnetions to be registered. At the very initial

onnetion of every onnetion, the handler will be alled and it

221

must detet whether this is the speifi type of onnetion or not,

do any setup for that onnetion type, and then all the done

routine passed in. Note that the done routine may be alled later,

(allowing this handler to send messages and the like) but it *must*

be alled. Note that this has no anellation handler. It relies

on the lower levels returning responses for all the ommands with

NULL onnetions. */

typedef void (*ipmi_onn_oem_hek_done)(ipmi_on_t *onn,

void *b_data);

typedef int (*ipmi_onn_oem_hek)(ipmi_on_t *onn,

void *hek_b_data,

ipmi_onn_oem_hek_done done,

void *done_b_data);

int ipmi_register_onn_oem_hek(ipmi_onn_oem_hek hek,

void *b_data);

int ipmi_deregister_onn_oem_hek(ipmi_onn_oem_hek hek,

void *b_data);

/* Should be alled by the onnetion ode for any new onnetion. */

int ipmi_onn_hek_oem_handlers(ipmi_on_t *onn,

ipmi_onn_oem_hek_done done,

void *b_data);

/* Generi message handling */

void ipmi_handle_rsp_item(ipmi_on_t *ipmi,

ipmi_msgi_t *rspi,

ipmi_ll_rsp_handler_t rsp_handler);

void ipmi_handle_rsp_item_opymsg(ipmi_on_t *ipmi,

ipmi_msgi_t *rspi,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler);

void ipmi_handle_rsp_item_opyall(ipmi_on_t *ipmi,

ipmi_msgi_t *rspi,

onst ipmi_addr_t *addr,

unsigned int addr_len,

onst ipmi_msg_t *msg,

ipmi_ll_rsp_handler_t rsp_handler);

/* You should use these for alloating and freeing mesage items. Note

that if you set item->msg.data to a non-NULL value that is not

item->data, the system will free it with ipmi_free_msg_item_data().

So you should alloate it with ipmi_allo_msg_item_data9). */

ipmi_msgi_t *ipmi_allo_msg_item(void);

void ipmi_free_msg_item(ipmi_msgi_t *item);

void *ipmi_allo_msg_item_data(unsigned int size);

222 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

void ipmi_free_msg_item_data(void *data);

/* Move the data from the old message item to the new one, NULL-ing

out the old item's data. This will free the new_item's original

data if neessary. This will *not* opy the data items, just the

address and message. */

void ipmi_move_msg_item(ipmi_msgi_t *new_item, ipmi_msgi_t *old_item);

/*

* Connetion attributes. These are named items that ode may reate

* to attah a void data item to a onnetion by name. It an then

* look up the data item by name. Note that you an all

* ipmi_on_register_attribute multiple times. The first time will

* reate the item, the rest of the times will return the existing

* item.

*

* When the onnetion is destroyed, the destroy funtion will be

* alled on the attribute so the memory (or anything else) an be

* leaned up.

*

* This is espeially for use by RMCP+ payloads so they may attah

* data to the onnetion they are assoiated with.

*/

typedef strut ipmi_on_attr_s ipmi_on_attr_t;

/* Attr init funtion. Return the data item in the data field. Returns

an error value. Will only be alled one for the attribute. */

typedef int (*ipmi_on_attr_init_b)(ipmi_on_t *on, void *b_data,

void **data);

/* Called when the attribute is destroyed. Note that this may happen

after onnetion destrution, so the onnetion may not exist any

more. */

typedef void (*ipmi_on_attr_kill_b)(void *b_data, void *data);

int ipmi_on_register_attribute(ipmi_on_t *on,

har *name,

ipmi_on_attr_init_b init,

ipmi_on_attr_kill_b destroy,

void *b_data,

ipmi_on_attr_t **attr);

int ipmi_on_find_attribute(ipmi_on_t *on,

har *name,

ipmi_on_attr_t **attr);

void *ipmi_on_attr_get_data(ipmi_on_attr_t *attr);

/* You must all the put operation of every attribute returned by

register or find. */

223

void ipmi_on_attr_put(ipmi_on_attr_t *attr);

int ipmi_on_attr_init(ipmi_on_t *on);

void ipmi_on_attr_leanup(ipmi_on_t *on);

#ifdef __plusplus

}

#endif

#endif /* _IPMI_CONN_H */

224 APPENDIX K. CONNECTION HANDLING INTERFACE (IPMI CONN.H)

A p p e n d i x L

OS Handler Interfae (os handler.h)

/*

* os_handler.h

*

* MontaVista IPMI os handler interfae.

*

* Author: MontaVista Software, In.

* Corey Minyard <minyard�mvista.om>

* soure�mvista.om

*

* Copyright 2002,2003,2004,2005 MontaVista Software In.

*

* This software is available to you under a hoie of one of two

* lienses. You may hoose to be liensed under the terms of the GNU

* Lesser General Publi Liense (GPL) Version 2 or the modified BSD

* liense below. The following dislamer applies to both lienses:

*

* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* GNU Lesser General Publi Liene

*

* This program is free software; you an redistribute it and/or

* modify it under the terms of the GNU Lesser General Publi Liense

225

226 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

* as published by the Free Software Foundation; either version 2 of

* the Liense, or (at your option) any later version.

*

* You should have reeived a opy of the GNU Lesser General Publi

* Liense along with this program; if not, write to the Free

* Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.

*

* Modified BSD Liene

*

* Redistribution and use in soure and binary forms, with or without

* modifiation, are permitted provided that the following onditions

* are met:

*

* 1. Redistributions of soure ode must retain the above opyright

* notie, this list of onditions and the following dislaimer.

* 2. Redistributions in binary form must reprodue the above

* opyright notie, this list of onditions and the following

* dislaimer in the doumentation and/or other materials provided

* with the distribution.

* 3. The name of the author may not be used to endorse or promote

* produts derived from this software without speifi prior

* written permission.

*/

#ifndef __OS_HANDLER_H

#define __OS_HANDLER_H

#inlude <stdarg.h>

#inlude <sys/time.h>

#inlude <OpenIPMI/ipmi_log.h>

/**

* WARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNINGWARNING

*

* In order to make this data struture extensible, you should never

* delare a stati version of the OS handler. You should *always*

* alloate it with the alloation routine at the end of this file,

* and free it with the free routine found there. That way, if new

* items are added to the end of this data struture, you are ok. You

* have been warned! Note that if you use the standard OS handlers,

* then you are ok.

*

**/

#ifdef __plusplus

extern "C" {

227

#endif

/* An os-independent normal lok. */

typedef strut os_hnd_lok_s os_hnd_lok_t;

/* An os-independent read/write lok. */

typedef strut os_hnd_rwlok_s os_hnd_rwlok_t;

/* An os-independent ondition variable. */

typedef strut os_hnd_ond_s os_hnd_ond_t;

/* An os-independent file desriptor holder. */

typedef strut os_hnd_fd_id_s os_hnd_fd_id_t;

/* An os-independent timer. */

typedef strut os_hnd_timer_id_s os_hnd_timer_id_t;

/* This is a struture that defined the os-dependent stuff required by

threaded ode. In general, return values of these should be zero

on suess, or an errno value on failure. The errno values will be

propigated bak up to the ommands that aused these to be alled,

if possible. */

typedef void (*os_data_ready_t)(int fd, void *b_data, os_hnd_fd_id_t *id);

typedef void (*os_timed_out_t)(void *b_data, os_hnd_timer_id_t *id);

/* This an be registered with add_fd_to_wait_for, it will be alled

if the fd handler is freed or replaed. This an be used to avoid

free rae onditions, handlers may be in allbaks when you remove

an fd to wait for, this will be alled when all handlers are

done. */

typedef void (*os_fd_data_freed_t)(int fd, void *data);

/* This an be registered with free_timer, it will be alled if the

time free atually ours. This an be used to avoid free rae

onditions, handlers may be in allbaks when you free the timer,

this will be alled when all handlers are done. */

typedef void (*os_timer_freed_t)(void *data);

typedef strut os_handler_s os_handler_t;

/* A funtion to output logs, used to override the default funtions. */

typedef void (*os_vlog_t)(os_handler_t *handler,

onst har *format,

enum ipmi_log_type_e log_type,

va_list ap);

228 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

strut os_handler_s

{

/* Alloate and free data, like mallo() and free(). These are

only used in the "main" os handler, too, not in the oned

registered for domains. */

void *(*mem_allo)(int size);

void (*mem_free)(void *data);

/* This is alled by the user ode to register a allbak handler

to be alled when data is ready to be read on the given file

desriptor. I know, it's kind of wierd, a allbak to register

a allbak, but it's the best way I ould think of to do this.

This all will return an id that an then be used to anel

the wait. The alled ode should register that whenever data

is ready to be read from the given file desriptor, data_ready

should be alled with the given b_data. If this is NULL, you

may only all the ommands ending in "_wait", the event-driven

ode will return errors. You also may not reeive ommands or

events. Note that these alls may NOT blok. */

int (*add_fd_to_wait_for)(os_handler_t *handler,

int fd,

os_data_ready_t data_ready,

void *b_data,

os_fd_data_freed_t freed,

os_hnd_fd_id_t **id);

int (*remove_fd_to_wait_for)(os_handler_t *handler,

os_hnd_fd_id_t *id);

/* Create a timer. This will alloate all the data required for

the timer, so no other timer operations should fail due to lak

of memory. */

int (*allo_timer)(os_handler_t *handler,

os_hnd_timer_id_t **id);

/* Free the memory for the given timer. If the timer is running,

stop it first. */

int (*free_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id);

/* This is alled to register a allbak handler to be alled at

the given time or after (absolute time, as seen by

gettimeofday). After the given time has passed, the

"timed_out" will be alled with the given b_data. The

identifier in "id" just be one previously alloated with

allo_timer(). Note that timed_out may NOT blok. */

int (*start_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id,

strut timeval *timeout,

229

os_timed_out_t timed_out,

void *b_data);

/* Canel the given timer. If the timer has already been alled

(or is in the proess of being alled) this should return

ESRCH, and it may not return ESRCH for any other reason. In

other words, if ESRCH is returned, the timer is valid and the

timeout handler has or will be alled. */

int (*stop_timer)(os_handler_t *handler,

os_hnd_timer_id_t *id);

/* Used to implement loking primitives for multi-threaded aess.

If these are NULL, then the ode will assume that the system is

single-threaded and doesn't need loking. Note that these no

longer have to be reursive loks, they may be normal

non-reursive loks. */

int (*reate_lok)(os_handler_t *handler,

os_hnd_lok_t **id);

int (*destroy_lok)(os_handler_t *handler,

os_hnd_lok_t *id);

int (*lok)(os_handler_t *handler,

os_hnd_lok_t *id);

int (*unlok)(os_handler_t *handler,

os_hnd_lok_t *id);

/* Return "len" bytes of random data into "data". */

int (*get_random)(os_handler_t *handler,

void *data,

unsigned int len);

/* Log reports some through here. They will not end in newlines.

See the log types defined in ipmiif.h for more information on

handling these. */

void (*log)(os_handler_t *handler,

enum ipmi_log_type_e log_type,

onst har *format,

...);

void (*vlog)(os_handler_t *handler,

enum ipmi_log_type_e log_type,

onst har *format,

va_list ap);

/* The user may use this for whatever they like. */

void *user_data;

/* The rest of these are not used by OpenIPMI proper, but are here

230 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

for upper layers if they need them. If your upper layer

doesn't use theses, you don't have to provide them. */

/* Condition variables, like in POSIX Threads. */

int (*reate_ond)(os_handler_t *handler,

os_hnd_ond_t **ond);

int (*destroy_ond)(os_handler_t *handler,

os_hnd_ond_t *ond);

int (*ond_wait)(os_handler_t *handler,

os_hnd_ond_t *ond,

os_hnd_lok_t *lok);

/* The timeout here is relative, not absolute. */

int (*ond_timedwait)(os_handler_t *handler,

os_hnd_ond_t *ond,

os_hnd_lok_t *lok,

strut timeval *timeout);

int (*ond_wake)(os_handler_t *handler,

os_hnd_ond_t *ond);

int (*ond_broadast)(os_handler_t *handler,

os_hnd_ond_t *ond);

/* Thread management */

int (*reate_thread)(os_handler_t *handler,

int priority,

void (*startup)(void *data),

void *data);

/* Terminate the running thread. */

int (*thread_exit)(os_handler_t *handler);

/* Should *NOT* be used by the user, this is for the OS handler's

internal use. */

void *internal_data;

/***/

/* These are basi funtion on the OS handler that are here for

onveniene to the user. These are not used by OpenIPMI

proper. Depending on the speifi OS handler, these may or may

not be implemented. If you are not sure, hek for NULL. */

/* Free the OS handler passed in. After this all, the OS handler

may not be used any more. May sure that nothing is using it

before this is alled. */

void (*free_os_handler)(os_handler_t *handler);

/* Wait up to the amount of time speified in timeout (relative

231

time) to perform one operation (a timeout, file operation,

et.) then return. This return a standard errno. If timeout

is NULL, then this will wait forever. */

int (*perform_one_op)(os_handler_t *handler,

strut timeval *timeout);

/* Loop ontinuously handling operations. This funtion does not

return. */

void (*operation_loop)(os_handler_t *handler);

/* The following are no longer implemented beause they are

rae-prone, unneeded, and/or diffiult to implement. You may

safely set these to NULL, but they are here for bakwards

ompatability with old os handlers. */

int (*is_loked)(os_handler_t *handler,

os_hnd_lok_t *id);

int (*reate_rwlok)(os_handler_t *handler,

os_hnd_rwlok_t **id);

int (*destroy_rwlok)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*read_lok)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*read_unlok)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*write_lok)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*write_unlok)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*is_readloked)(os_handler_t *handler,

os_hnd_rwlok_t *id);

int (*is_writeloked)(os_handler_t *handler,

os_hnd_rwlok_t *id);

/* Database storage and retrieval routines. These are used by

things in OpenIPMI to speed up various operations by ahing

data loally instead of going to the atual system to get them.

The key is a arbitrary length harater string. The find

routine returns an error on failure. Otherwise, if it an

feth the data without delay, it alloates a blok of data and

returns it in data (with the length in data_len) and sets

feth_ompleted to true. Otherwise, if it annot feth the

data without delay, it will set feth_ompleted to false and

start the database operation, alling got_data() when it is

done.

232 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

The data returned should be freed by database_free. Note that

these routines are optional and do not need to be here, they

simply speed up operation when working orretly. Also, if

these routines fail for some reason it is not fatal to the

operation of OpenIPMI. It is not a big deal. */

int (*database_store)(os_handler_t *handler,

har *key,

unsigned har *data,

unsigned int data_len);

int (*database_find)(os_handler_t *handler,

har *key,

unsigned int *feth_ompleted,

unsigned har **data,

unsigned int *data_len,

void (*got_data)(void *b_data,

int err,

unsigned har *data,

unsigned int data_len),

void *b_data);

void (*database_free)(os_handler_t *handler,

unsigned har *data);

/* Sets the filename to use for the database to the one speified.

The meaning is system-dependent. On *nix systems it defaults

to $HOME/.OpenIPMI_db. This is for use by the user, OpenIPMI

proper does not use this. */

int (*database_set_filename)(os_handler_t *handler,

har *name);

/* Set the funtion to send logs to. */

void (*set_log_handler)(os_handler_t *handler,

os_vlog_t log_handler);

/* For fd handlers, allow write and exept handling to be done,

and allow any of the I/O types to be enabled and disabled. */

void (*set_fd_handlers)(os_handler_t *handler, os_hnd_fd_id_t *id,

os_data_ready_t write_ready,

os_data_ready_t exept_ready);

int (*set_fd_enables)(os_handler_t *handler, os_hnd_fd_id_t *id,

int read, int write, int exept);

int (*get_monotoni_time)(os_handler_t *handler, strut timeval *tv);

int (*get_real_time)(os_handler_t *handler, strut timeval *tv);

};

/* Only use these to alloate/free OS handlers. */

os_handler_t *ipmi_allo_os_handler(void);

233

void ipmi_free_os_handler(os_handler_t *handler);

/**

*

* Tools to use OS handlers to wait.

*

* Well, you shouldn't have to wait for OpenIPMI to do things, you

* should use allbaks and event-drive your programs. However, it's

* not always that simple. Broken APIs that require bloking exist,

* and it makes things ugly.

*

* The tools below help you with this. They provide a way with an OS

* handler to do bloking operations more easily. They handle all the

* nastiness of threading, single-threaded, and whatnot.

*

* To use this, alloate a waiter fatory. Then when you need to

* wait, alloate a waiter from the fatory. It is alloated with a

* useount of 1. For every operation you start, "use" the waiter.

* When you are done starting operations, do one "release" of the

* waiter and then wait on the waiter. When operations omplete, they

* "release" the waiter. When the last operation is done the wait

* operation will return. Then free the waiter. You annot reuse

* waiters, you must alloate new ones.

*

* This interfae has three basi modes. If you have a

* single-threaded OS handler (no threads support in the handler) then

* you must set num_threads = 0 and it runs single-threaded. The ode

* will run an event loop while waiting for the operations to omplete.

*

* If you have multiple thread support in the OS handler and set

* num_threads > 0, it will alloate num_threads event loop threads.

* The event loop will not be run from the waiting thread (there are

* rae onditions with this) but ondition variable are used to wake

* the waiting thread.

*

* If you have multiple thread support in the OS handler and set

* num_threads = 0, things are more omplex. This allows a

* single-threaded appliation, but permits a multi-threaded

* appliation. Another thread is alloated to run the event loop.

* It will *only* run when a thread is waiting. Thus it preserved

* single-threaded operation for single-threaded programs, but does

* not have raes in multi-threaded programs.

*

* Be areful using the timeout. You want to be *sure* that you don't

* free the waiter before anything else that might wake up and release

* it.

234 APPENDIX L. OS HANDLER INTERFACE (OS HANDLER.H)

*

***/

typedef strut os_handler_waiter_fatory_s os_handler_waiter_fatory_t;

typedef strut os_handler_waiter_s os_handler_waiter_t;

/* Alloate a fatory to get waiters from. This is the thing that

owns the event loop threads (if you have them). The event loop

threads are alloated with thread_priority. */

int os_handler_allo_waiter_fatory(os_handler_t *os_hnd,

unsigned int num_threads,

int thread_priority,

os_handler_waiter_fatory_t **fatory);

/* Free a waiter fatory. This will fail with EAGAIN if there are any

waiters alloated from it that have not been freed. */

int os_handler_free_waiter_fatory(os_handler_waiter_fatory_t *fatory);

/* Alloate a waiter from the fatory. Returns NULL on failure. It is

alloated with a use ount of 1. */

os_handler_waiter_t *os_handler_allo_waiter

(os_handler_waiter_fatory_t *fatory);

/* Free a waiter. It annot be waiting or an error is returned (EAGAIN). */

int os_handler_free_waiter(os_handler_waiter_t *waiter);

/* Inrement the use ount of the waiter. */

void os_handler_waiter_use(os_handler_waiter_t *waiter);

/* Derement the use ount of the waiter. When the useount reahes

zero the waiter will return. */

void os_handler_waiter_release(os_handler_waiter_t *waiter);

/* Wait for the waiter's use ount to reah zero. If timeout is

non-NULL, it will wait up to that amount of time. */

int os_handler_waiter_wait(os_handler_waiter_t *waiter,

strut timeval *timeout);

#ifdef __plusplus

}

#endif

#endif /* __OS_HANDLER_H */

Bibliography

[1℄ Distributed Management Task Fork (DMTF). Alert Standard Format Spei�ation.

[2℄ Intel, Hewlett-Pakard, NEC, Dell. IPMI { Intelligent Platform Management Interfae Spei�ation.

[3℄ ipmitool. http://ipmitool.soureforge.net.

[4℄ Netsnmp. http://www.netsnmp.org.

235

236 BIBLIOGRAPHY

